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ABSTRACT An algorithm is presented for obtaining the K best solutions of the resource allocauon 
problem with an objective function which is the sum of convex functions of one variable It requires 
O(T* + Klog K + Kn~ogn) time and O(Kn~ogn + n) space, where n is the number of variables and 
T* ~s the computatmnal time to obtain the best solution 
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1. Introduction 

The  fo l lowing resource a l loca t ion  p r o b l e m  (also ca l led  the  d i s t r ibu t ion  o f  efforts 
p rob l em)  is extens ively  s tudied:  

rt 

P:  min imize  z ( x )  = Y, f ( x J ,  
~=1 (1.1) 

n 

subject  to Y, x, = N and  x , : n o n n e g a t i v e  integers,  
l = l  

where  t h e f  are  convex funct ions  de f ined  over  [0, N]  and  N is a posmve  integer.  This  
strnple in teger  p r o g r a m m i n g  p r o b l e m  has  a ra ther  long history,  as ev idenced  by  
n u m e r o u s  pape r s  [2-13, 15, 17-27]. In  add i t i on  to the  s t anda rd  p rocedure  o f  d y n a m i c  
p r o g r a m m i n g  (e.g., [10] and  tex tbooks  [2, 26]), wh ich  is a p p h c a b l e  even i f  t h e f  are  
not  convex,  several  more  eff icient  a lgor i thms  are  known.  The  first one is ca l led  the  
inc remen ta l  m e t h o d  [4, 5, 9, 11, 18-21, 24]. I f  each eva lua t ion  o f  f ( x  3 can be 
done  in cons tan t  t ime,  an  a p p r o p r i a t e  i m p l e m e n t a t i o n  o f  this m e t h o d  runs  in t ime 
O ( N l o g n  + n). T h e  m e t h o d  o f  [27] requi res  O(c(n, N )  + n l o g n )  t ime,  where  c(n, N )  
is the  t ime requ i red  to solve the con t inuous  p r o b l e m  P '  ob t a ined  f rom P by  d r o p p i n g  
the in tegra l i ty  condi t ion  on  the x,. A th i rd  type  o f  a p p r o a c h  is exempl i f i ed  by  [6, 7, 
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13], the most efficient of which [6] requires only O ( n l o g ( N / n ) )  time if  N _> n and 
O (n) time if N < n. 

We consider the following generalization of this problem. Let an integer solution 
satisfying ~,"=~ x, = N and x, _> 0 be called feasible. The kth best solution x k = (x~, x~, 
. . . .  x,~ ~) is defined recursively as follows. 

(1) x ~ is an optimal solution of  P, that is, a feasible solution minimizing the objective 
value z (x). 

(2) x k with k _> 2 is a feasible solution of  P with the minimum objective value among 
those different from x ~, x 2 . . . . .  x k-~. 

In this paper we present an algorithm for obtaining the K best solutions 
x 1, x z . . . . .  x K of P. In real-life problems the simple structure of  the resource 
allocation problem is usually attained by neglecting some complicating side con- 
straints; hence an optimal solution may not satisfy such side constraints. References 
[22, 23, 26] contain some examples of  such resource allocation problems with more 
than one constraint. In this respect it is important to obtain more than one good 
solution of  P, preferably the K best solutions, where K is a given positive integer. A 
best solution satisfying the suppressed side constraints may then be found among the 
K solutions obtained. 

Our algorithm requires O(T*  + K log K + K n~ogn) time and O ( K  n~ogn + n) 
space to obtain K best solutions, where T* denotes the time to obtain x 1. It partitions 
the solution space into finer and finer subsets and computes x 1, x 2 . . . . .  x K by 
systematically obtaining the best solutions in the partitioned subsets. The general 
scheme is based on the framework described m Lawler [ 16]. 

Section 2 gives necessary definitions and basic results. Section 3 gives an outline 
of the entire algorithm. Section 4 gives a detailed description of  the algorithm and 
analyzes the time and space requirements. The algorithm explained in Sections 3 
and 4 requires O(T* + K l o g K  + Kn) time and O(Kn) space. These are reduced to 

O(T* + K log K + K n ~ o g  n) and O(K~/n log n + n), respectively, in Section 5. 

2. Defimtions and Basic Concepts 

For an integer x with 0 _~ x _< N, let 

d~-(x) = f ( x  + 1) - f f (x) ,  (2.1) 

d ; ( x )  = f ( x ) - f ( x -  1), (2.2) 

where f , ( - 1 )  = +oo and f ( N  + 1) = + ~  are assumed by convention. Note that 
d+(x) = di-(x + 1), and that d+(x) and dY(x)  are both nondecreasing by the convexity 
o f f .  We assume throughout this paper that eachfi(x,) can be evaluated in constant 
time. For a feasible solution x = (xl, x2, . . . ,  Xn), a pair of  indices [i, j ]  is called an 
exchange if 0 __. x, < N, 0 < x~ <_ N, and t # j. Applying an exchange [i, j ]  to x yields 
another feasible solution x'  -- (xl . . . . .  x, + 1 , . . . ,  x 1 - 1 . . . . .  Xn) with the objective 
value z(x)  + c (i, j ) ,  where 

c(i, j )  = d+(x~) - d i (x j ) .  

LEMMA 2.1 [17]. A feasible solution x is optimal i f  and only i f  there ts no exchange 
with negattve cost. 

LEMMA 2.2. For an optimal solution x 1, let [i, j ]  be an exchange with minimum 
cost (which is nonnegative). Then the solutton x # = (x~ . . . . .  x~ + 1 . . . . .  

i _ 1, . x ~) obtained by applying [i, j ]  to x ~ is a second best solution x 2. X j  . . , 
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PROOF. Let .~ be a second best solution not  equal  to x #. T h e n  there exists a pa i r  
+ 1 of  indices p,  q such that  ~p > x~ and  Yq < Xq ~. F r o m  d~(5p - 1) >_ d~(Xl,) and 

dq(xq + 1) _< dff(Xlq), it follows that  a feasible solut ion x '  = (Y~ . . . . .  5p - 1 . . . . .  
Yq + 1, . . . ,  ~n) has  an object ive value not  greater  than  ~ because  z ( ; )  - z(x')  = 
d~(.~p - 1) - d~-(~q + 1) _> + 1 - -  ~ _  - -  d~(xp) d~(xq l) d,+(x, l) dj- (x))  _> 0 by the opt imal i ty  
o f  x 1 and  the min imal i ty  o f  exchange [i, j ] .  Repea t ing  this, we eventual ly  obta in  a 
feasible solution ~ such that  z(~)  _> z(~), and  ~z = x~ + l and  Xm = X~ -- 1 for  some 
l and  m but  ~k = x~ for  all k # /, m. T h e n  z(~)  _> z(~) >_ z(x #) follows f rom 
z ( ~ )  z ( x * ) =  + ' - - - - (dz (x l )  dT~(Xim)) (d~-(x, l) d r (x ) ) )  >_ 0 by the min imal i ty  o f  
[i, j ] .  This  implies that  z(~) = z(x #) and therefore  that  x ~ is also a second best 
solution. [ ]  

To  construct  an a lgor i thm for comput ing  x k for  k _> 3, we need to general ize 
L e m m a  2.2 as follows. The  p r o o f  is similar  to L e m m a  2.2. 

LEMMA 2.3. Let  two n-dimensional integer vectors .t  and_x with 0 _<_x _< .t  be given. 
Let  x -- x * be a best feasible solution o f  P among those satisfying 

x ,_<x,_<.t , ,  i =  1 ,2  . . . . .  n. 

Then a second best solution ~ satisfying the above constraint ts obtained by applying 
[i', j ' ]  to x* ,  where [i', j ' ]  is a minimum exchange satisfymgx3 < .t,, andx  7, > xj,. 

3. The Outline o f  the Entire Algorithm 

Our  a lgor i thm consists o f  routines C O M P B S  and KBS.  C O M P B S  computes  x k when  
the first k - 1 best solutions x 1, x 2 . . . .  , x k-1 are given. KBS generates  all the K best 
solutions using C O M P B S  as a subroutine.  

N o w  assume that  x ~, x 2 . . . . .  x k-l, k > 1, have  been  generated.  The  set o f  
remaining  feasible solutions is par t i t ioned into k - 1 disjoint subsets, 

P r o ( k -  1 ) =  ( x ~ l l > k  - 1, xm(k - 1)__< xZ_<.tm(k - 1)), (3.1) 
m = l ,  2 . . . . .  k - l .  

As will be discussed shortly, these sets have  the p roper ty  that  x k is equa l  to a solut ion 
with the m i n i m u m  object ive value a m o n g  those ob ta ined  as best solutions in the 
respective Pm(k - 1). 

Vectors  xm(k - 1) and  .tm(k - 1) are recursively def ined as follows. Initially, when  
k = 2 (i.e., only  x 1 is obtained),  .tin(l) and  _xm(1) for  m = 1 are given by  

~ 1 ( 1 )  = ( N ,  N ,  . . . .  N ) ,  ( 3 . 2 )  

_ x l ( l )  = (0,  0 . . . . .  0) .  

In  general,  let .tm(k - 1) and  _xm(k - 1), 1 __< m _< k - 1, be given, and  assume that  
x ~ is ob ta ined  f rom x m• by  apply ing  an exchange  [t*, j*] .  T h e n  .tin(k) and  _xm(k) are 
def ined as follows: 

.tm*(k) = (£~*(k - l) . . . . .  x~1*, . . . .  2nm*(k - 1)), 
~m*(k) = ~m*(k - 1), 

.tk(k) = .tm*(k - l), (3.3) 
~k(k)  ~ * ( k  1) , . .  ~ x m" . . ,  = - . ,  . x n  ( k -  1)),  x , . (=  ~* + 1), m* 
£ Z ( k ) = £ t ( k -  l), ~ ( k ) = 2 c t ( k  - 1), f o r a l l  l r a m * , k .  

These  new sets define Pro(k) for m -- l, 2 . . . . .  k. F r o m  this defini t ion and L e m m a  
2.3, the next  l e m m a  is obvious.  
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LEMMA 3.1. Le t  k be 2 _< k _< K.  

(1) For  m ffi 1, 2 . . . . .  k - 1, x m is a best  f eas ib le  solution satisfying 

xr~(k - 1) _< x -< £m(k - 1). (3.4) 

Furthermore,  no other x t, l ffi 1, 2 . . . .  , m - 1, m + 1 , . . . ,  k - 1, sa t i s f e s  (3.4). 
(2) A n y  feas ib le  solution x o f  P satisfies ( 3 . 4 ) f o r  exac t ly  one m with 1 _< m _< k - 1. 

Lemma 3.1(2) asserts that 
k - 1  

tJ p m ( k  - 1) = (the set of  all feasible solutions of  P)  - {x l, x 2 . . . . .  x k - l } ,  
m ~ l  

and p m ( k  - 1) N P t ( k  - 1) ffi O for m # / ,  since the condition 1 > k - 1 in each 
p m ( k  - 1) excludes x 1, x 2 . . . . .  x k-1. Thus, letting ~m be a best feasible solution in 
each p m ( k  - 1), x k is given as a best one in the set {Minim ffi 1, 2 . . . .  , k - 1}. 
Lemma 3.1(1) says that E m is a second best solution among those satisfying (3.4). 

In order to compute ~m according to Lemma 2.3, we maintain two sets of  labels, 

D ~ ( k  - 1) -- (d,+(x?)l 1 _< i _< n, x~  < ~?~(k - 1)}, (3.5) 
D-~(k - 1) ffi ( d f ( x ? ) [ 1  _< j_< n, x ?  >_xy(k - 1)), 

for m = 1, 2 . . . . .  k - 1 (if d ~ ( x Y )  ffi d~ (x~) ,  both are stored). D ~ ( k  - 1) and 
D-m(k - 1) contain at most O(n) labels. A minimum exchange [i', j ' ]  of  Lemma 2.3 
for £ = £ m ( k  - 1) and x = x m ( k  - 1) is then determined as follows. Let/1 and/2 be 
the indices of  the first and second minimum d~-(xY)  in  D ~ ( k  - 1), respectively, and 
fi and j2 be the indices of  the first and second maximum d ; ( x T )  in  D-~(k - 1). Then 

f [il, ja] if i~ # j,,  
[i', j ' ]  ffi ~ [p,  q] i f  i~ • f i  and c(p,  q) ffi min[c(i~,h), c(i2,fi)], (3.6) 

l where p E {il, i2}, q E {fi, j2}. 

Note that ia, /2, fi, and j2 are computed in O(logn) time if the D ~ ( k  - 1) use 
appropriate data structure (any efficient priority queue discussed in [1, 14] for 
example). [i', j ' ]  is then computed by (3.6), a n d / m  is obtained from x m by applying 
exchange [i', j ' ] .  

When x k is obtained as ~m* (which is generated from x m" by exchange [i*, j*]) ,  
the D ~ ( k )  are computed from the D ~ ( k  - 1) as follows (see (3.3)): 

D ~ ' ( k )  ffi D ~ ' ( k  - 1) - {d~(xT~')}, (3.7) 

D'~' (k)  = D ~ ' ( k  - 1), (3.8) 

Dk+(k) -- D ~ ' ( k  - l) O ( d ~ (x~"  + 1), d~(x~"  1)) + m. - - {d , . ( x , .  ), df i (x f )} ,  (3.9) 
- -  m *  D~-(k) = D ~ ( k  - 1) t.J (d~;(x~ ° - 1)} - (d , . ( x , .  ), d ~ ( x y ) } ,  (3.10) 

D ~ ( k )  = D ~ ( k  - 1), D'~(k)  = D ~ ( k  - 1) for m # m*, k. (3.11) 

(Although not explicitly written, it should be understood in (3.9) and (3.10) that those 
d ::t:z m x  , Ix, ) whose variables violate the condition of  (3.5) are not included in D~:(k).) 

Using the appropriate data structure for a priority queue,.the deletion of  an element 
from D ~ ( k  - 1) and the addition of  an element to D ~ ( k  - l) are each done in 
O(logn) steps (e.g., [1, 14]). Thus the D'~' (k)  are computed in O(logn) steps and 
the D~:(k) are computed in O(n) steps (since D ~ * ( k -  l) must be copied and it 
requires O(n) steps). Other D ~ ( k )  do not require any computation time because the 
D ~ ( k  - l) can be used as D ~ ( k )  with no change. 
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We note that each pm(k - 1) is represented in our algorithm by the following list: 

p m ( k -  1) - - (c ' ,  [i',j'], xm, x m ( k -  1), g m ( k -  1), D ~ ( k -  1), O ~ ( k -  1)), (3.12) 

where c' = z(x m) + c(i', j ')  and [i', j ']  is a minimum exchange with respect to 
~S(k - 1) and xm(k - 1). This list uses O(n) space. 

The computation ofxk -m" m ---- X , _X (k), ~m(k), and D~(k) for each k described above 
constitutes Subroutine COMPBS. COMPBS is repeated for k = 2, 3 . . . . .  K. The 
entire procedure is organized as KBS. 

4. Algorithms KBS and COMPBS 

This section describes algorithms KBS and COMPBS in an ALGOL-like language 
and then analyzes its running time. 

Procedure KBS(P, K); 
begin 

comment This procedure computes x ~, x 2 . . . .  x x together with their costs c 1, c z . . . . .  c x. If  P 
does not have K feasible solutions, KBS terminates after generating all feasible soluuons; 

Fred an  optimal solution x ~ for problem P,  
£~(1) *-  (N, N, . . . .  N), x~(l)  *-- (0, 0, . , 0); compute D~_(I) and D~.(I); 
Fred a min imum exchange [t' ,j '] with cost c(i',j '), 
Pt ( l )  , - ( z ( x  ~) + c(i',j '), ri' '~ X ~ t ,j J, , x'(l), e'(l), D~-(I), D~+(I)), 
for k ffi 2 until K d o  call COMPBS(Pm(k - l ) l m  = 1, 2 . . . .  k - 1), 

end KBS, 

Subroutine COMPBS(Pm(k - l ) [m ffi 1, 2 . . . .  k - 1), 
begin 

1 Find Pm*(k - 1) ffi (c*, [i*, j*] ,  x m', xm'(k - 1), ~m'(k - 1), D-~*(k - 1), D~'(k  - l)) with the 
min imum cost c* among Pm(k - l), m = 1, 2, . , k - l; 

2 if c* ffi oo then stop (all feasible soluUons have been output and P has only k - 1 feasible 
solutions); 

3 else begin 
comment Computauon of  x k, 

4 Output [ i*, j*] ,  m*, and c* as x k (x k is obtained from x m~ by exchange [ i* , j*])  and c k, 
respectively; 

comment Updat ing Pin'(k); 
5 Construct_xm'(k) and xm'(k) by (3.3); 
6 Construct D-~'(k) and D+m*(k) by (3.7) and (3.8); 
7 Using (3.6), find a m m t m u m  exchange [i', j ']  for D~*(k); 
8 if such [i', j ']  exists then P~'(k) ~ (c m" + cO', J'), [:', J'], x m', _xm'(k), £m*(k), 

D_"(k), D~'(k)); 
9 else (Le., D~'(k) ffi O or D~'(k) ffi f~) Pin'(k) ~- (oo, 0 ,  9 ,  f~, f~, 9 ,  f2)); 

comment ComputaUon of  Pk(k); 
10 Construct xk(k) and .fk(k) by (3.3); 
11 Construct D~-(k) and D~+(k) by (3.9) and (3.10); 
12 Using (3.6), find a min imum exchange [i',j '] for D~(k), 
13 if such [ t ' , j ' ]  exists then P~(k) *- (c k + c(d, j ') ,  ri' ,1 x k [ , j  j, , xk(k), ~ ( k ) ,  DS(k), Dk+(k)); 
14 else ek(k) ,-- (oo, 0 ,  9 ,  ¢~, 0 ,  f~, f~); 

comment ComputaUon of  other Pro(k); 
15 P'~(k) , -  P=(k - 1) for m # m*, k; 
16 end 

return 
end COMPBS; 

LEMMA 4.1 .  F o r  e a c h  k = 2, 3 . . . .  , K ,  C O M P B S  cor rec t l y  c o m p u t e s  x k a n d  P m ( k )  

f o r  m -- 1, 2 . . . . .  k in O ( l o g  K + n)  t ime .  

PROOF. T h e  c o r r e c t n e s s  is  o b v i o u s  f r o m  t h e  d i s c u s s i o n  i n  S e c t i o n s  2 a n d  3. T h e  

t i m e  r e q u i r e m e n t  is  c o n s i d e r e d  h e r e .  L i n e  1 o f  C O M P B S  is  d o n e  i n  O ( l o g ( k  - 1)) 
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_< O(log K) time if the pm(k  - 1) are linked in the form of  an efficient priority queue 
[1, 14]. Lines 2 and 3 are executed in constant time. Line 4 is executed in constant 
time since x k is output only by m* and [i*, j*]  instead of  the full vector x k ffi 
(x~ . . . . .  Xk~). Line 5 is executed in constant time, as is obvious from (3.3). Line 6 
requires O(log n) time as explained after (3.11). Lines 7 and 12 require O(logn) time, 
as explained after (3.6). Hence Pm*(k) of lines 8 and 9 is obtained in O(Iog n) time. 
Line 10 requires O(n) time, as is obvious from (3.3) (note that O(n) is necessary to 
copy xm*(k - 1) and Ym*(k - 1) beforehand). Line 11 requires O(n) time, as explained 
after (3.11). This implies that Pk(k)  of line 13 or 14 is constructed in O(n) time. Line 
15 requires constant time because it is accomplished by keeping the previous data. 
The adjustment of links among Pro(k), m = 1, 2 , . . . ,  k, (which are used at line 1) as 
a result of  the addition of pk(k )  and the modification of  pm*(k) is done in O(logk) 
(_<O(logK)) time. Thus all computation in COMPBS is done in O(logK + n) 
steps. [] 

THEOREM 4.2. K B S  correctly generates the K best solutions f r o m  x ~ to x g in 
O(T*  + Kn + K l o g  K )  time and O(Kn) space, where T* is the time required to compute 
x ~. I f P  does not have K feasible  solutions, K B S  terminates after generating all feasible  
solutions. 

PROOF. The correctness of  KBS follows from the previous discussion. The time 
complexity is analyzed here. Line 1 of KBS requires T* time. Line 2 obviously 
requires O(n) time since the initial construction of a priority queue is done in O(n) 
time [1, 14]. Line 3 requires O(logn) time, as explained after (3.6), and line 4 requires 
O(n) time. Line 5 calls COMPBS K -  1 times and requires O ( K l o g K  + Kn)  time in 
total by Lemma 4.1. Thus the total time is O(T*  + Kn + KlogK) .  Finally, O(Kn) 
space is required to store pm(k),  m = 1, 2 . . . . .  k, since each pm(k)  needs O(n) space; 
the space for other data is obviously dominated by O(Kn). [] 

The time T* was discussed in Section 1. The most time consuming part is the 
generation of  Pk(k)  at lines 10-14 of  COMPBS; this requires O(n) time since it must 
copy xm'(k - 1), Ym' (k  - 1), and D ~ ' ( k  - 1). The time requirement of  this part will 
be further reduced in the next section by introducing a sophisticated data structure 
for Pro(k). 

5. Time and Space Reduction 

The time and space required for KBS will be reduced to 

O(T* + K l o g K  + K n~ogn) and O ( K  n~ogn + n), 

respectively, in this section. To attain these bounds, it is essential  to output x ~ by 
[i*, j*] and m* (as indicated at line 4 of  COMPBS). If  the n-dimensional vectors x k 
are to be directly output, O(Kn) time is required only for this purpose. 

5.1 DERIVATION TREE T AND SOME DEFINITIONS. First we represent the process 
of deriving x 2, x a . . . .  from x 1 by a rooted tree T defined as follows: x m* is the fa ther  
of x k (or x k is a son of x m') if x k is obtained from x m" by an exchange, x t is an 
ancestor of x m (or x m is a descendant of x t) if there is a sequence x t~ (--xZ), 
x ~ . . . . .  x zp (=x m) such tha tx  t' is the father ofx  t'÷l, i = l, 2 . . . . .  p - I. x m and x m', 
m ~ m', are brothers if  their fathers coincide; x m is placed to the left o f x  m" i fm < m'.  
Obviously x 1 is the root of  this tree. For any ancestor x I of x m, ~'(l, m) denotes the 
path from x ~ to x m in T. For any x p, let [i*(p), j*(p)]  denote the exchange with 
which x p is obtained from its father. 
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Now consider the time instance when x k is attached to x m" in T, corresponding to 
the generation of  x k from x m*. Special attention needs to be paid to the fact that 
£'~'(k) of  (3.3) is modified whenever its son is created. This implies that each £m(k) 
is generally dependent upon the entire history of  how x 1, x 2 . . . . .  x k have been 
generated (i.e., the structure of  T). Let x t be an ancestor of  x m in T. Then we see 
from (3.3) that ~m(k) is computed from ~l(l) by taking into account the effects caused 
by those nodes in T which are either left brothers of  some x q on w(/, m) or are sons 
of  xm. To carry out this computation, we define 

f(m): x f(m~ is the father of xm; (5.1) 

s(m): x 8~m) is the nghtmost son o f x  m 
(s(m) ffi ~ if  x m has no son); (5.2) 

b(m): x b¢m) is the brother immediately to the left o f x  m 
(b(m) -- ~ i f x  m is the leftmost son); (5.3) 

Ib(l, m) ffi {i*(p) lx p is a left brother of  some x q 
(note p # q) on or(l, m), and q # 1}; (5.4) 

Is(m) ffi {i*(p)I xp is a son ofxm}; (5.5) 

J(l, m) -- ( j * ( p ) [ x  p is on or(l, m) a n d p  # / } ;  (5.6) 

I(1, m) -- {i*(p)lx" is on or(l, m) a n d p  # 1}. (5.7) 

Then we have, by the definition of T and (3.3), 

xm - - x  l +  ~ e, - ~ ej, where eq ffi (O . . . . .  0,1 q ,0  . . . . .  0), (5.8) 
,EI(ljn) 3EJ(l,m) 

•xf ', where p* -- max{pl i* (p  ) E I(l, m) and i*(p) ffi i}, 
(5.9) 

_x~(k) -- ~_x~(k), if  p* is not defined, i ffi 1, 2 . . . . .  n, 

x (t~"~, where p* = max(pl i*(p)  E Ib(l, m) U L(m) 
£~(k)  ffi and i*(p) -- i}, (5.10) 

£~ (l), if  p* is not defined, i -- 1, 2 . . . . .  n. 

5.2 TYPES 1 AND 2 DATA STRUCTURES OV Pro(k). On the basis of the above 
notations we now introduce two types of  data structure of  pm(k) with which the time 
and space reduction is attained. Call the following Pro(k) type 1: 

Pro(k) -- (c', [i',j'], [i*(m),j*(m)], xra, 2gm(k), .~m(k), D-re(k), (5.11) 

D~(k), £m(m), D~(m),J~m), f ' (m) ,  b(m), s(m)), 

where c'  and [i', j ' ]  are defined after (3.12) a n d f ' ( m )  will be explained later in 
Section 5.3. Note that x "  is obtained from x f(m) by-an exchange [i*(m), j*(m)]. A 
type-1 P'n(k) requires O(n) space. 

We also use a simplified data structure cared type 2: 

Pro(k) = (c', [i', j'], [i*(m), j*(m)], f (m) ,  f ' (m) ,  b(m), s(m)). (5.12) 

A type-2 Pro(k) requires only constant space. 
Consider now the instance immediately after x ~ is obtained from x m*. It is shown 

in this section and the rest of  Section 5 how a type-2 Pro(k) (though only the cases of  
m = m*, k are our concern because Pro(k) = Pm(k - 1) for m # m*, k, as discussed 
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FIG 1 The relation between a 
rooted tree Tand the directed forest 
T' (sohd hnes denote T and broken 
hnes denote T') 

above) can be constructed from type-1 PZ(k), where x t is an ancestor o f  x m such that  
no node x p on ~r(l, m), p # l, has type-1 PP(k). The  essential part  is the computa t ion  
of  [i', j ' ]  and c'  o f  Pro(k), which is done  after temporar i ly  constructingD'~(k).  

On the basis of  (5.9) and (3.5), D_~(k) is constructed in O(I ~r(/, m)[ logn)  t ime as 
follows ([ ~'1 denotes the length of  path ,r). xm(k) is obta ined f rom x Z(k) by changing 
x~.~p~(k) to x~.lp~ for each x p on ~r(/, m) by following ~'(/, m) f rom x z to x m. This 
requires O(I ~'(l, m) l )  time, since a change o f  an element  is done  in constant  time. 
Corresponding to the changes in_x re(k), D_~(k) is obtained by appropr ia te ly  modifying 
Dl_(k) in O(I ~-(/, m) l log n) time, since a deletion or a change o f  an element  in Dt_(k) 
is done in O(log n) time. 

Note  that after type-2 Pro(k) is computed  (which will be explained in Section 5.3), 
the modified xl(k)  and Dt_(k) in Pt(k) (which now become _xm(k) and 
DY(k), respectively) must  be set back to the original form. This is also done  in 
O(I ~-(/, m) l logn ) t ime just  by following ~r(l, m) in reverse. 

The  construction o f  Dr(k )  f rom Dl+(k) is more  involved and IS discussed in 
Section 5.3. 

5.3 DIRECTED FOREST T'  AND CONSTRUCTION OF A TYPE-2 Pro(k). T o  compute  
DR(k) efficiently, we introduce a directed forest T' defined as follows (see Figure 1). 
T' has nodes x ~, x 2 . . . . .  x k-l, and x" is the father of  x t in T' (denoted by r = f ' ( t ) )  
i f  r = b(0 or if  b(t) = ~5 and r = b(q), where x q is the closest ancestor o f  x t in T with 
b(q) # 6 .  Note  that an x p is a root in T' if  and only if  x ~ is on the leftmost path  in 
T. The path from x u to x ~ in T '  (i.e., x "  is an ancestor  o f x  ~ in T ' )  is denoted  by 
~-'(u, v). Then  we have by (5.4) and (5.5) that  

lb(l, m) t3 Is(m) = {i*(p)l  xp is on ~"(u, v)), (5.13) 

where 

[s(m) i f  s(m) # 0 (see (5.2)), 
v = [b (q )  otherwise, 

q = m a x { p l x "  is on ~r(l, m) ,p  # I and b(q) # 6} ;  

u = m in { r l x  r is an ancestor o f x  v in T '  and is a descendant  o f x  z in T}.  

The  situation is illustrated in Figure 2. I f  x u and x v are not defined by this (i.e., the 
set on the r ight-hand side o f  x q is empty),  Ib(l, m) 0 Is(m) = O is concluded,  x ° can 
be computed  in O(1 ,:(/, m)l)  time. Let  

[ m a x { q l x  q is on ~r'(u, v) and is o f  type 1}, 
w = [ u  i f a  type-1 node is not on ~"(u, v). (5.14) 
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yl 

. . .  type 1 node 

. . .  type 2 node 

FIG 2 Relatwe positions o f  the nodes m T and T' used for the computa-  
tion o f  type-2 Pro(k) 

x w is obtained in O(1 ~r'(w, v)D time by following T' upward from x v and checking at 
each node x r whetherf( r )  _> ! (i.e., x r is a descendant o f x  t in T) or not. 

Case A. I f x  ~ is of  type 2 (i.e., w = u),f(w) = f ( u )  = l holds. £m(k) and D~(k) are 
obtained as follows. Starting with .~l(l) and D~_(I) stored at P~(k - 1), follow the path 
~r(l, m) from x z (=x I(~)) to x m. At each vertex, first modify £Z(l) and D~_(I) by (3.3) 
and (3.7), respectively, to take into account the generation of  each son which is 
contained in ~"(w, v), and then move to its son on ~-(/, m) while modifying £t(l) and 
D~.(l) by (3.3) and (3.9), respectively. When this process is completed, £Z(l) and 
Dt+(l) have been changed to £m(k) and D~(k), respectively. The time required is 
O([ ~r(f(w), m) [ log n + [ ~r'(w, v) [ log n), because (3.3) is executed in constant time per 
vertex, and (3.7) or (3.9) is executed in O(log n) time per vertex. 

Case B. I f x  ~ is of  type 1 (see Figure 3), we have 

I x ((p*), where 

£~(k) = -r(~) p .  
Lx ,  (w), if 

p* = max{p Ip(#w) is on ~"(w, v) 
and i*(p) = t}, 

is not defined, 
(5.15) 

by (5.10) and (5.13). First £r(W)(w) and D~W)(w) are obtained in O(logn) time from 
£W(w) and DE(w) by using (3.3), (3.7), and (3.9). Then ~'~(k) and D~(k) are obtained 
in O(1 ~r(f(w), m) I logn + [ ~r'(w, v) [ logn) time from £i(W)(w) and D-~(W)(w) in a manner 
similar to case A. 

Upon constructing D~(k) and DY(k) it is easily seen that c'  and [i', j ' ]  can 
be computed in O(logn) time, as noted in Section 3 following (3.6). Other data, 
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n) 

0 " '" type I node 

C) ... type 2 node 

FIG 3 The relative posluons of the nodes m T and T' when ¢r'(u, v) has a type-1 node. 

[i*(m),y*(m)],f(m), b(m), and s(m), in type-2 Pro(k) can be obtained in constant time 
as follows. For  m = k, 

[t*(k),y*(k)] ~ [t',j '] (in Pm*(k - 1)), 

I s !m*)  if s(m*) ~ 9 ,  (5.16) 
f ( k )  ~ m*, f ' ( k )  ~-- i f  (m*) otherwise, 

b(k) ~-- s(m*), s(k) ~ 9 .  

For m = m*, 

s(m*) ~-- k, (5.17) 

and other data in type-2 Pm*(k - 1) do not change. From the above discussion the 
next lemma follows. 

LEMMA 5.1. A type-2 P'~( k) is constructed in 

O(l~r(f(w), m)l logn + let'(w, v)llogn) 

time, where x °, x w, and x m are defined as above. A type-2 Pro(k) requires constant 
space. 

5.4 SCHEME FOR CREATING A TYPE- 1 DATA STRUCTURE. Let y be a prespecified 
positive integer not larger than K. Assume that pI ( I )  is of  type 1 and all the other 
Pro(k) are initially type 2. A Pro(k), m > 1, ~s then altered from type 2 to type 1 f fone  
of  the following three conditions is saUsfied. 

(a) I ~r(l, m)l  = y and 

(the number of  descendants of x m in T)  _> y (5.18) 

hold, where x t is the closest ancestor of  x m m T with type- 1 data structure. 
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(b) x ~ is on the leftmost path of  T (i.e., a root in T'), and 

(the number of  descendants o f x  m in T')  _> y. 

(c) 
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(5.19) 

x m is not on the leftmost path of T and satisfies 

[ ~"(w, m)[ = y  and (5.19), (5.20) 

where x w is the closest ancestor o f x  m in T' with type-I data structure. (Note that 
if an x m of  (c) satisfies (5.19), there is an ancestor in T' satisfying the condition 
of  (b); therefore the above x w always exists.) 

Consequently it always holds for any x m that 

[ ~'(l, m)[ _< 2y, 

I~r'(w, m)l -< 2y. 

The numbers of Pro(k) of type 1 LEMMA 5.2 
respectively. 

(5.21) 

(5.22) 

and 2 are O(K/y) and O(K), 

PROOF. The result for type 2 is obvious. We show that the number of  type-1 
Pro(k) is O(K/y). Let type la, lb, and lc denote the type-l data structure generated 
by the above rules (a), (b), and (c), respectively. Consider P l ( l )  to be of  type la for 
convenience. Define a set, 

D(m) = (xP[x p is a node not of  type la whose closest ancestor 
in T with type- I a data structure is x m}, 

for a type-la  Pm(k). By the generation rule (5.18), D(m) contains at least y - l 
nodes. Since the D(m)'s for type la nodes x m are mutually disjoint and their union 
is the set of  all nodes not of  type la, the number of  type-la  nodes is O(K/y). It is 
similarly shown that the number of  type-lb or - lc  nodes is O(K/y). Thus the total 
number of  type-1 nodes is O(K/y). [] 

5.5 TIME NEEDED TO CREATE A TYPE-1 DATA STRUCTURE. We analyze here the 
time needed to create a type-I data structure. It is not difficult to see that the 
conditions (5.18)-(5.20) for altering type 2 to type 1 can be detected in constant time 
by introducing some additional data such as the numbers of  descendants of  x m In T 
and T', respectively. When it is decided to change type-2 P~(k) to type 1, let x t be 
the closest type-I ancestor of  x m in T, and let x v and x w be defined by (5.13) and 
(5.14) (see Figure 2). As discussed in Sections 5.2 and 5.3, x ~, xm(k), D-~(k), ££m(k), 
and D~(k) are obtained in O(ylogn + n) time (including the time to copy these 
data), since [~-(f(w), m)[ _< [ rr(l, m)[ _< 2y and [qr'(w, v)[ _< 2y hold by (5.21) and 
(5.22).  xm(m) and D~(m) are also obtained in O(ylogn + n) time from £m(k) and 
D~(k) by a similar procedure. The other data can be obtained in constant time by 
(5.16). Consequently the following lemma is proved. 

LEMMA 5.3. The time required to alter type-2 Pro(k) to type 1 is O(ylogn + n). 

The results of  Lemmas 5.1-5.3 are summarized in Table I. 

5.6 TIME AND SPACE COMPLEXITY OF THE ENTIRE ALGORITHM. This section 
analyzes the time and space requirement of  Algorithm KBS and Subroutine 
COMPBS implemented with the above data structure. First consider the time 
requirement of  COMPBS for each iteration. The time required for lines 5-14 is 
reduced to O(ylogn) by Lemma 5.1, (5.21), and (5.22). The other lines are not 
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TABLE I. THE TIME AND SPACE REQUIREMENT OF THE 
MODIFIED DATA STRUCTURE 

T,me for Space for Total 
Type a P~(k ) a Pro(k) number 

l O(n + y log n) O(n) O(K/y)  
2 O(y log n) constant O(K) 
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changed. Thus COMPBS requires O(ylogn + logK) time for every iteration. Since 
COMPBS is called K -  1 times, the total time is 

O(K) .  O(ylogn + logK) -- O(Kylogn + KlogK). (5.23) 

In addition to the time consumed by COMPBS, the modified KBS with the new 
data structure must take care of the alterations of some Pro(k) from type 2 to type 1. 
The total time required for this process is 

0 (K /y ) .  0 ( y log n + n) = O (K log n + Kn/y),  (5.24) 

by Lemmas 5.2 and 5.3. Thus the modified KBS requires 

O(Ky logn + K logK + Kn/y)  

in total. 
The space requirement for all Pro(k) is also easily obtained from Table I: 

O(K) + Q ( K / y ) . O ( n )  -- O(K + Kn/y) .  

Other space is obviously_ dominated by this. 
Letting y = miD(K, "n/l~ogn) in the above discussion results in the next theorem. 

THEOREM 5.4. KBS (with subroutine COMPBS) can be implemented with 
O(T* + KlogK + Kx/nlogn) time and O(K~/nlogn + n) space, where T* is the time 
to obta in  x x. 

The +n in the space complexity is added since at least O(n) space is neces- 
sary even if K < s/n/log n. It is not added to the time complexity because T* is at 
least O (n). 
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