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Introduction

There are some operations on data structures that can be described in very general
terms, for example, “delete,” “insert,” or “replace.” It would be desirable to develop
a formal calculus which would enable one o decide questions such as whether two
sequences of operations are equivalent. It is known that no such calculus can be
developed universally.

Formal systems used to describe such operations are eften called “replacement
systems.” In the study of formula-manipulation systems such as theorem provers,
program optimizers, or algebraic simplifiers, replacement systems take the form of
term rewriting systems, tree manipulating systems, graph grammars, ete. Often one
attempts to show that the system is “confluent” or “Church-Rosser” so that there is
a way of describing canonical representatives or unique normat forms. (See [2, 11,
12, 15, 16, 18].)

When dealing with strings, the appropriate notion of replacement system is that of
Thue system, that is, a set S of pairs of strings and the relation defined by xuy < xvy
for all x, y and all (u, ¥) or (v, #) 10 S. The reflexive transitive closure & of < is
the Thue congruence generated by 8. As well as being replacement systems, Thue sys-
tems and Thue congruences have been used to specify formal langnages [3, 10, 11,
16, 17, 19].

In this paper finite Thue systems and their congruences are studied. In Section 2
certain restricted types of Thue systems are defined and their properties investigated;
specifically, systems that are “confluent,” “Church-Rosser,” “almost-confluent,” or
“preperfect” are studied. If a Thue system S has the property that (4, v) € § implies
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|} > |viand | = |v| and if § is Church-Rosser, then every congruence class of .§
and every finite union of congruence classes of § is a deterministic context-free
language, as are certain infinite unions of congruence classes of \S; these and other
sumilar results are established in Section 3.

Deterministic context-free languages are recognized by deterministic pushdown
store acceptors, and deterministic pushdown store acceplors can be made to run in
linear time. Thus, one is led to examine certain problems about finite Thue systems
and to search for good algorithms for their solution. In Section 4 it is shown that for
any finite Thue system §, there is a linear-tume algorithm to compute from a given
siring x an irreducible string y such that y is congruent to x. This result is then used
to show that for any finite Thue system § that is Church-Rosser, there is a linear-
time algorithm to solve the word problem for S.

It 15 hoped that the results presented here will suggest further attacks on similar
problems concerning other types of replacement systems.

1. Preliminaries

It is assumed that the reader is familiar with the basic concepts of formal language
theory, computability theory, and complexity theory. Some definitions and notation
for Thue systems and their congruences are established here.

If 2 is a finite alphabet, then X* is the free semigroup with identity e generated by
Z. If w is a string, then the length of w is denoted by |w|: |e| = 0, [a] = 1 for
g€Z and jwa|=|w|+ lforwEZ* a € .

A Thue system § on a finite alphabet Z is a subset of 2* x X*, Each pair in S is
a relation. The Thue congruence generated by S is the reflexive transitive closure &g
of the relation <5 defined as follows: For any », v such that (v, v) €E Sor (v, ) E §
and any x, y € %, xuy «s xvy. Two strings w, z are congruent (mod S) if w &5 z;
the congruence class of z (mod S) is [z]s = {w]w &5 z}. (Whenever possible the
subscript S will be omitted.)

If S| and S; are Thue systems such that for all x, p, x &3, y implies x &g, p, then
81 refines Sy, if S; refines S: and S: refines Sy, then S) and S: are equivalent. Clearly
S1 refines S2 if and only if for every (1, v) € S1, ¢ <-"i>b-2 v.

Let 5 be a system of relations.

(a) Write x — y provided x < y and |x| > | y|.
(b) Write x | y provided x <> y and | x| = | y|.
(c) Write x | y provided x — y or x | y.

The reflexive transitive closure of — (|, }—) is denoted % (respectively, 2, % ).

If § is a Thue system, then a string x is irreducible (mod §) if for all y, x e p
implies | x| < | y|, and is minimal if x & y implies |x| =< | y|.

A transformation x % y is a reduction.

In this paper certain restricted Thue systems are considered.

A Thue system S on a finite alphabet T is monadic if (v, v) € S implies |u| > | v|
and v € X U{e}, and is special if (u, v) € S implies v = e.

2. Types of Thue Systems

A number of different combinatorial replacement systems have been studied in the
coniext of automatic theorem-proving, abstract data types, program optimization,
combinatory logic, etc. In an abstract replacement system a binary relation = on a
space B is defined; usually the reflexive transitive closure = of this relation is not
symmetric and is considered to be a “reduction.” An iurreducible element of B is
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FiG. 1. (a) Church-Rosser. (b} Confluent (c) Almost-corfluent (d) Preperfect.

considered to be a normal form of (B, =). If the relation =% 1s Noetherian, that is,
has no infinite descending chains, then for each x € B there is a normal form y such
that x = y. Given B and =, define < to be (= U ="") and & to be the reflexive
transitive closure of <. Inspired by the result of Ghurch and Rosser [9] on the
calculus of A-conversion, we call a system (B, =) Church—Rosser if for all x, y € B,
x & p implies that for some z € B, x = zand y = z. [f a system (B. =) is Church-
Rosser and 2> is Noetherian, then for every element x € B there is a unique normal
form y such that x =% y. Newman [15] called a system confluent if it had this property,
and he showed that the Church-Rosser property is equivalent o the following: For
all w, x, y € B,1if w = x and w = y, then for some z, x 2 z and y = 7. In recent
work (e.g., [12]}, the property established by Newman has been called “confluent,”
and systems with this property have been called “confluent systems.”

The situation for Thue systems is more complicated. If 5 is a Thue system on a
finite alphabet £, then the relation *»5 is Noetherian, but the relation %5 is not
Noetherian if there is some (u, v) € § such that |u| = | v|. Further, there are a variety
of terms that have been used in conjunction with the replacement systems defined by
(Z*, —¢) and (2*, Lss): perfect, quasi-perfect, preperfect, finite Church-Rosser
[2, 3, 10-12, 16-19]. Here the relation — is emphasized, and this leads to the
definitions below which follow the listorical precedent of “Church-Rosser” for the
“triangle” property, using “confluent” for the “diamond” property.

Let § be a Thue system.

(a) S is Church-Rosser if for all x, y, if x & y, then there exists a z such that x - 2z
and y 5 z (see Figure la).

(b) Sis confluent if for all w, x, y, if w2 x and w2 y, then there exists a z such that
x 3 z and y - z {see Figure 1b).

(c) S is almost-confluent if for all x, y, if x & y, then there exist g, i such that
x% g, y5h and g %] h (see Figure lc).

(d) S is guasi-perfect if for all w, x, y, if w | x and w |®> y, then there exists a z such
that x P z and y |% =

(e) S is preperfect if for all x, y, if x & y, then there exists a z such that x P z and
v 2 z (see Figure 1d).

Abstract replacement systems with properties similar to those of almost-confluent
Thue systems were studied by Huet [12] and called “confluent modulo an equivalence
relation.”

It is clear that for Thue systems, any Church-Rosser system is confluent. The
possibility of length-preserving rules allows for confluent systems that are not
Church-Rosser: if § = {(u, v)} where u# v and |u]| = | v, then the relation — 15 voud
so that S is confluent (vacuously), but S is not Church-Rosser since there is no z
such that ¥ % z and v <% z. However, we do have the following fact.
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ProrosITION 2.1.  Let § be a Thue system.

(@) If (u, v) € S implies |u) # |v|, then S is confluent 3f and only if § is Church-
Rosser. Thus, if S is monadic, then S is confluent if and only if S is Church—Rosser.

(b) Suppose that for every pair (u, v) € S such that |u| = | v\, there exists a z such that
u 2 z and v 5 z. Then S is confluent if and only 1if S is Church-Rosser.

Proor. As noted above, any Church-Rosser system is confluent. For part (a) the
fact that any confluent system is Church-Rosser was established by Cochet and
Nivat [l1}, using induction on the number of steps in a transformation x < y. The
same method can be used to show that for part (b) any confluent system 1s Church-
Rosser. U

Similarly, we have another fact.

ProposiTioN 2.2 [I1]. Let S be a Thue system. Then S is quasi-perfect if and only
if S is preperfect.

Only the terms “confluent,” “Church-Rosser,” “almost-confluent,” and “preper-
fect” will be used in the remainder of this paper. The four parts of Figure 1 serve to
illustrate the differences.

Notice that for any Thue system S, the system Sz = {(&, v)[u & vand [u| = |v[}
is an infinite almost-confluent Thue system that is equivalent to S,. Thus every Thue
congruence is an infinitely generated almost-confluent congruence, and so an infinite
Thue system must be further restricted to be of interest. Only finite Thue systems are
considered here.

It is clear that if S is a finite Thue system, then for any string x one can effectively
find an irreducible string congruent to x. The set of all irreducible strings of S is a
regular set [3]. Every string has at least one minimal string congruent to it, but the
question, “Given S and x, is x minimal for 37" is undecidable [8]. A minimal
string can be considered to be a “normal form,” and the question of uniqueness of
normal forms will be useful here.

b BN 13

ProrosiTioN 2.3.  Let § be a Thue system.

{a) If S is Church-Rosser, then S is almosi-confluent, and if S is almost-confluent,
then S is preperfect.

(b) The system S is Church-Rosser if and only if x, y irreducible and x < y imply
x=y[12,1517].

(¢} The system S is almost-confluent if and only if x, y irreducible (mod S) and
x & yimply x P y[17].

(d) If 8 1s Church—Rosser or almost-confluent, then a string is irreducible (mod S) if’
and only if it is mimmal [3].

(e) If (u, v) € S implies |u| # |v|, then S is preperfect if and only if S is almost-
confluent if and only if S is confluent if and only if S is Church-Rosser.

Nivat [17] has developed necessary and sufficient condstions for a Thue system to
be almost-confluent, and these conditions are decidable. An almost-confluent system
with no length-preserving relations is confluent.

Prorosition 2.4 [17]. It is decidable whether a fimite Thue system is almost-
confluent, and it is decidable whether a finite Thue system is confluent.

SKETCH OF PROOF. A Thue system S is focally confluent if for all w, x, y, w = x

and w — y imply that for some z, x % z and y % 2. Since the relation % is
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Noetherian, a Thue system is confluent if and only if it is locally confluent (Huet [12]
provides a simple proof of this fact). It is clear that a Thue system § is locally
confluent if and only if for every pawr (i, ), (2, v2) or (v1, t), (vz, 1) of not
necessarily distinct relations in S with |iu] > |vi| and |uz| > | v2|, the following
conditions hold:

{a) If there are strings x, y such that u,x = yup with {x| < [uz|, then there exists z
such that vix % z and yw % =

(b) If there are strings x, y such that &, = xu. y, then there exists z such that v, % z
and xwm p 5 2z

For any parr of relations, one can determine whether (a) and (b} hold. Thus, if § is
finite, one can decide whether 15 locally confluent.

A similar argument shows that it 1s decidable whether a finite Thue system is
almost-confluent (see [12] or [17]). O

Nivat’s results are extended 1n [7], where it is shown that the question, “Is a finite
Thue system Church-Rosser?” 1s not only decidable but also 1s tractable, that 1s,
there 15 a polynomial-time (in the size of the system) algorithm to decide whether a
system is Church-Rosser. At this time no algomthm is known for determining
whether a finite Thue system is preperfect.

For a Thue system S the word problem is the question, “For strings x, y, are x and
ycongruent (mod §)?” In general, the word problem for Thue systems is undecidable.
If S is a preperfect system, then x and y are congruent if and only 1f there is some :
such that x % 2z and y % z. Since the number of strings no longer than x is finite,
1t 15 clear that the word problem for preperfect systems 1s decidable. From the fact
that the word problem for finitely presented groups 15 undecidable, it follows that the
word problem for finite special Thue systems 1s undecidable.

From the standpoint of formal language theory it is of interest to determine
whether the congruence classes of certain types of congruences have a particular
structure. Berstel [3] has surveyed a number of results regarding Thue systems whose
congruence classes are (or are not) context-free languages.

A language L is congruennal if there 15 a finite Thue system 5 such that L is the
union of finitely many of §°s congruence classes. Berstel [3] has shown that the linear
context-free language {ww”™|w & {a, £}*} 15 not congruential.

If one knows that every congruence class of a certain type of system is in some
class of recursive sets (e.g., the class of context-free languages) and from any such
system one can effectively specify algorithms for membership in those sets {e.g.,
specify context-free grammars and vse standard parsing techniques), then one can
obtain upper bounds on the complexity of the word problem for such systems. This
is part of the motvation for attempting to classify Thue systems as to whether their
congruence classes or congruential langnages are context-free languages or determin-
istic context-free languages or . .. .

if the word problem for a class of finite systems of relations is decadable, then so
are the refinement and equivalence problems. Thus studying the structure of the
congruence classes and congruential languages specified by such a system may yield
information about the inclusion and equivalence problems for certain classes of
languages. For example, since fimte preperfect systems have decidable word prob-
lems, the class of congruential languages specified by preperfect systems has a
decidable inclusion problem and a decidable equivalence problem.

If §is a Thue system on an alphabet Z, then the collection of $°s congruence
classes forms a semigroup with identity, that is, a monoid. The system S is a
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presentation of * /& If § is finite, then =* /s is a finitely presented monoid. Most
of the results presented here can be interpreted in terms of monoids but will not be
restated in that form.

3. Syntactic Complexity

The results in this section are about the syntactic complexity of congruence classes;
specifically, certain Thue systems are shown to have congruence classes that are
deterministic context-free languages.

Assumption. Throughout the remainder of this paper 1t is assumed that each
Thue system § is presented in such a way that (u, v) € S implies |u| = |v|. No
generality is lost by making this assumption.

A reduction o — S is lefimost if a = xt1 p, § = xv1p, (0, v) € S, and if &« = x"up p’
with (2, v2) € S for some vo, u; # uy, then xu is a proper prefix of x up or xu1 = xue
and x is a proper prefix of x’. Write « —»" § if a — # is leftmost. Let %" denote the
reflexive transitive closure of —".

LemMa 3.1, Let § be a Thue system.

(@) Let xuy =" xvy, where (u, v) € § is a leftmost reduction. Then x is irreducible
(mod §).

(b) Let wo =" wi =" ... =" w, be a leftmost reduction. For eachi= 1, ..., n, let
Wiy = x4y, and w. = xv, v, where (u,, v,) € S is the relation used to obitain
w1 =L w,. Then Joreachi=, ..., n,the string x, is irreducible (mod ).

LemMa 3.2.  Ler S be a Thue system.

(a) For every x there exists an wrreducible y such that x %" y.

(b) Suppose S ts Church-Rosser. For all x and all wrreducible y, x < y if and only if
x By Thus, for all x there is a unique irreducible y such that x 5" y.

(¢) Suppose S is almost-confluent. For all x and all wrreducible y, x & y implies that
for some irreducible z, x XL 2 and z P ¥

PRrOOF
(a) Given §, let §7 be any subsystem of § with the following properties:

(i) For each string » such that for some v, (#, v} € § and |u| = |v|, there is
exactly one v’ such that (x, v") € §" and |u] > |v'|.
(i) If (1, v) € §', then |u| > |v].

From property (i) it 18 clear that a string is irreducible (mod S) if and only if it
is irreducible {mod S”). From property (ii) and Lemma 3.1(b) it is clear that for
each string x there is a y such that y is irreducible {mod §”) and there is a leftmost
reduction of y from x using at most | x| steps.

(b) If § is Church—Rosser, then for each x there is a unique irreducible y such that
x < y. From part (a) the uniqueness of y implies x 5" y.

{c) For any x there is an irreducible z such that x -5 z (part (a)). If y & x, then
y & z. Since S 15 almost-confluent, there exist gand Asuchthat y 5 g,z %5 A,
and g P4 k. Since z is irreducible, z % A implies # = z. If y is irreducible,
y 5 gimplies g = y. Thus y Pz U

Now the first result can be established.

THEOREM 3.3. Let S be a finite monadic Thue system with the property that
(v, v) € S and (u, v') € S imply ¥' = v. If R 15 a regular set of strings, then the set
(x| for some irreducible y € R,x 5" p} 15 a deterministic context-free language.
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ProoF. Let r = max{|u||for some v, (i, v) € S}. Construct a deterministic
pushdown store acceptor I} that operates as follows.

Initially the pushdown store is empty. When the store is empty, attempt to read a
new input symbol and push it onto the store. When the store is not empty, read at
most the top ¢ symbols on the store and determine whether there exists a string u
stored on the top |#| = f squares of the store (with the rightmost symbol of « to the
top) such that for some v, (4, v) € S. If there is such a u, replace # by v, and once
again determine whether there exists a siring on the top of the store that can be
replaced (this will not be the case if v = ¢ but may be the case if | v| = 1); if there is
no such u on the top of the store, attempt to read a new input symbol from the mput
string and push it onto the top of the store. If there are no more input symbols to be
read, empty the store symbol by symbol and determine whether the string y remaining
on the store (with the rightmost symbol of y on the top) is accepted by a finite-state
acceptor A which recognizes all and only strings in the regular set {W|w € R}, where
for any string w, w is the reversal of w; the acceptor 4 can be considered o be a
portion of D’s finite-state control. Accept the mput string if and only if the stnng y
isn R,

The description of D’s operation makes it clear that if x %" y and y 15 1rreducible,
then D accepts x if and only if y € R.

Suppose that in D’s computation on an input string w there are n stages where a
string 15 popped from the top of the pushdown store. For each i = 1, ..., n, let x,u,
be the contents of the pushdown store before u. is popped, let x.v, be the contents of
the pushdown store after u, is replaced by v, and let y, be the input string that
remains to be processed. Then foreach i =1, ..., n, x2, v, — x,1, ) is a leftmost
reduction. To prove this, proceed by induction.

If u, is replaced by vy, then from the description of D’s operation it is clear that
X1y = x1v1 is leftmost, and so x1us 1 = xav1 p1 is leftmost. Assume that for all i < k,
X, ¥, —> XV, ¥, is leftmost, and consider xxux yr — xzvi yx. By the induction hypothesis
Xp-1Mr-1Yr-1 = Xr—1Ve-1yr-1 is leftmost, so that x;—; is irreducible by Lemma 3.1, If
ve-1 = e, then xp—1vi—1 = Xp—y and xxx yx — X2¥p yr 18 such that x,-, is a proper prefix
of Xyitr, and 50 xutir yr — X2vy Vi is leftmost since u; 15 the first string in Xp-1 ye—
which is the left-hand side of a relation i S. If v._, # e, then [vi—y| = 1, 50 vpy E
Z, and after uz-, is replaced by vi-), ve-1 is the symbol on the top of the store. If
Xp-1vx1 18 irreducible, then as above xxtiyr — Xxveyx is leftmost; if xp-1ve-; is not
irreducible, then Xxpp = Xp_1ve—1 since |ve—i | = | (otherwise there would be x’, »’
such that xu, ¥’ = x;, and x;_1 18 not irreducible). Thus xxu; — xxvy is leftmost, and
50 XaUx Y2 —> XpVp Vi 18 leftmost.

By choice of n the top of the pushdown store is not popped while D processes the
string y, with x»v, on the pushdown store. Thus from the description of D’s operation,
Xn¥n Va is irreducible. Now x,.v, ¥, € R if and only if (x»v. yn) is in {Z |z € R}, which
is a regular set since R is regular. Thus, for any input string w, if D accepts w, then
for some irreducible z € R, w5z O

Now consider Thue systems that are both monadic and Church-Rosser.

THEOREM 3.4. Let S be a finite monadic Thue system. If S is Church-Rosser, then
for any regular set R, the set U{[ ]|y is irreducible and y € R} is a deterministic
context-free language.

Proor. Given §, let S’ be any subsystem of S with the property that for each
string « such that for some v, (u, v} € S, there is exactly one v’ such that (z,v) € §’.
Since S’ is a subsystem of S and § is monadic, S’ is monadic. Clearly a string y is
irreducible (mod S) if and only if it is irreducible (mod §”). The system S’ satisfies
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the hypothesis of Theorem 3.3, so that for any regular set R, the language L(S") =
{x|for some irreducible y € R, x 5% y} is deterministic context-free. Since S 15
Church-Rosser, for all x there is a unique irreducible y such that x %% y (Lemma
3.2(b)). But for all x there exists an irreducible z such that x 55 2z (Lemma 3.2(a)),
and since §’ is a subsystem of S, this means that z = y, 50 x LN y. Thus L(S") =
{x|for some irreducible y € R, x ®% y}. Since § is Church-Rosser, x < y and y
irreducible implies x %% y, so that L(S’) = {x|for some irreducible y € R, x 5% y}
= U ([ 1| y is irreducible (mod $) and y € R}. As noted above, L{S’) is determnstic
context-free. [

COROLLARY 3.5. Ler S be a fimte monadic Thue system. If S is Church-Rosser,
then every congruence class and every finite union of congruence classes of S 15 a
deterministic contexi-free language.

A finite Thue system that is special and Church-Rosser 1s a Dyck system.

Cochet and Nivat {10, 11, 16] have shown that if S is a Dyck system, then every
congruence class of S is an unambiguous context-free language. Since every deter-
munistic context-free language is unambiguous, the compiement of a deterministic
context-free language is also deterministic context-free, and there exists an unambig-
uous context-free language whose complement is unambiguous context-free but not
deterministic, Theorem 3.4 considerably strengthens the result of Cochet and Nivat.

Theorem 3.4 does not hold for a confluent system that is not monadic. Berstel [3]
attributes the following example to Nivat [16] and Cochet [10]. Let §
{{abc, ab), (bbc, ¢b)}). Then § is confluent but not monadic, since (u, v) €
implies |v| = 2. The string abb is irreducible and [abb] O {a}*{b}*(c}*
{ab®*'c"|n = 0}, which is not a context-free language.

Now consider almost-confluent systems.

e B

THEOREM 3.6. Let S be a finite Thue system such that (u, v) € S implies either
| =|v], er|u| > | vl and | = |v{ If S is almosi-confluent, then for any regular set R
with the property that x € R, x wrreducible, and y | x imply y € R, the set U{[x]|x
is irreducible and x € R} is a determunistic context-free language.

Proor. By Lemma 3.2(c), if w 2L 7 and z is ureducible, then z R 2" for all
irreducible z’ such that w2 z’. Thus one can use the conditions on R to modify the
construction given 1n the proof of Theorem 3.3 to obtain a deterministic pushdown
store acceptor to recognize UH{[x]| x is irreducible and x € R}. O

CoroLLary 3.7. Let § be a finite Thue sysiem such that (u, v) € S imphes either
lul| = |v|, or |u| > |v| and 1 = |v|. If S 15 almosi-confluent, then every congruence
class and every fimite union of congruence classes of S is a deterministic contexi-free
language.

Sakarovitch [19] has independently established Corollary 3.7 using entirely differ-
ent methods.

There exist Thue systems that are not almost-confluent. For example, let .§ =
{(abc, €), (ab, ba)}. The system S 15 preperfect but is not almost-confluent, since
abbc is irreducible and abbe | babc — b so that abbe is not mummal. The
congruence class of ¢ (mod §) is not context-free since [e] N {a}*(b}*{c}* =
{a"b"c" | n = 0}, which is not context-free.

Let S = {(abc, e), (cha, e}}. The system S is special but not preperfect: ab <> abcba
> ba, s0 ab < ba, but @b and ba are minimal and it 1s not the case that ab | ba.
The congruence class of ¢ 15 nol context-free, since [e] N {a}*{b}*{c}* =
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{a"b"c"|n = 0} is not context-free. The system S* = {(abc, ¢), (ab, ba), (ac, ca),
{bc, cb)} is preperfect and is equavalent to S.

Now consider special systems with a single defimng relation.

The system S, = {(aba, €)} is not preperfect, since ab « ababa <> ba so that
ab & ba, but ab and ba are minimal and it is not the case that ab || ba. However,
S: = {(aba, e), (ab, ba)} 15 preperfect and S 15 equivalent to S;. It is easy to see that
no finite system equivalent to S, is almost-confluent.

Let § = (((ab)*a, e)} for some symbols a, b and integer k = 1. Then
((ab)*a)yba = ab((ab)*a), so that ab & ba. Thus, for every w € {a. b}* there
are ntegers p, g = 0 such that w & a”b? and |w| = p + g. In this case, ' =
((a**'b", e), (ba, ab)} is a preperfect system with the property that for every w €
{a, b6}* there are unique ntegers p, ¢ = 0 such that w |5 a?b? and either p = 0
and ¢g < kor p <k + 1and g = 0. It is easy to see that every congruence
class and every finite union of congruence classes of § is a deterministic context-
free language.

If w15 a nonempty string such that there are no w, v with |¢| < |w| and uw = wy,
then it is easy to see that the system {{w, €)} is confluent. If w 1s a nonempty string
such that w = y* for some y and some k > | and there are no «, v with |u| < | y| and
uy = pv, then the system {(w, €)} 15 confluent. If w is a string such that uw = wv for
some u, v with |u| < |w| and u # v, then there exist nonempty strings x, y and
k= 1 with x % y and w = (xy)"x [14]. In this case the system {(w, ¢)} is not confluent,
since xy <> xyw = wyx <> px so that xy and yx are irreducible, congruent, and
unequal. For such systems it may still be the case that every congruence class is a
context-free language as seen by the above examples. In fact, if x, y are strings such
that xy # yx, then there is a finite-state machine which gives the unique factonization
of each string w € {x, y}* as a concatenation of x’s and p’s [6]. This leads to the
following fact.

THEOREM 3.8. Ler u, v be two strings such that uv # vu. Let w be a string n
(u, v}*, w#* e. The system S = {(w, e), (uv, vu)} has the property that the intersection
of (u, v}* with any congruence class or any finite union of congruence classes of S is a
deterministic contexi-free language.

At one point the author conjectured that for every string w, every congruence class
of the Thue system {(w, ¢)} is a deterministic context-free language. However,
Jantzen [13] has shown that if w = abbaab, then the Thue system S = {(w, e}}
generates a congruence that cannot be generated by any finite preperfect system and
ne congruence class of .S is context-free.

4, The Word Problem

1t is known [1] that the word problem for special Thue systems with a single relation
1s decidable; however, the question of decidability of the word problem for nonspecial
Thue systems with a single defining relation is open. In this section 1t is shown that
for fimte Thue systems that are Church-Rosser, the word problem is solvable in
linear time.

Consider the deterministic pushdown store acceptor D described in the proof of
Theorem 3.3. The first phase of D’s computation on an input string x produces an
irreducible string y on its pushdown store with the property that x %" p. If D is
altered so as to output the final contents of the pushdown store, then one can run D
on x, producing 1rreducible y, such that x, %"y, run D on x; producing irreducible
e such that x; 5" y», and then compare y, and y.. If § 1s Church-Rosser, then x,
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and xo are congruent if and only if y; is equal to y.. Since deterministic pushdown
store acceptors can be made to run in linear time, this shows that 1f § is a finite
monadic Thue system that is Church-Rosser, then the word problem for S is solvable
in linear time.

Consider a finite Thue system that is Church-Rosser but not monadic. Tt still is
the case that two strings are congruent if and only if they are both leftmost reducible
to the same irreducible string. But if the system is not monadic, then it may not be
possible to implement every leftmost reduction with a pushdown store machine, for
it may be the case that x,u, p, — x,v, ¥, and X241 Yor1 = Xiz1Via1 Yor1 are leftmost but
[v:] = 2 and X410+ is a proper prefix of x,v. However, 1t 1s still the case that the
word problem is solvable in linear time. To prove this, it 15 useful to first establish a
property of all finite Thue systems.

Tneorem 4.1, If §'is a finite Thue system, then there 1s an algorithm that on input
x produces output y such that y s irreducible and x %" y. This algorithm operates in
time linear in the length of the mput string.

Proor. Recall from Section 3 that it is assumed that if (u, v) € S, then |u| = |v].
As in the proof of Lemma 3.2(a), let $’ be a subsystem of § with the following
properties:

(i) For every string « such that for some v, (i, v) € § and [u] > | v|, there is exactly
one v’ such that (i, v¥) € §" and |u| > |v¥|.
(ii) If (u, v) € S’, then |u| > | v|.

As in the proof of Lemma 3.1(a), for every x there is a unique y such thatx N y
and y is both irreducible (mod §”) and also wrreducible (mod §). Thus it is sufficient
to construct any such subsystem S’ from S and construct the algorithm from S’.

Let n = max{|u||for some v, (x, v} € §'}, and let ©» = max{]|v||for some u,
(4, v) € §'}. By construction of 8, t > ¢

Construct a deterministic Turing machine D with two pushdown stores, store 1
and store 2, that operates as follows. Tnutially, store 1 is empty and store 2 contains
a string x with the leftmost symbol of x on the top of store 2. The step-by-step
computation of 1) is described in terms of two operations.

(i) READ. D attempts to read a new symbol from store 2, popping that symbol
from store 2, and pushing that symbol onto the top of store 1. If D is able to read
such a symbol, then it performs the SEARCH operation. If D is not able to read such
a symbol, then its computaticn on x is complete, and the result is the contents of
store 1.

(i) SEARCH. D reads at most the top £, symbols from store 1 and determines
whether there exists a string u stored on the top |u| squares of store 1 such that for
some v, (&, v) € §'. When there is such a string, D finds the longest such # and pops
the top | u| squares of store | while writing the corresponding v on the top | v| squares
of store 2 such that the leftmost symbol of v is on the top of the store. When there is
no such string, D simply restores the top # symbols of store 1. In the former case,
perform the SEARCH operation again; in the latter case, perform the READ
operation.

By definition of S”, if (&, v) € §”, then there is no v" # v such that (w, v') € §’; thus
D operates deterministicaily. By construction, if (v, v) € 57, then |u| > |v|, and so
each time a string » is popped from store | and the corresponding string v is pushed
onto store 2, the sum of the length of the contents of store I and the lengih of the
contents of store 2 is decreased. Thus D’s computation on x must halt afier ai most
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| x| “pop u, push v” steps. The running time of D on x is bounded by the product of
the number of times D performs READ and the cost of performing SEARCH. The
number of imes D performs READ is | x| plus the total number of symbols written
on store 2 in all of the applications of SEARCH, and this sum is bounded by
| x| + t2| x|, since there are at most | x| “pop u, push v steps. The cost of performing
SEARCH is 2. Thus there is a constant k& depending only on S’ such that the
ronning time of D on input string x is bounded by k| x|.

If y is the string remaining on store 1 afier D has completed its computation on x,
where the lefimost symbol of y is on the bottom of store 1, then y is irreducible and
there is a left-to-right reduction x %" y. [

Recall from Lemma 3.2(b} that 1f S is Church—Rosser, then for every x there1s a
unique irreducible y such that x %" y. Thus, if § is finite and Church-Rosser, given
x; and x; use the algonthm of Theorem 4.1 to produce irreducible y; and s such
that x, %" y; and x,=5" y»; compare y; and y; and decide that x; 1$ or is not congruent
to xa, depending on whether 1 is or is not equal to y..

THEOREM 4.2. If S is a finite Thue system that 1s Church-Rosser, then there is a
linear-time algorithm to decide the word problem for S.

If S is a fimte Thue system that 15 preperfect, then the word problem for 5 1s
decidable nondetermumistically using at most linear space, and there 1s an algorithm
to solve the uniform word problem for all finite preperfect systems that uses
polynomial space. Jantzen and Monien (reported n [4]) have shown that there exists
a finite almost-confluent system whose word problem is PSPACE-complete.

In [5] it is shown that certain infinite monadic Thue systems that are confluent
have word problems that are solvable determimstically in polynomial time.
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