
An Algorithm for the K Best Solutions

of the Resource Allocation Problem

N. KATOH

The Center for Adult Diseases, Osaka, Japan

AND

T. IBARAKI AND H. MINE

Kyoto Umverstty, Kyoto, Japan

ABSTRACT An algorithm is presented for obtaining the K best solutions of the resource allocauon
problem with an objective function which is the sum of convex functions of one variable It requires
O(T* + Klog K + Kn~ogn) time and O(Kn~ogn + n) space, where n is the number of variables and
T* ~s the computatmnal time to obtain the best solution

KEY WORDS AND PHRASES resource aUocatmn problem, K best soluuons, computational complexity

CR CATEGORIES 5 25, 5 30, 5 41

1. Introduction

The fo l lowing resource a l loca t ion p r o b l e m (also ca l led the d i s t r ibu t ion o f efforts
p rob l em) is extens ively s tudied:

rt

P: min imize z (x) = Y, f (x J ,
~=1 (1.1)

n

subject to Y, x, = N and x , : n o n n e g a t i v e integers,
l = l

where t h e f are convex funct ions de f ined over [0, N] and N is a posmve integer. This
strnple in teger p r o g r a m m i n g p r o b l e m has a ra ther long history, as ev idenced by
n u m e r o u s pape r s [2-13, 15, 17-27]. In add i t i on to the s t anda rd p rocedure o f d y n a m i c
p r o g r a m m i n g (e.g., [10] and tex tbooks [2, 26]), wh ich is a p p h c a b l e even i f t h e f are
not convex, several more eff icient a lgor i thms are known. The first one is ca l led the
inc remen ta l m e t h o d [4, 5, 9, 11, 18-21, 24]. I f each eva lua t ion o f f (x 3 can be
done in cons tan t t ime, an a p p r o p r i a t e i m p l e m e n t a t i o n o f this m e t h o d runs in t ime
O (N l o g n + n). T h e m e t h o d o f [27] requi res O(c(n, N) + n l o g n) t ime, where c(n, N)
is the t ime requ i red to solve the con t inuous p r o b l e m P ' ob t a ined f rom P by d r o p p i n g
the in tegra l i ty condi t ion on the x,. A th i rd type o f a p p r o a c h is exempl i f i ed by [6, 7,

Permission to copy without fee all or part of this material Is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright noUce and the title of the publlcaUon
and Its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to repubhsh, reqmres a fee and/or specific permission
Authors" present addresses N Katoh, Department of Management Science, Kobe Umverslty of Com-
merce, Kobe, Japan, T. Ibarakl and H Mine, Department of Applied Mathematics and Physics, Faculty
of Engineering, Kyoto Umverslty, Kyoto, Japan.
© 1981 ACM 0004-54l 1/81/1000-0752 $00 75

Journal of the Associatxon for Computing Machinery, Vol 2S, No 4, October 198l, pp 752-764

http://crossmark.crossref.org/dialog/?doi=10.1145%2F322276.322286&domain=pdf&date_stamp=1981-10-01

K Best Solutions o f the Resource Allocatwn Problem 753

13], the most efficient of which [6] requires only O (n l o g (N / n)) time if N _> n and
O (n) time if N < n.

We consider the following generalization of this problem. Let an integer solution
satisfying ~,"=~ x, = N and x, _> 0 be called feasible. The kth best solution x k = (x~, x~,
. . . . x,~ ~) is defined recursively as follows.

(1) x ~ is an optimal solution of P, that is, a feasible solution minimizing the objective
value z (x).

(2) x k with k _> 2 is a feasible solution of P with the minimum objective value among
those different from x ~, x 2 x k-~.

In this paper we present an algorithm for obtaining the K best solutions
x 1, x z x K of P. In real-life problems the simple structure of the resource
allocation problem is usually attained by neglecting some complicating side con-
straints; hence an optimal solution may not satisfy such side constraints. References
[22, 23, 26] contain some examples of such resource allocation problems with more
than one constraint. In this respect it is important to obtain more than one good
solution of P, preferably the K best solutions, where K is a given positive integer. A
best solution satisfying the suppressed side constraints may then be found among the
K solutions obtained.

Our algorithm requires O(T* + K log K + K n~ogn) time and O (K n~ogn + n)
space to obtain K best solutions, where T* denotes the time to obtain x 1. It partitions
the solution space into finer and finer subsets and computes x 1, x 2 x K by
systematically obtaining the best solutions in the partitioned subsets. The general
scheme is based on the framework described m Lawler [16].

Section 2 gives necessary definitions and basic results. Section 3 gives an outline
of the entire algorithm. Section 4 gives a detailed description of the algorithm and
analyzes the time and space requirements. The algorithm explained in Sections 3
and 4 requires O(T* + K l o g K + Kn) time and O(Kn) space. These are reduced to

O(T* + K log K + K n ~ o g n) and O(K~/n log n + n), respectively, in Section 5.

2. Defimtions and Basic Concepts

For an integer x with 0 _~ x _< N, let

d~-(x) = f (x + 1) - f f (x) , (2.1)

d ; (x) = f (x) - f (x - 1), (2.2)

where f , (- 1) = +oo and f (N + 1) = + ~ are assumed by convention. Note that
d+(x) = di-(x + 1), and that d+(x) and dY(x) are both nondecreasing by the convexity
o f f . We assume throughout this paper that eachfi(x,) can be evaluated in constant
time. For a feasible solution x = (xl, x2, . . . , Xn), a pair of indices [i, j] is called an
exchange if 0 __. x, < N, 0 < x~ <_ N, and t # j. Applying an exchange [i, j] to x yields
another feasible solution x' -- (xl x, + 1 , . . . , x 1 - 1 Xn) with the objective
value z(x) + c (i, j) , where

c(i, j) = d+(x~) - d i (x j) .

LEMMA 2.1 [17]. A feasible solution x is optimal i f and only i f there ts no exchange
with negattve cost.

LEMMA 2.2. For an optimal solution x 1, let [i, j] be an exchange with minimum
cost (which is nonnegative). Then the solutton x # = (x~ x~ + 1

i _ 1, . x ~) obtained by applying [i, j] to x ~ is a second best solution x 2. X j . . ,

754 N. KATOH, T. IBARAKI, AND H. MINE

PROOF. Let .~ be a second best solution not equal to x #. T h e n there exists a pa i r
+ 1 of indices p, q such that ~p > x~ and Yq < Xq ~. F r o m d~(5p - 1) >_ d~(Xl,) and

dq(xq + 1) _< dff(Xlq), it follows that a feasible solut ion x ' = (Y~ 5p - 1
Yq + 1, . . . , ~n) has an object ive value not greater than ~ because z (;) - z(x') =
d~(.~p - 1) - d~-(~q + 1) _> + 1 - - ~ _ - - d~(xp) d~(xq l) d,+(x, l) dj- (x)) _> 0 by the opt imal i ty
o f x 1 and the min imal i ty o f exchange [i, j] . Repea t ing this, we eventual ly obta in a
feasible solution ~ such that z(~) _> z(~), and ~z = x~ + l and Xm = X~ -- 1 for some
l and m but ~k = x~ for all k # /, m. T h e n z(~) _> z(~) >_ z(x #) follows f rom
z (~) z (x *) = + ' - - - - (dz (x l) dT~(Xim)) (d~-(x, l) d r (x))) >_ 0 by the min imal i ty o f
[i, j] . This implies that z(~) = z(x #) and therefore that x ~ is also a second best
solution. []

To construct an a lgor i thm for comput ing x k for k _> 3, we need to general ize
L e m m a 2.2 as follows. The p r o o f is similar to L e m m a 2.2.

LEMMA 2.3. Let two n-dimensional integer vectors .t and_x with 0 _<_x _< .t be given.
Let x -- x * be a best feasible solution o f P among those satisfying

x ,_<x,_<.t , , i = 1 ,2 n.

Then a second best solution ~ satisfying the above constraint ts obtained by applying
[i', j '] to x* , where [i', j '] is a minimum exchange satisfymgx3 < .t,, andx 7, > xj,.

3. The Outline o f the Entire Algorithm

Our a lgor i thm consists o f routines C O M P B S and KBS. C O M P B S computes x k when
the first k - 1 best solutions x 1, x 2 , x k-1 are given. KBS generates all the K best
solutions using C O M P B S as a subroutine.

N o w assume that x ~, x 2 x k-l, k > 1, have been generated. The set o f
remaining feasible solutions is par t i t ioned into k - 1 disjoint subsets,

P r o (k - 1) = (x ~ l l > k - 1, xm(k - 1)__< xZ_<.tm(k - 1)), (3.1)
m = l , 2 k - l .

As will be discussed shortly, these sets have the p roper ty that x k is equa l to a solut ion
with the m i n i m u m object ive value a m o n g those ob ta ined as best solutions in the
respective Pm(k - 1).

Vectors xm(k - 1) and .tm(k - 1) are recursively def ined as follows. Initially, when
k = 2 (i.e., only x 1 is obtained), .tin(l) and _xm(1) for m = 1 are given by

~ 1 (1) = (N , N , N) , (3 . 2)

_ x l (l) = (0, 0 0) .

In general, let .tm(k - 1) and _xm(k - 1), 1 __< m _< k - 1, be given, and assume that
x ~ is ob ta ined f rom x m• by apply ing an exchange [t*, j*] . T h e n .tin(k) and _xm(k) are
def ined as follows:

.tm*(k) = (£~*(k - l) x~1*, 2nm*(k - 1)),
~m*(k) = ~m*(k - 1),

.tk(k) = .tm*(k - l), (3.3)
~k(k) ~ * (k 1) , . . ~ x m" . . , = - . , . x n (k - 1)), x , . (= ~* + 1), m*
£ Z (k) = £ t (k - l), ~ (k) = 2 c t (k - 1), f o r a l l l r a m * , k .

These new sets define Pro(k) for m -- l, 2 k. F r o m this defini t ion and L e m m a
2.3, the next l e m m a is obvious.

K Best Solut ions o f the Resource Al locat ion Prob lem 755

LEMMA 3.1. Le t k be 2 _< k _< K.

(1) For m ffi 1, 2 k - 1, x m is a best f eas ib le solution satisfying

xr~(k - 1) _< x -< £m(k - 1). (3.4)

Furthermore, no other x t, l ffi 1, 2 , m - 1, m + 1 , . . . , k - 1, sa t i s f e s (3.4).
(2) A n y feas ib le solution x o f P satisfies (3 . 4) f o r exac t ly one m with 1 _< m _< k - 1.

Lemma 3.1(2) asserts that
k - 1

tJ p m (k - 1) = (the set of all feasible solutions of P) - {x l, x 2 x k - l } ,
m ~ l

and p m (k - 1) N P t (k - 1) ffi O for m # / , since the condition 1 > k - 1 in each
p m (k - 1) excludes x 1, x 2 x k-1. Thus, letting ~m be a best feasible solution in
each p m (k - 1), x k is given as a best one in the set {Minim ffi 1, 2 , k - 1}.
Lemma 3.1(1) says that E m is a second best solution among those satisfying (3.4).

In order to compute ~m according to Lemma 2.3, we maintain two sets of labels,

D ~ (k - 1) -- (d,+(x?)l 1 _< i _< n, x~ < ~?~(k - 1)}, (3.5)
D-~(k - 1) ffi (d f (x ?) [1 _< j_< n, x ? >_xy(k - 1)),

for m = 1, 2 k - 1 (if d ~ (x Y) ffi d~ (x~) , both are stored). D ~ (k - 1) and
D-m(k - 1) contain at most O(n) labels. A minimum exchange [i', j '] of Lemma 2.3
for £ = £ m (k - 1) and x = x m (k - 1) is then determined as follows. Let/1 and/2 be
the indices of the first and second minimum d~-(xY) in D ~ (k - 1), respectively, and
fi and j2 be the indices of the first and second maximum d ; (x T) in D-~(k - 1). Then

f [il, ja] if i~ # j,,
[i', j '] ffi ~ [p, q] i f i~ • f i and c(p, q) ffi min[c(i~,h), c(i2,fi)], (3.6)

l where p E {il, i2}, q E {fi, j2}.

Note that ia, /2, fi, and j2 are computed in O(logn) time if the D ~ (k - 1) use
appropriate data structure (any efficient priority queue discussed in [1, 14] for
example). [i', j '] is then computed by (3.6), a n d / m is obtained from x m by applying
exchange [i', j '] .

When x k is obtained as ~m* (which is generated from x m" by exchange [i*, j*]) ,
the D ~ (k) are computed from the D ~ (k - 1) as follows (see (3.3)):

D ~ ' (k) ffi D ~ ' (k - 1) - {d~(xT~')}, (3.7)

D'~' (k) = D ~ ' (k - 1), (3.8)

Dk+(k) -- D ~ ' (k - l) O (d ~ (x~" + 1), d~(x~" 1)) + m. - - {d , . (x , .), df i (x f)} , (3.9)
- - m * D~-(k) = D ~ (k - 1) t.J (d~;(x~ ° - 1)} - (d , . (x , .), d ~ (x y) } , (3.10)

D ~ (k) = D ~ (k - 1), D'~(k) = D ~ (k - 1) for m # m*, k. (3.11)

(Although not explicitly written, it should be understood in (3.9) and (3.10) that those
d ::t:z m x , Ix,) whose variables violate the condition of (3.5) are not included in D~:(k).)

Using the appropriate data structure for a priority queue,.the deletion of an element
from D ~ (k - 1) and the addition of an element to D ~ (k - l) are each done in
O(logn) steps (e.g., [1, 14]). Thus the D'~' (k) are computed in O(logn) steps and
the D~:(k) are computed in O(n) steps (since D ~ * (k - l) must be copied and it
requires O(n) steps). Other D ~ (k) do not require any computation time because the
D ~ (k - l) can be used as D ~ (k) with no change.

756 N. KATOH, T. IBARAKI, AND H. MINE

We note that each pm(k - 1) is represented in our algorithm by the following list:

p m (k - 1) - - (c ' , [i',j'], xm, x m (k - 1), g m (k - 1), D ~ (k - 1), O ~ (k - 1)), (3.12)

where c' = z(x m) + c(i', j ') and [i', j '] is a minimum exchange with respect to
~S(k - 1) and xm(k - 1). This list uses O(n) space.

The computation ofxk -m" m ---- X , _X (k), ~m(k), and D~(k) for each k described above
constitutes Subroutine COMPBS. COMPBS is repeated for k = 2, 3 K. The
entire procedure is organized as KBS.

4. Algorithms KBS and COMPBS

This section describes algorithms KBS and COMPBS in an ALGOL-like language
and then analyzes its running time.

Procedure KBS(P, K);
begin

comment This procedure computes x ~, x 2 x x together with their costs c 1, c z c x. If P
does not have K feasible solutions, KBS terminates after generating all feasible soluuons;

Fred an optimal solution x ~ for problem P,
£~(1) *- (N, N, N), x~(l) *-- (0, 0, . , 0); compute D~_(I) and D~.(I);
Fred a min imum exchange [t' ,j '] with cost c(i',j '),
Pt (l) , - (z (x ~) + c(i',j '), ri' '~ X ~ t ,j J, , x'(l), e'(l), D~-(I), D~+(I)),
for k ffi 2 until K d o call COMPBS(Pm(k - l) l m = 1, 2 k - 1),

end KBS,

Subroutine COMPBS(Pm(k - l) [m ffi 1, 2 k - 1),
begin

1 Find Pm*(k - 1) ffi (c*, [i*, j*] , x m', xm'(k - 1), ~m'(k - 1), D-~*(k - 1), D~'(k - l)) with the
min imum cost c* among Pm(k - l), m = 1, 2, . , k - l;

2 if c* ffi oo then stop (all feasible soluUons have been output and P has only k - 1 feasible
solutions);

3 else begin
comment Computauon of x k,

4 Output [i*, j*] , m*, and c* as x k (x k is obtained from x m~ by exchange [i* , j*]) and c k,
respectively;

comment Updat ing Pin'(k);
5 Construct_xm'(k) and xm'(k) by (3.3);
6 Construct D-~'(k) and D+m*(k) by (3.7) and (3.8);
7 Using (3.6), find a m m t m u m exchange [i', j '] for D~*(k);
8 if such [i', j '] exists then P~'(k) ~ (c m" + cO', J'), [:', J'], x m', _xm'(k), £m*(k),

D_"(k), D~'(k));
9 else (Le., D~'(k) ffi O or D~'(k) ffi f~) Pin'(k) ~- (oo, 0 , 9 , f~, f~, 9 , f2));

comment ComputaUon of Pk(k);
10 Construct xk(k) and .fk(k) by (3.3);
11 Construct D~-(k) and D~+(k) by (3.9) and (3.10);
12 Using (3.6), find a min imum exchange [i',j '] for D~(k),
13 if such [t ' , j '] exists then P~(k) *- (c k + c(d, j ') , ri' ,1 x k [, j j, , xk(k), ~ (k) , DS(k), Dk+(k));
14 else ek(k) ,-- (oo, 0 , 9 , ¢~, 0 , f~, f~);

comment ComputaUon of other Pro(k);
15 P'~(k) , - P=(k - 1) for m # m*, k;
16 end

return
end COMPBS;

LEMMA 4.1 . F o r e a c h k = 2, 3 , K , C O M P B S cor rec t l y c o m p u t e s x k a n d P m (k)

f o r m -- 1, 2 k in O (l o g K + n) t ime .

PROOF. T h e c o r r e c t n e s s is o b v i o u s f r o m t h e d i s c u s s i o n i n S e c t i o n s 2 a n d 3. T h e

t i m e r e q u i r e m e n t is c o n s i d e r e d h e r e . L i n e 1 o f C O M P B S is d o n e i n O (l o g (k - 1))

K Best Solutions o f the Resource Allocation Problem 757

_< O(log K) time if the pm(k - 1) are linked in the form of an efficient priority queue
[1, 14]. Lines 2 and 3 are executed in constant time. Line 4 is executed in constant
time since x k is output only by m* and [i*, j*] instead of the full vector x k ffi
(x~ Xk~). Line 5 is executed in constant time, as is obvious from (3.3). Line 6
requires O(log n) time as explained after (3.11). Lines 7 and 12 require O(logn) time,
as explained after (3.6). Hence Pm*(k) of lines 8 and 9 is obtained in O(Iog n) time.
Line 10 requires O(n) time, as is obvious from (3.3) (note that O(n) is necessary to
copy xm*(k - 1) and Ym*(k - 1) beforehand). Line 11 requires O(n) time, as explained
after (3.11). This implies that Pk(k) of line 13 or 14 is constructed in O(n) time. Line
15 requires constant time because it is accomplished by keeping the previous data.
The adjustment of links among Pro(k), m = 1, 2 , . . . , k, (which are used at line 1) as
a result of the addition of pk(k) and the modification of pm*(k) is done in O(logk)
(_<O(logK)) time. Thus all computation in COMPBS is done in O(logK + n)
steps. []

THEOREM 4.2. K B S correctly generates the K best solutions f r o m x ~ to x g in
O(T* + Kn + K l o g K) time and O(Kn) space, where T* is the time required to compute
x ~. I f P does not have K feasible solutions, K B S terminates after generating all feasible
solutions.

PROOF. The correctness of KBS follows from the previous discussion. The time
complexity is analyzed here. Line 1 of KBS requires T* time. Line 2 obviously
requires O(n) time since the initial construction of a priority queue is done in O(n)
time [1, 14]. Line 3 requires O(logn) time, as explained after (3.6), and line 4 requires
O(n) time. Line 5 calls COMPBS K - 1 times and requires O (K l o g K + Kn) time in
total by Lemma 4.1. Thus the total time is O(T* + Kn + KlogK) . Finally, O(Kn)
space is required to store pm(k), m = 1, 2 k, since each pm(k) needs O(n) space;
the space for other data is obviously dominated by O(Kn). []

The time T* was discussed in Section 1. The most time consuming part is the
generation of Pk(k) at lines 10-14 of COMPBS; this requires O(n) time since it must
copy xm'(k - 1), Ym' (k - 1), and D ~ ' (k - 1). The time requirement of this part will
be further reduced in the next section by introducing a sophisticated data structure
for Pro(k).

5. Time and Space Reduction

The time and space required for KBS will be reduced to

O(T* + K l o g K + K n~ogn) and O (K n~ogn + n),

respectively, in this section. To attain these bounds, it is essential to output x ~ by
[i*, j*] and m* (as indicated at line 4 of COMPBS). If the n-dimensional vectors x k
are to be directly output, O(Kn) time is required only for this purpose.

5.1 DERIVATION TREE T AND SOME DEFINITIONS. First we represent the process
of deriving x 2, x a from x 1 by a rooted tree T defined as follows: x m* is the fa ther
of x k (or x k is a son of x m') if x k is obtained from x m" by an exchange, x t is an
ancestor of x m (or x m is a descendant of x t) if there is a sequence x t~ (--xZ),
x ~ x zp (=x m) such tha tx t' is the father ofx t'÷l, i = l, 2 p - I. x m and x m',
m ~ m', are brothers if their fathers coincide; x m is placed to the left o f x m" i fm < m'.
Obviously x 1 is the root of this tree. For any ancestor x I of x m, ~'(l, m) denotes the
path from x ~ to x m in T. For any x p, let [i*(p), j*(p)] denote the exchange with
which x p is obtained from its father.

7 5 8 N. KATOH, T. IBARAKI, AND H. MINE

Now consider the time instance when x k is attached to x m" in T, corresponding to
the generation of x k from x m*. Special attention needs to be paid to the fact that
£'~'(k) of (3.3) is modified whenever its son is created. This implies that each £m(k)
is generally dependent upon the entire history of how x 1, x 2 x k have been
generated (i.e., the structure of T). Let x t be an ancestor of x m in T. Then we see
from (3.3) that ~m(k) is computed from ~l(l) by taking into account the effects caused
by those nodes in T which are either left brothers of some x q on w(/, m) or are sons
of xm. To carry out this computation, we define

f(m): x f(m~ is the father of xm; (5.1)

s(m): x 8~m) is the nghtmost son o f x m
(s(m) ffi ~ if x m has no son); (5.2)

b(m): x b¢m) is the brother immediately to the left o f x m
(b(m) -- ~ i f x m is the leftmost son); (5.3)

Ib(l, m) ffi {i*(p) lx p is a left brother of some x q
(note p # q) on or(l, m), and q # 1}; (5.4)

Is(m) ffi {i*(p)I xp is a son ofxm}; (5.5)

J(l, m) -- (j * (p) [x p is on or(l, m) a n d p # / } ; (5.6)

I(1, m) -- {i*(p)lx" is on or(l, m) a n d p # 1}. (5.7)

Then we have, by the definition of T and (3.3),

xm - - x l + ~ e, - ~ ej, where eq ffi (O 0,1 q ,0 0), (5.8)
,EI(ljn) 3EJ(l,m)

•xf ', where p* -- max{pl i* (p) E I(l, m) and i*(p) ffi i},
(5.9)

_x~(k) -- ~_x~(k), if p* is not defined, i ffi 1, 2 n,

x (t~"~, where p* = max(pl i*(p) E Ib(l, m) U L(m)
£~(k) ffi and i*(p) -- i}, (5.10)

£~ (l), if p* is not defined, i -- 1, 2 n.

5.2 TYPES 1 AND 2 DATA STRUCTURES OV Pro(k). On the basis of the above
notations we now introduce two types of data structure of pm(k) with which the time
and space reduction is attained. Call the following Pro(k) type 1:

Pro(k) -- (c', [i',j'], [i*(m),j*(m)], xra, 2gm(k), .~m(k), D-re(k), (5.11)

D~(k), £m(m), D~(m),J~m), f ' (m) , b(m), s(m)),

where c' and [i', j '] are defined after (3.12) a n d f ' (m) will be explained later in
Section 5.3. Note that x " is obtained from x f(m) by-an exchange [i*(m), j*(m)]. A
type-1 P'n(k) requires O(n) space.

We also use a simplified data structure cared type 2:

Pro(k) = (c', [i', j'], [i*(m), j*(m)], f (m) , f ' (m) , b(m), s(m)). (5.12)

A type-2 Pro(k) requires only constant space.
Consider now the instance immediately after x ~ is obtained from x m*. It is shown

in this section and the rest of Section 5 how a type-2 Pro(k) (though only the cases of
m = m*, k are our concern because Pro(k) = Pm(k - 1) for m # m*, k, as discussed

K Best Solutions of the Resource Allocatwn Problem 759

FIG 1 The relation between a
rooted tree Tand the directed forest
T' (sohd hnes denote T and broken
hnes denote T')

above) can be constructed from type-1 PZ(k), where x t is an ancestor o f x m such that
no node x p on ~r(l, m), p # l, has type-1 PP(k). The essential part is the computa t ion
of [i', j '] and c' o f Pro(k), which is done after temporar i ly constructingD'~(k).

On the basis of (5.9) and (3.5), D_~(k) is constructed in O(I ~r(/, m)[logn) t ime as
follows ([~'1 denotes the length of path ,r). xm(k) is obta ined f rom x Z(k) by changing
x~.~p~(k) to x~.lp~ for each x p on ~r(/, m) by following ~'(/, m) f rom x z to x m. This
requires O(I ~'(l, m) l) time, since a change o f an element is done in constant time.
Corresponding to the changes in_x re(k), D_~(k) is obtained by appropr ia te ly modifying
Dl_(k) in O(I ~-(/, m) l log n) time, since a deletion or a change o f an element in Dt_(k)
is done in O(log n) time.

Note that after type-2 Pro(k) is computed (which will be explained in Section 5.3),
the modified xl(k) and Dt_(k) in Pt(k) (which now become _xm(k) and
DY(k), respectively) must be set back to the original form. This is also done in
O(I ~-(/, m) l logn) t ime just by following ~r(l, m) in reverse.

The construction o f Dr(k) f rom Dl+(k) is more involved and IS discussed in
Section 5.3.

5.3 DIRECTED FOREST T' AND CONSTRUCTION OF A TYPE-2 Pro(k). T o compute
DR(k) efficiently, we introduce a directed forest T' defined as follows (see Figure 1).
T' has nodes x ~, x 2 x k-l, and x" is the father of x t in T' (denoted by r = f ' (t))
i f r = b(0 or if b(t) = ~5 and r = b(q), where x q is the closest ancestor o f x t in T with
b(q) # 6 . Note that an x p is a root in T' if and only if x ~ is on the leftmost path in
T. The path from x u to x ~ in T ' (i.e., x " is an ancestor o f x ~ in T ') is denoted by
~-'(u, v). Then we have by (5.4) and (5.5) that

lb(l, m) t3 Is(m) = {i*(p)l xp is on ~"(u, v)), (5.13)

where

[s(m) i f s(m) # 0 (see (5.2)),
v = [b (q) otherwise,

q = m a x { p l x " is on ~r(l, m) ,p # I and b(q) # 6} ;

u = m in { r l x r is an ancestor o f x v in T ' and is a descendant o f x z in T}.

The situation is illustrated in Figure 2. I f x u and x v are not defined by this (i.e., the
set on the r ight-hand side o f x q is empty), Ib(l, m) 0 Is(m) = O is concluded, x ° can
be computed in O(1 ,:(/, m)l) time. Let

[m a x { q l x q is on ~r'(u, v) and is o f type 1},
w = [u i f a type-1 node is not on ~"(u, v). (5.14)

760 N. KATOH, T. IBARAKI, AND H. MINE

yl

. . . type 1 node

. . . type 2 node

FIG 2 Relatwe positions o f the nodes m T and T' used for the computa-
tion o f type-2 Pro(k)

x w is obtained in O(1 ~r'(w, v)D time by following T' upward from x v and checking at
each node x r whetherf(r) _> ! (i.e., x r is a descendant o f x t in T) or not.

Case A. I f x ~ is of type 2 (i.e., w = u),f(w) = f (u) = l holds. £m(k) and D~(k) are
obtained as follows. Starting with .~l(l) and D~_(I) stored at P~(k - 1), follow the path
~r(l, m) from x z (=x I(~)) to x m. At each vertex, first modify £Z(l) and D~_(I) by (3.3)
and (3.7), respectively, to take into account the generation of each son which is
contained in ~"(w, v), and then move to its son on ~-(/, m) while modifying £t(l) and
D~.(l) by (3.3) and (3.9), respectively. When this process is completed, £Z(l) and
Dt+(l) have been changed to £m(k) and D~(k), respectively. The time required is
O([~r(f(w), m) [log n + [~r'(w, v) [log n), because (3.3) is executed in constant time per
vertex, and (3.7) or (3.9) is executed in O(log n) time per vertex.

Case B. I f x ~ is of type 1 (see Figure 3), we have

I x ((p*), where

£~(k) = -r(~) p .
Lx , (w), if

p* = max{p Ip(#w) is on ~"(w, v)
and i*(p) = t},

is not defined,
(5.15)

by (5.10) and (5.13). First £r(W)(w) and D~W)(w) are obtained in O(logn) time from
£W(w) and DE(w) by using (3.3), (3.7), and (3.9). Then ~'~(k) and D~(k) are obtained
in O(1 ~r(f(w), m) I logn + [~r'(w, v) [logn) time from £i(W)(w) and D-~(W)(w) in a manner
similar to case A.

Upon constructing D~(k) and DY(k) it is easily seen that c' and [i', j '] can
be computed in O(logn) time, as noted in Section 3 following (3.6). Other data,

K Best Solutions of the Resource Allocation Problem

x 1

761

n)

0 " '" type I node

C) ... type 2 node

FIG 3 The relative posluons of the nodes m T and T' when ¢r'(u, v) has a type-1 node.

[i*(m),y*(m)],f(m), b(m), and s(m), in type-2 Pro(k) can be obtained in constant time
as follows. For m = k,

[t*(k),y*(k)] ~ [t',j '] (in Pm*(k - 1)),

I s !m*) if s(m*) ~ 9 , (5.16)
f (k) ~ m*, f ' (k) ~-- i f (m*) otherwise,

b(k) ~-- s(m*), s(k) ~ 9 .

For m = m*,

s(m*) ~-- k, (5.17)

and other data in type-2 Pm*(k - 1) do not change. From the above discussion the
next lemma follows.

LEMMA 5.1. A type-2 P'~(k) is constructed in

O(l~r(f(w), m)l logn + let'(w, v)llogn)

time, where x °, x w, and x m are defined as above. A type-2 Pro(k) requires constant
space.

5.4 SCHEME FOR CREATING A TYPE- 1 DATA STRUCTURE. Let y be a prespecified
positive integer not larger than K. Assume that pI (I) is of type 1 and all the other
Pro(k) are initially type 2. A Pro(k), m > 1, ~s then altered from type 2 to type 1 f fone
of the following three conditions is saUsfied.

(a) I ~r(l, m)l = y and

(the number of descendants of x m in T) _> y (5.18)

hold, where x t is the closest ancestor of x m m T with type- 1 data structure.

762

(b) x ~ is on the leftmost path of T (i.e., a root in T'), and

(the number of descendants o f x m in T') _> y.

(c)

N. KATOH, T. IBARAKI, AND H. MINE

(5.19)

x m is not on the leftmost path of T and satisfies

[~"(w, m)[= y and (5.19), (5.20)

where x w is the closest ancestor o f x m in T' with type-I data structure. (Note that
if an x m of (c) satisfies (5.19), there is an ancestor in T' satisfying the condition
of (b); therefore the above x w always exists.)

Consequently it always holds for any x m that

[~'(l, m)[_< 2y,

I~r'(w, m)l -< 2y.

The numbers of Pro(k) of type 1 LEMMA 5.2
respectively.

(5.21)

(5.22)

and 2 are O(K/y) and O(K),

PROOF. The result for type 2 is obvious. We show that the number of type-1
Pro(k) is O(K/y). Let type la, lb, and lc denote the type-l data structure generated
by the above rules (a), (b), and (c), respectively. Consider P l (l) to be of type la for
convenience. Define a set,

D(m) = (xP[x p is a node not of type la whose closest ancestor
in T with type- I a data structure is x m},

for a type-la Pm(k). By the generation rule (5.18), D(m) contains at least y - l
nodes. Since the D(m)'s for type la nodes x m are mutually disjoint and their union
is the set of all nodes not of type la, the number of type-la nodes is O(K/y). It is
similarly shown that the number of type-lb or - lc nodes is O(K/y). Thus the total
number of type-1 nodes is O(K/y). []

5.5 TIME NEEDED TO CREATE A TYPE-1 DATA STRUCTURE. We analyze here the
time needed to create a type-I data structure. It is not difficult to see that the
conditions (5.18)-(5.20) for altering type 2 to type 1 can be detected in constant time
by introducing some additional data such as the numbers of descendants of x m In T
and T', respectively. When it is decided to change type-2 P~(k) to type 1, let x t be
the closest type-I ancestor of x m in T, and let x v and x w be defined by (5.13) and
(5.14) (see Figure 2). As discussed in Sections 5.2 and 5.3, x ~, xm(k), D-~(k), ££m(k),
and D~(k) are obtained in O(ylogn + n) time (including the time to copy these
data), since [~-(f(w), m)[_< [rr(l, m)[_< 2y and [qr'(w, v)[_< 2y hold by (5.21) and
(5.22). xm(m) and D~(m) are also obtained in O(ylogn + n) time from £m(k) and
D~(k) by a similar procedure. The other data can be obtained in constant time by
(5.16). Consequently the following lemma is proved.

LEMMA 5.3. The time required to alter type-2 Pro(k) to type 1 is O(ylogn + n).

The results of Lemmas 5.1-5.3 are summarized in Table I.

5.6 TIME AND SPACE COMPLEXITY OF THE ENTIRE ALGORITHM. This section
analyzes the time and space requirement of Algorithm KBS and Subroutine
COMPBS implemented with the above data structure. First consider the time
requirement of COMPBS for each iteration. The time required for lines 5-14 is
reduced to O(ylogn) by Lemma 5.1, (5.21), and (5.22). The other lines are not

K Best Solutions of the Resource Allocation Problem

TABLE I. THE TIME AND SPACE REQUIREMENT OF THE
MODIFIED DATA STRUCTURE

T,me for Space for Total
Type a P~(k) a Pro(k) number

l O(n + y log n) O(n) O(K/y)
2 O(y log n) constant O(K)

763

changed. Thus COMPBS requires O(ylogn + logK) time for every iteration. Since
COMPBS is called K - 1 times, the total time is

O(K) . O(ylogn + logK) -- O(Kylogn + KlogK). (5.23)

In addition to the time consumed by COMPBS, the modified KBS with the new
data structure must take care of the alterations of some Pro(k) from type 2 to type 1.
The total time required for this process is

0 (K /y) . 0 (y log n + n) = O (K log n + Kn/y), (5.24)

by Lemmas 5.2 and 5.3. Thus the modified KBS requires

O(Ky logn + K logK + Kn/y)

in total.
The space requirement for all Pro(k) is also easily obtained from Table I:

O(K) + Q (K / y) . O (n) -- O(K + Kn/y) .

Other space is obviously_ dominated by this.
Letting y = miD(K, "n/l~ogn) in the above discussion results in the next theorem.

THEOREM 5.4. KBS (with subroutine COMPBS) can be implemented with
O(T* + KlogK + Kx/nlogn) time and O(K~/nlogn + n) space, where T* is the time
to obta in x x.

The +n in the space complexity is added since at least O(n) space is neces-
sary even if K < s/n/log n. It is not added to the time complexity because T* is at
least O (n).

REFERENCES

1. AHO, A.V., HOPCROFT, J.E, AND ULLMAN, J O. The Destgn and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Mass., 1974

2. DREYFUS, S.E., AND LAW, A.M. The Art and Theory of Dynamic Programming Academic Press,
New York, 1977

3. DUNSTAN, F D.J. All algonthrn for solving a resource allocatton problem. Oper Res Q 28 (1977),
839-851.

4. EINBU, J.M. On Shth's incremental method m resource allocations. Oper. Res Q. 28 (1977),
459--462

5. Fox, B. D~screte opttmlzaUon via marginal analysis. Manage. Sci. 13 (1966), 210-216.
6. FREDERICKSON, G.N., AND JOHNSON, D.B Optimal algorithms for generating quantil¢ reformation

in X + Y and matrices with sorted columns. Tech. Rep CSo79-45, Computer Science Dep.,
Pennsylvama State Univ., College Park, Pa., 1979.

7. GAUL, Z., AND MEGIDDO, N A fast selection algorithm and the problem of optimum distribution
of effort. J. ACM 26, 1 (Jan. 1979), 58--64

8. GROSS, O. A class of discrete-type mintmlzation problems. Tech. Rep RM-1644-PR, The RAND
CorporaUon, Santa Momca, Cahf., 1956.

9. HARTt~Y, R On an algorithm proposed by Shlh Oper. Res. Q 27 (1976), 389-390
10. JoHNsor~, S.M. Sequential product planning over tune at minimum cost. Manage Sc~. 3 (1957),

435--437.

764 N. KATOH, T. IBARAKI, AND H. MINE

I l. KAO, E.P. On incremental analysis m resource allocation. Oper. Res. Q. 27 (1976), 759-763
12. KARUSH, W On a class of minimum-cost problems. Manage. Sci. 4 (1958), 136-153
13. KATOtt, N., IBARAKL T., AND MINE, H. A polynomial time algorithm for the resource allocation

problem with convex objective function £ Oper. Res. Soc. 30 (1979), 449-455.
14 Kmrrrl, D.E. The Art of Computer Programming, Vol 3: Sorting and Searching. Addison-Wesley,

Reading, Mass, 1973.
15 KOOPMAN, B.O The optimum distribution of effort. Oper. Res. 1 (1953), 52-63.
16. LAWLER, E.L. A procedure for computing the K best solutions to discrete optimization problems

and its application to the shortest path problem. Manage Sct. 18 (1972), 401-406.
17. MICHAELI, I., AND POLLATSCHECK, M.A. On some nonlinear knapsack problems Ann. Discrete

Math. I (1977), 403-414
18. MJELDE, K.M. The optimality of an mcremental solution of a problem related to distribution of

effort. Oper Res Q. 26 (1975), 867-870.
19. PROLL, L.G. Marginal analysis m resource allocations. Oper Res. Q. 27 (1976), 765-767.
20. SAATY, T L Mathematical Methods of Operations Research McGraw-Hill, New York. 1959
21. SillS, W. A new application ofmcremental analysis in resource allocauons Oper. Res. Q. 25 (1974),

587-597.
22. Sam, W. A branch and bound procedure for a class of discrete resource allocation problems with

several constraints. Oper. Res. Q 28 (1977), 439--451.
23 SIVAZLIAN, B D., AND STANFEL, L.E. Optlmzzauon Techmques in Operations Research Prentice-Hall,

Englewood Chffs, N.J., 1975, pp. 432-434.
24. VEINOTT, A.F Production planning with convex costs: A parametric study Manage. Sci. 10 (1964),

441--460.
25. VEINOTr, A.F. The status of mathematical inventory theory. Manage Sci. 12 (1966), 745-777
26. WAGNER, H M Prmcaples of Operations Research. Prentice-HaU, Englewood Cliffs, N J , 1969.
27. WEINSTEIN, LJ , AND YU, O.S. Comment on an mteger maximization problem. Oper. Res. 21 (1973),

648-649

RECEIVED MAY 1979; REVISED JULY 1980; ACCEPTED JULY 1980

Journal of the Association for Compuung Machm©ry, Vol 28, No 4, October 1981

