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ABSTRACT. A constraint satisfaction problem revolves finding values for a set of variables subject to a set 
of constraints (relations) on those variables Backtrack search is often used to solve such problems. A 
relationship involving the structure of the constraints is described which characterizes to some degree the 
extreme case of mimmum backtracking (none) The relationship involves a concept called "width," which 
may provide some guidance in the representation of constraint satisfaction problems and the order m 
which they are searched The width concept is studied and applied, in particular, to constraints which 
form tree structures. 

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]' Nonnu- 
mencal Algorithms and Problems--sorting and searching; G 2 1 [Discrete Mathematics] Combinatoncs-- 
combinatorial algorathms, G.2 2 [Discrete Mathematics] Graph Theory, H.3 3 [Information Storage and 
Retrieval]. Informauon Search and Retrieval--search proces~ 1 2.8 [Artificial Intelligence] Problem 
Solving, Control Methods and Search--backtracking 

General Terms: Algorithms, Theory 

Additional Key Words and Phrases constraint network consistency, constraint satisfaction, graph 
coloring, scene labeling 

1. Introduction 

Backt rack  search is recognized  as a basic  a lgor i thmic  t echn ique  in c o m p u t e r  science 
[15, 16]. I t  can  be used to search for  values  which  ins tant ia te  a set o f  var iab les  subject  
to a set o f  constraints .  C o m b i n a t o r i a l  puzzles  p rov ide  easi ly  accessible  examples ,  for  
example ,  the  e ight  queens  p rob lem,  where  the  var iab les  represent  pos i t ions  o f  the  
eight  queens  on  the chessboard ,  and  the const ra in ts  requi re  tha t  no two queens  can  
a t tack  each  other.  A more  ser ious example  o f  a cons t ra in t  p r o b l e m  involves  the 
ass ignment  o f  semant ic  in te rpre ta t ions  to l ines or  regions  in a visual  scene [ 13, 14]. 

Back t rack  search provides  an  i m p r o v e m e n t  over  s imple  depth- f i r s t  search by  
cut t ing down  the search space. However ,  back t r ack  search still  permi t s  a great  dea l  
o f  r e d u n d a n t  and  unnecessary  effort  [3]. Ana lys i s  o f  the effort  r equ i red  by  back t r ack  
search is cur ren t ly  ob ta ined  th rough  sampl ing  or  exper imen t s  [5, 6, 11]. A t t empt s  to 
reduce tha t  effort  are largely heur is t ic  [2, 15]. 

It wou ld  be des i rab le  to have  a more  ana ly t ica l  unde r s t and ing  o f  the effort  invo lved  
in back t r ack  search.  This  effort  is d e p e n d e n t  on  the s t ructure  o f  the p r o b l e m  and  the 
o rde r  in which  the search is conducted .  T h e  s t ructure  involves  connecUve structure,  
the pa t t e rn  o f  const ra ints  a m o n g  the var iables ,  and  con tex tua l  s tructure,  the ac tua l  
p roh ib i t ions  o f  var ious  c o m b m a t i o n s  o f  values.  In  te rms o f  the  usual  " ba c k t r a c k  t ree" 
picture,  we m a y  d is t inguish  "ver t ica l  o rder , "  the o rde r  in which  var iab les  are  chosen  
for ins tant ia t ion ,  and  "hor izon ta l  o rder , "  the  o rde r  in which  values  are  tested for a 
given var iable .  

This  p a p e r  analyses  the  re la t ionsh ip  that  ho lds  be tween  s t ructure  and  o rde r  in the  
special  case o f  "back t rack - f r ee"  search,  where  search effort ,  in te rms o f  the a m o u n t  
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of backtracking actually required, is minimal. "Backtrack-free" implies that once a 
value for a variable is chosen which satisfies constraints involving previously chosen 
values, the choice never has to be "unmade," because a dead end is reached further 
down the tree. I present a relationship between the structure of the problem and the 
order of search which provides a sufficient condition for backtrack-free search. The 
characterization may be used, in theory, to obtain backtrack-free search. In practice 
this may not be practical; however, the insight gained from this work may at least 
provide heuristic guidance. This gmdance might be applied to the structural design 
of the search space or the vertical ordering of the search. 

Section 2 defines "width," "consistency," and "backtrack-free," and uses width 
and consistency to provide a sufficient condition for backtrack-free search. Section 
3 provides an alternative characterization of width and means for determining width. 
Section 4 provides applications in which the connective structure of the constraints 
is a tree structure and a characterization of width-one structures in terms of trees. 
Section 5 demonstrates connections to graph theory and references some related 
work in that area. Section 6 contains brief conclusions. 

Before proceeding I introduce three examples of constraint problems that will be 
used later in the paper to illustrate definitions or results. 

First, a toy problem. We are given three sets of numbers: X - -  {5, 2, 4, 6}, Y -- 
{2, 4, 6, 10}, Z = {5, 2, 4, 6}. Choose one number from each set such that the 
number chosen from Z divides both the others. A naive programmer might attack 
such a problem with a backtrack search which takes the given order X, ¥, Z as the 
vertical search order, and the listed order as the horizontal search order for each set. 
This would lead to a considerable amount of backtracking. The first choice for X, 5, 
can only participate in a solution with the choice of 10 for Y, yet the search algorithm 
would bullheadedly try each possibility for Z with first 2, then 4, then 6, for Y. 

The analysis of tree-structured constraint graphs in Section 4 will provide a formal 
basis (and thus, incidentally, a way of teaching) the "common sense" which might 
direct a more experienced programmer to utilize a different search order, Z, X, Y. 
(Indeed, the latter search order might seem a bit counterintuitive--does it make sense 
to choose a Z before we know the numbers it is supposed to divide?) 

Second, consider the classical graph coloring problem. This problem requires us to 
assign colors to the vertices of a graph in such a way that if two vertices are joined 
by an edge in the graph, they will not have the same color. The variables of this 
constraint problem are the permissible node colors, and the constraints are the 
requirements that neighboring vertices not have the same color. For our purposes we 
will restrict the problem by establishing a priori a fimte set of  permissible colors. 

Finally, consider the scene labeling problem (see Figure 1). This is the problem of 
labeling the lines of a two-dimensional drawing of a group of blocks with labels that 
represent their three-dimensional properties, for example, as convex or concave 
edges. The line drawings are themselves graphs ("picture graphs"). The labeling 
problem can be regarded as a constraint problem in which the variables are the 
vertices, the potential values are legitimate labelings of the lines entering the vertex, 
and the constraints are the necessity that hnes connecting two vertices receive the 
same label at both vertices. 

2. Basics 

A constraint satisfaction problem requires us to instantiate a set of variables subject 
to a set of constraints, that is, relations involving the variables. We instantiate each 
variable from a finite set of potential values for that variable. 
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FIG 1 Scene labehng 
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A constraint graph for such a problem is a graph where the nodes represent 
variables and two nodes are linked to represent the existence of a constraint which 
involves these variables (and possibly others). At most a single edge will join two 
nodes, even if they are related by more than one constraint; in any case, we shall be 
concerned primarily with binary constraints. Graphs will be undirected in this paper. 
An ordered constraint graph arranges the nodes in a linear order. Obviously a given 
constraint graph admits of many orderings (n!, where n is the number of variables). 
The intention is for an ordering to correspond to a vertical order of backtrack search, 
the levels in the backtrack tree, that is, to the order in which variables are chosen for 
instantiation. 

The constraint graph for a graph coloring problem has the same structure as the 
graph to be colored. Figure 2 shows a graph to be colored, a possible coloring, and 
the corresponding constraint graph. It also shows the six different ordered constraint 
graphs for this problem. 

The width at a node in an ordered constraint graph is the number of links that lead 
back from that node to previous nodes. The width of an ordering is the maximum 
width at the nodes. The width of a constraint graph is the minimum width of all the 
orderings of that graph. 

The width at node C in the first ordered constraint graph in Figure 2 is 2; at node 
C in the second ordered constraint graph the width is 1. The width of the first ordered 
graph is 2; of the second, 1. The width of the constraint graph in Figure 2 is 1, the 
minimum of the widths of the ordered constraint graphs. 

K-consistency was developed in [4] as a generalization of low-order notions of 
consistency [7]. K-consistency implies the following: Choose any set of k - 1 variables 
along with values for each that satisfy all the constraints among them. Now choose 
any kth variable. There exists a value for the kth variable such that the k values 
taken together satisfy all constraints among the k variables. 

For example, the coloring problem in Figure 2 is not 3-consistent. If we choose red 
for vertex a and blue for vertex c, these choices are mutually consistent; however, 
there is then no color that can be chosen for vertex b that satisfies the constraints 
among a, b, and c together. 

In [4] k-consistency was defined formally in terms of "constraint networks." It was 
observed that the algorithm given for synthesizing constraint expressions achieved j- 
consistency for all j  _< k after k steps. I now define j-consistency for all j  _< k as strong 
k-consistency. (It is possible to have k-consistency without strong k-consistency. A 
variation of the coloring problem in Figure 2 provides an example where it is 
specified a priori that colors red and blue are available for vertex b but vertices a and 
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c can only be colored red. The resulting problem is 3-consistent but not 2-consistent. 
If  we choose red for vertex b, there is no consistent choice for vertex a. However, if 
we have a consistent choice for any 2 vertices, there will always be a consistent choice 
of  color for the third.) 

Backtracking occurs when an instantiation chosen during a backtrack search, 
consistent with all previous choices, must be discarded later in the search when no 
consistent instantiation can be made for a variable at a lower level in the backtrack 
tree. A search may, of  course, be fortuitously backtrack-free. We say that a given 
vertical search order is backtrack-free if it guarantees a backtrack-free search regard- 
less of the horizontal order of  search. 

Given these definitions, the following relationships emerge among connective 
structure (width), contextual structure (consistency), and vertical order. 

THEOREM 1. Given a constraint satisfactton problem: 

(1) A vertical search order is backtrack-free if the level of strong consistency is greater 
than the width of the corresponding ordered constraint graph. 

(2) There exists a backtrack-free vertical search order for the problem tf the level of 
strong consistency is greater than the width of the constraint graph. 

PROOF. In instantiating any variable v we must check consistency requirements 
involving at mos t j  other variables, where j is the width at the node. If  the consistency 
level k is at least j  + 1, then gwen prior choices for t h e j  variables, consistent among 
themselves, there exists a value for v consistent with the prior choices. [] 

3. Width 

We can determine the width of  a constraint graph and find an ordered graph with 
this width, utilizing an ordered-search algorithm [10]. Employ a search tree where 
each node at level i represents a choice for the ith node (variable) of  an ordered 
constraint graph. Each branch represents the nodes of  a (partial) ordered constraint 
graph. Repeatedly expand a node at the end of a mimmal width branch by adding 
as its children the variables not yet used in that branch until a branch using all the 
variables is completed. This will represent a full minimal-width ordered constraint 
graph for the problem. A more efficient algorithm can be developed using an 
alternative characterization of  width m terms of  a concept I call "linkage." 
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We define the linkage of a subgraph as the maximum n such that every node in the 
subgraph is connected to at least n other nodes, that is, has degree at least n. We then 
have the following connection between linkage and width. 

THEOREM 2. The width of a constraint graph is equal to the maximal linkage of its 
subgraphs. 

PROOF. We first show that width >_n iff there is a subgraph with linkage _n.  If  
a subgraph has linkage >_n, then whichever node of  the subgraph is last in the 
ordered constraint graph has width >_n; thus the graph has width _>n. If  there is no 
such subgraph, we can demonstrate an ordered graph with width <n  as follows. 
Consider the graph as a whole. Its linkage is <n, so there must be at least one node 
that is connected to <n others. Make such a node the last node of  an ordered 
constraint graph. The width at that node will be <n. Now consider the remaining 
nodes of  the graph. Again there must be at least one node that is connected to <n 
others, as no subgraph has linkage _n. Choose such a node as the next to last node 
of  the ordered graph. Again the width at that node will be <n. Continue until all 
nodes have been placed in an ordered graph. The width of  this ordered graph will be 
<n. Thus the width of  the constraint graph itself is <n. 

If  the maximal linkage of  the subgraphs is n, there is at least one with linkage n, 
which we now see implies that the width is __n. Furthermore, since there is no 
subgraph with linkage _>n + 1, the width is <n + 1. Therefore the width is also n. 

If  the width is n, there exists a subgraph with linkage __n; thus the maximal 
subgraph linkage is __n. If  the maximal linkage were >n, there would be a subgraph 
with linkage __n + 1, and the width would be __n + 1. But the width is n, and thus the 
maximal subgraph linkage is also n. []  

I f  we spot a highly linked subgraph, that at least provides a lower bound for the 
width. I f  we know the width, the above proof  provides us with a method for finding 
an ordered constraint graph with that width, based on the knowledge that there is no 
subgraph with linkage greater than the width. I will restate that simple method 
explicitly as an algorithm. The outer loop has n passes; at each pass we examine at 
most i nodes. 

For a graph w~th width k, to find an ordered graph with that width' 
Repeat for t from n to 1 by - 1. 

Fred a node connected to _<k + I others 
(Its existence is lmphed by a maximal subgraph hnkage of k If there is more than one, any one wdl 
do.) 
Remove the node from the graph, along with any edges connected to tt Make the node the tth node 
of the ordered graph. 

The characterization of  the width of  a constraint graph m terms of  subgraph 
linkage provides an alternative method for finding the width. The following algorithm 
determines the maximal subgraph linkage and finds the maximum subgraph with 
that linkage. 

To determine maximal subgraph hnkage 
Remove from the graph all nodes not connected to any others Set k = 0 
Do while there are nodes left m the graph 

Set k to k + l 
Do whde there are nodes not connected to more than k others: 

Remove such nodes from the graph, along with any edges connected to them 
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Upon completion of the algorithm, k will be the maximal subgraph linkage. The 
nodes left before the last execution of the outer loop will constitute the largest 
subgraph with that linkage. Since the maximal subgraph linkage k must be _<n - 1, 
the outer loop has at most n - 1 iterations. The inner loop examines at most n nodes 
on any one pass. 

Taken together, the two algorithms above provide an alternative to the ordered- 
search algorithm sketched at the beginning of this section, while avoiding the 
potential n! explosion of the ordered search. 

As an apphcation, consider the scene labeling problem. Waltz [14] attacked this 
problem with a filtering algorithm that achieves 2-consistency, eliminating many 
impossible labelings m the process, followed when necessary by a final search phase. 

Now at first glance one might assume that picture graphs had a width of 3, as 
there are so many vertices which are connected to, and thereby constrained by, three 
others. Even in the usual view of a simple cube, over half the vertices are connected 
to three others. Nevertheless, using the techntques of this section, we quickly discover 
that the maxtmal subgraph hnkage of the cube picture graph, and therefore the 
width, is 2, and we can derive an ordered graph with that width (see Figure 3). Even 
more complex scenes, some mvolving vertices connected to four others, may still only 
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have a width of  2: for example, two cubes lined up on top of  one another, with a four 
line vertex where they touch in the center of  the scene. (A view looking down on a 
pyramid would be an example of  a picture graph with width three.) 

Nevertheless, even width-2 demands strong 3-consistency to be able to guarantee 
no backtracking, and Waltz' filtering algorithm is a strong 2-consistency algorithm. 
Thus the consistency level is not enough by itself to guarantee a backtrack-free search 
order. 

4. Tree-Structured Constraint Graphs 

We will consider by way of illustration and application the case in which the 
constraint graph is a tree. For example, it might be an organization chart to be filled 
in or a hierarchical program structure. In either case the constraints are that connected 
components must be "compatible." 

The three standard methods of tree traversal--inorder, preorder and postorder-- 
provide a linear ordering of the nodes which can serve as a basis for an ordered 
constraint graph. The constraint graphs resulting from postorder or inorder traversal 
have width greater than 1, in general; however, preorder traversal results in a width 
of only 1. A breadth-first traversal also results in an ordered graph with width 1. 

The fact that a tree has a width of 1, and has that width regardless of the branching 
factor, is perhaps a bit counterintuitive. At first glance a binary tree structure, for 
example, might seem to reqmre a width of at least 2, or perhaps 3. Indeed, a randomly 
chosen ordering of the nodes would be likely to have higher width. 

Consider now by way of illustration a graph coloring problem where the graph is 
a binary tree. If  we allowed two colors, the problem is 2-consistent but not 3- 
consistent. Given a coloring for any one node, we can find a consistent coloring for 
any one other. However, if we color two siblings with different colors, there remains 
no way to color their parent. I f  we use a preorder traversal for our vertical search 
order, the constraint graph will have a width of 1, less than the consistency level, and 
a backtrack-free search is assured. However, a postorder traversal could lead to 
backtrack trouble. If, on the other hand, we allow three colors, the problem is 
(strongly) 3-consistent, and postorder traversal will not lead to backtracking either. 

Clearly, the width of a constraint graph is 0 iff there are no constraints--the graph 
is a collection of unconnected points. We can characterize graphs of width 1 in terms 
of trees. 

THEOREM 3. A connected constraint graph (with more than one node) has wtdth 1 
iff tt is a tree. More generally, a constraint graph has width <_1 iff  tt is a forest. 

PROOF. A forest is a graph with no cycles [1]. I showed in the preceding section 
that the width of a graph is equal to the maximal linkage of its subgraphs. I claim 
that the maximal linkage of the subgraphs is <_ 1 lff the graph has no cycles. 

If  the graph has cycles, the nodes of any cycle will generate a subgraph with 
linkage at least 2. 

If  there is a subgraph with linkage _>2, we can use it to construct a cycle. Start with 
any node n in the subgraph. Choose a node n' connected to it. All nodes are 
connected to at least two others in the subgraph, so n' must be connected to at least 
one other node besides n; choose one and call it n". Repeat the following procedure 
until a cycle is found, starting with n" as the current node: The current node must be 
connected to another node in addition to the previous node chosen. If  it is connected 
back to another already chosen node, we have found a cycle. If  not, choose one of  
the remaining nodes which It is connected to as the new current node. As the number 
of nodes is fimte this process wall terminate and produce a cycle. [] 
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Trees then not only have width 1 (aside from the trivial tree consisting merely of 
a root node); they are the only connected constraint graphs with width 1. Strong 2- 
consistency is sufficient to guarantee the existence of a backtrack-free vertical search 
order for constraint problems whose constraint graphs are forests. 

As another example, recall the toy problem introduced in Section 1: Given three 
sets of  numbers, X = (5, 2, 3, 6}, Y-- (2, 4, 6, 10}, Z -- {5, 2, 4, 6}, choose one 
number from each set such that the number chosen from Z divides both the others. 
The problem ~s 2-consistent. The constraint graph can be regarded as a simple tree 
structure with Z at the root. A preorder traversal will provide an ordering of  width 
1. That ordering--Z, X, Y--will thus be backtrack-free. 

5. Graph Theory Connections 

The constraint-graph concept permits us to make use of  standard graph-theoretic 
results. For example, the following theorem comes easdy. 

THEOREM 4. A simple planar constraint graph has width <_5. 

PROOF. Any simple planar graph has a vertex of  degree <_5 [1]. Utilize this vertex 
as the last node of an ordered constraint graph. The width of that node is <_5. The 
remaining vertices form a subgraph; it too must have a vertex of degree <_5. Use that 
vertex as the next to last node of the constraint graph. Continue in this fashion to 
build an ordered constraint graph of width <_5. [] 

For the graph coloring problem, the (strong) consistency level will obviously be 
greater than or equal to the number of colors available. Thus from Theorems 1 and 
4 we can conclude that for the coloring problem on any planar graph, given six 
colors, there exists a backtrack-free search order. 

This observation can be generalized to provide a bound on the chromatic number 
of a graph, the minimum number of colors required to color the graph. Since the 
consistency level is greater than or equal to the number of  colors avadable, if the 
number of colors is greater than the width, the consistency level is greater than the 
width, and a coloring can be obtained (with a backtrack-free search). In parhcular, 
the graph can be colored with width + 1 colors. Thus width + 1 is an upper bound 
on the chromatic number of a graph. 

An equivalent result was obtained by Szekeres and Wilf [12] involving the 
minimum vertex degree of  subgraphs, a concept clearly equivalent to what I have 
called linkage. This result was obtained as well by Matula [8]. Matula also employed 
a concept called "degree decomposition sequence," closely related to what I have 
called width, and proved an analog of Theorem 2 in terms of degree decomposition 
sequence and minimum vertex degree. Both Matula and Szekeres and Wilf have 
methods for determining the value of the width analog for a given graph and for 
obtaining a corresponding ordering of the vertices and a coloring within the estab- 
lished bound. These results are summarized in [9], where a concept of "sequential 
coloring" is described which is essentially equivalent to a backtrack-free vertical 
search order in the graph coloring context. This paper serves to generalize this graph 
coloring work to the larger context of constraint satisfaction (although as it happens 
my work arose from concerns with constraints and backtracking, and I only belatedly 
became aware of these related developments in graph theory). 

6. Conclusions 

In theory, the algorithm for determining a minimal-width path in Section 3, together 
with the algorithm for obtaining any level of strong k-consistency found in [4], should 
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permit us to achieve backtrack-free search for any problem. However, not only are 
these algorithms themselves time consuming, they may need to be applied a number 
of times, as the algorithm for achieving consistency may well alter the connective 
structure, and the width, of  the problem, as it makes explicit constraints previously 
only implied by other constraints. Thus we need to determine width, achieve a 
consistency level one greater than the width, and repeat this procedure until the 
width does not change. 

I am therefore not treating this method as a practical approach in general. 
However, the insights we have gained here may provide some heuristic guidance in 
the choice of  vertical search order. They may also guide us in the structural design 
of constraint problems, where we have a choice in which specific pattern of constraints 
we use to embody the problem. 

Specific structures or problems may yield to a more complete formal analysis, as 
is the case for tree structures. In a larger context, my hope is that an understanding 
of the limiting case of backtrack-flee search will abet our assault on the general 
problem of backtrack search analysis. 
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