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ABSTRACT Confluent and other types of finite Thue systems are studied. Sufficlem condmons are 
developed for every congruence class and every fimte union of congruence classes defined by such a 
system to be a determtmsttc context-free language. It is shown that the word problem for Church-Rosser 
systems is decidable m hnear t~me 
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Introduction 

There are some operations on data  structures that can be described in very general 
terms, for example, "delete," "insert," or "replace." It would be desirable to develop 
a formal  calculus which would  enable one to decide questions such as whether  two 
sequences o f  operations are equivalent. It is known that no  such calculus can be 
developed universally. 

Formal  systems used to describe such operations are often called "replacement  
systems." In the study o f  formula-manipula t ion systems such as theorem provers, 
p rogram optimizers, or algebraic simplifiers, replacement systems take the form o f  
term rewriting systems, tree manipulat ing systems, graph grammars,  etc. Often one 
attempts to show that the system is "conf luent"  or "Church -Rosse r "  so that there is 
a way o f  describing canonical  representatives or unique normal  forms. (See [2, 11, 
12, 15, 16, 181.) 

W h e n  dealing with strings, the appropriate  notion o f  replacement system is that  o f  
Thue  system, that is, a set S o f  pairs o f  strings and the relation defined by xuy ~ xvy  
for all x, y and all (u, v) or (v, u) m S. The reflexive transitive closure <-% o f  o is 
the Thue congruence generated by S. As well as being replacement  systems, Thue  sys- 
tems and Thue  congruences have been used to specify formal languages [3, 10, 11, 
16, 17, 19]. 

In this paper  finite Thue  systems and their congruences are studied. In  Section 2 
certain restricted types o f  Thue  systems are defined and their properties investigated; 
specifically, systems that are "confluent ,"  "Church-Rosse r , "  "almost-confluent ,"  or  
"preperfect"  are studied. I f  a Thue  system S has the property that (u, v) ~ S implies 
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[ u[ > I v[ and 1 >_ I v l and if S is Church-Rosser, then every congruence class of  S 
and every finite union of  congruence classes of  S is a deterministic context-free 
language, as are certain infimte unions of congruence classes of  S; these and other 
similar results are established in Section 3. 

Deterministic context-free languages are recognized by deterministic pushdown 
store acceptors, and deterministic pushdown store acceptors can be made to run in 
linear time. Thus, one is led to examine certain problems about finite Thue systems 
and to search for good algorithms for their solution. In Section 4 it is shown that for 
any finite Thue system S, there is a linear-time algorithm to.compute from a given 
string x an irreducible string y such that y is congruent to x. This result is then used 
to show that for any finite Thue system S that is Church-Rosser, there is a linear- 
time algorithm to solve the word problem for S. 

It is hoped that the results presented here will suggest further attacks on similar 
problems concerning other types of replacement systems. 

1. Prehminaries 

It is assumed that the reader is familiar with the basic concepts of  formal language 
theory, computability theory, and complexity theory. Some definitions and notation 
for Thue systems and their congruences are established here. 

If Z is a finite alphabet, then ~* is the free semigroup with identity e generated by 
~. If  w is a string, then the length of  w is denoted by Iwl: lel = 0, lal  = 1 for 
a E Z, and Iwal  = Iwl + 1 for w E  Z*, a E ]~. 

A Thue system S on a finite alphabet 52 is a subset of  Z* x Z*. Each pair in S is 
a relation. The Thue congruence generated by S is the reflexive transitive closure ~*s 
of  the relation ~-~s defined as follows: For any u, v such that (u, v) ~ S or (v, u) ~ S 
and any x, y E ~*, xuy ~-->s xvy. Two strings w, z are congruent (rood S)  if w ~>s z; 
the congruence class of z (mod S) is [Z]s = (wl w ~-%s z}. (Whenever possible the 
subscript S will be omitted.) 

If  $1 and $2 are Thue systems such that for all x, y, x <-%s~ y implies x ~->s2 Y, then 
$1 refines $2; if S~ refines $2 and $2 refines Sa, then S~ and $2 are equivalent. Clearly 
$1 refines $2 if and only if for every (u, v) ~ $1, u ~-%s2 v. 

Let S be a system of relations. 

(a) Write x ---> y provided x <---> y and [ x [ > l Yl. 
(b) Write x 1-"-t Y provided x ~ y and ] x I = I Y l. 
(c) Write x [--> y provided x ~ y or x [ ~  y. 

The reflexive transitive closure of---> ( [ ~ ,  ~-->) is denoted -~ (respectively, [-~, [-% ). 
If  S is a Thue system, then a string x is irreducible (mod S) if for all y, x ~-> y 

implies [ x [ _< [ y 1, and is minimal If x ~ y implies [ x I --< [ Y [. 
A transformation x -~ y is a reduction. 
In this paper certain restricted Thue systems are considered. 
A Thue system S on a finite alphabet ~ is monadic if  (u, v) G S implies I u [ > I v [ 

and v E Z t3 {e}, and is special if  (u, v) E S implies v = e. 

2. Types of Thue Systems 

A number of  different combinatorial replacement systems have been studied in the 
context of  automatic theorem-proving, abstract data types, program optimization, 
combinatory logic, etc. In an abstract replacement system a binary relation ~ on a 
space B is defined; usually the reflexive transitive closure ~ of this relation is not 
symmetric and is considered to be a "reduction." An irreducible element of  B is 



Confluent and Other Types of Thue Systems 173 

, • o <  * ~ e  • <  * > 0  
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FIG. !. (a) Church-Rosser. (b) Confluent (c) Almost-confluent (d) Preperfect, 

considered to be a normal form of (B, 7 ) .  I f  the relation ~ ts Noetherian, that is, 
has no infinite descending chains, then for each x E B there is a normal form y such 
that x =~ y. Given B and ~ ,  define ¢~ to be ( 7  LI 7 -1) and ,~  to be the reflexive 
transitive closure of  ¢=~. Insptred by the result of  C-hurch and Rosser [9] on the 
calculus of  X-conversion, we call a system (B, 7 )  Church-Rosser if  for all x, y ~ B, 
x ~ y implies that for some z E B, x ~ z and y ~ z. If  a system (B, 7 )  is Church-  
Rosser and ~ is Noetherian, then for every element x E B there is a unique normal 
form y such that x ~ y. Newman [15] called a system confluent if it had this property, 
and he showed that the Church-Rosser  property is equivalent to the following: For 
all w, x, y E B, if  w ~ x and w =~ y, then for some z, x ~ z and y =~ z. In recent 
work (e.g., [12]), the property established by Newman has been called "confluent," 
and systems with this property have been called "confluent systems." 

The situation for Thue systems is more complicated. I f  S is a Thue system on a 
finite alphabet E, then the relation-~->s is Noetherian, but the relation ~-~s is not 
Noetherian if there is some (u, v) ~ S such that [ u I = ] v I. Further, there are a variety 
of  terms that have been used in conjunction with the replacement systems defined by 
(:2", ---~s) and (E*, ~--~s): perfect, quasi-perfect, preperfect, finite Church-Rosser  
[2, 3, 10-12, 16-19]. Here the relation ~ is emphasized, and this leads to the 
definitions below which follow the historical precedent of  "Church-Rosser"  for the 
"triangle" property, using "confluent" for the "diamond" property. 

Let S be a Thue system. 

(a) S is Church-Rosser if for all x, y, if  x ~* y, then there exists a z such that x -~ z 
a n d y  -~ z (see Figure la). 

(b) S is confluent if for all w, x, y, if w-~  x and w-~, y, then there exists a z such that 
x -~ z a n d y - ~  z (see Figure lb). 

(c) S is almost-confluent if  for all x, y, if x ~ y, then there exist g, h such that 
x -~ g, y -~ h, and g ~-~ h (see Figure lc). 

(d) S is quas~-perfect if for all w, x, y, if w ~-~ x and w }-~ y, then there exists a z such 
that x ~ z and y ~-~ z. 

(e) S is preperfect if for all x, y, if x ~* y, then there exists a z such that x J-~ z and 
y ~ z (see Figure ld). 

Abstract replacement systems with properties similar to those of  almost-confluent 
Thue systems were studied by Huet [12] and called "confluent modulo an equivalence 
relation." 

It is clear that for Thue systems, any Church-Rosser  system is confluent. The 
possibility of  length-preserving rules allows for confluent systems that are not 
Church-Rosser: if S = ((u, v)} where u # v and [ u[ = [ v I , then the relation ~ LS void 
so that S is confluent (vacuously), but S is not Church-Rosser  since there is no z 
such that u -~ z and v *-~ z. However, we do have the following fact. 
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PROPOSITION 2.1. Let S be a Thue system. 

(a) I f (u ,  v) E S implies ]u] # Ivl, then S is confluent tf  and only if  S is Church- 
Rosser. Thus, if S is monadic, then S is confluent if and only if S is Church-Rosser. 

(b) Suppose that for  everypair (u, v) E S such that ] u] = ] v[, there exists a z such that 
u ~ z and v ~ z. Then S is confluent if and only If S is Church-Rosser. 

PROOF. As noted above, any Church-Rosser system is confluent. For part (a) the 
fact that any confluent system is Church-Rosser was established by Cochet and 
Nivat [11], using induction on the number of  steps in a transformation x ~-~ y. The 
same method can be used to show that for part (b) any confluent system is Church-  
Rosser. [] 

Similarly, we have another fact. 

PROPOSITION 2.2 [11]. Let S be a True system. Then S is quasi-perfect if and only 
if S is preperfect. 

Only the terms "confluent," "Church-Rosser," "almost-confluent," and "preper- 
fect" will be used in the remainder of this paper. The four parts of  Figure 1 serve to 
illustrate the differences. 

Notice that for any Thue system $1, the system $2 = ((u, v)[u ~-~ v and [u[ >_ I v[} 
is an infinite almost-confluent Thue system that is equivalent to $1. Thus every Thue 
congruence is an infinitely generated almost-confluent congruence, and so an infinite 
Thue system must be further restricted to be of  interest. Only finite Thue systems are 
considered here. 

It is clear that if S is a finite Thue system, then for any string x one can effectively 
find an irreducible string congruent to x. The set of  all irreducible strings of  S is a 
regular set [3]. Every string has at least one minimal string congruent to it, but the 
question, "Given S and x, is x minimal for ~-%s?" is undecidable [8]. A minimal 
string can be considered to be a "normal form," and the question of  uniqueness of  
normal forms will be useful here. 

PROPOSITION 2.3. Let S be a True system. 

(a) I f  S is Church-Rosser, then S is almost-confluent, and if S is almost-confluent, 
then S is preperfect. 

(b ) The system S is Church-Rosser if and only if x, y irreducible and x ~-~ y imply 
x = y [12, 15, 17]. 

(c) The system S is almost-confluent If and only if x, y irreducible (rood S) and 
x ~ y imply x ~-~ y [17]. 

(d) I f  S ts Church-Rosser or almost-confluent, then a string is irreducible (mod S) if  
and only if it is minimal [3]. 

(e) I f  (u, v) E S implies I u l # I v I, then S is preperfect if and only if S is almost- 
confluent if and only if S is confluent if and only if S is Church-Rosser. 

Nivat [17] has developed necessary and sufficient conditions for a Thue system to 
be almost-confluent, and these conditions are decidable. An almost-confluent system 
with no length-preserving relations is confluent. 

PROPOSITION 2.4 [17]. It is decidable whether a fimte True system is almost- 
confluent, and it is decidable whether a jqnite True system is confluent. 

SKETCH OF PROOF. A Thue system S is locally confluent If for all w, x, y, w ---* x 
and w --> y imply that for some z, x -~ z and y -~ z. Since the relation -~ is 
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Noetherian, a Thue system is confluent if and only if it is locally confluent (Huet [ 12] 
provides a simple proof of this fact). It is clear that a Thue system S is locally 
confluent if and only if for every pair (Ua, vl), (uz, v2) or (vl, Ul), (vz, u2) of  not 
necessarily distinct relations in S with lUll > I vll and l u21 > Iv21, the foUowmg 
conditions hold: 

(a) If there are strings x, y such that uax = yuz with I x I < [ u21, then there exists z 
such that VxX -~ z and yv2 -~, z. 

(b) If there are strings x, y such that ul = xuzy, then there exists z such that v, -~ z 
and xv2y -~ z. 

For any pair of relations, one can determine whether (a) and (b) hold. Thus, if S is 
finite, one can decide whether S is locally confluent. 

A simdar argument shows that it is decidable whether a finite Thue system is 
almost-confluent (see [12] or [17]). [] 

Nivat's results are extended in [7], where it is shown that the question, "Is a finite 
Thue system Church-Rosser?" ~s not only decidable but also is tractable, that is, 
there is a polynomial-Ume (m the size of the system) algorithm to decide whether a 
system is Church-Rosser. At this time no algorithm is known for determining 
whether a finite Thue system is preperfect. 

For a Thue system S the word problem is the question, "For  strings x, y, are x and 
y congruent (mod S)?" In general, the word problem for Thue systems is undecidable. 
If  S is a preperfect system, then x and y are congruent if and only if there is some z 
such that x ~-> z and y ~-~ z. Since the number of  strings no longer than x is finite, 
~t ~s clear that the word problem for preperfect systems ~s decidable. From the fact 
that the word problem for finitely presented groups ~s undec~dable, ~t follows that the 
word problem for finite specml Thue systems is undecidable. 

From the standpoint of  formal language theory it is of interest to determine 
whether the congruence classes of  certain types of congruences have a particular 
structure. Berstel [3] has surveyed a number of  results regarding Thue systems whose 
congruence classes are (or are not) context-free languages. 

A language L is congruentlal if there is a finite Thue system S such that L is the 
union of finitely many of S's congruence classes. Berstel [3] has shown that the linear 
context-free language (wwR[w ~ {a, b}*} Is not congruential. 

If one knows that every congruence class of  a certain type of  system is in some 
class of recursive sets (e.g., the class of  context-free languages) and from any such 
system one can effectively specify algorithms for membership in those sets (e.g., 
specify context-free grammars and use standard parsing techniques), then one can 
obtain upper bounds on the complexity of  the word problem for such systems. This 
is part of the motivation for attempting to classify Thue systems as to whether their 
congruence classes or congruential languages are context-free languages or determm- 
isuc context-free languages or . . . .  

If  the word problem for a class of finite systems of relations is decidable, then so 
are the refinement and eqmvalence problems. Thus studying the structure of  the 
congruence classes and congruential languages specified by such a system may yield 
information about the inclusion and equivalence problems for certain classes of  
languages. For example, since fimte preperfect systems have decidable word prob- 
lems, the class of  congruential languages specified by preperfect systems has a 
decidable inclusion problem and a decidable equivalence problem. 

If  S is a Thue system on an alphabet ]g, then the collection of  S's congruence 
classes forms a semigroup with idenmy, that is, a monold. The system S is a 
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presentatwn of  X*/~--~s. If S is finite, then ~*/~-~s is a f ini tely presented monold. Most 
of  the results presented here can be interpreted in terms of  monoids but will not be 
restated in that form. 

3. Syntactic Complexity 

The results in this section are about the syntactic complexity of  congruence classes; 
specifically, certain Thue systems are shown to have congruence classes that are 
deterministic context-free languages. 

Assumption. Throughout the remainder of  this paper it is assumed that each 
Thue system S is presented in such a way that (u, v) E S implies l ul _> I vl. No 
generality is lost by making this assumption. 

A reduction a ---> fl is leftmost i f a  = x u l y ,  fl = XVly, (Ul, Yl) ~ S, and ifc~ = x ' u 2 y '  
with (uz, v2) E S for some v2, Ux ~ u2, then xul  is a proper prefix of  x'uz or XUl = x '  uz 
and x is a proper prefix o f x ' .  Write a __.>L fl if a ---> fl is leftmost. Let _~L denote the 
reflexive transitive closure of--->L. 

LEMMA 3.1. Let  S be a Thue system. 

(a) Let  xuy  _._>L xvy,  where (u, v) ~ S is a leftmost reductwn. Then x is trreducible 
(rood S) .  

(b) Let  Wo ...>r wl ....>z . ......>L Wn be a leftmost reduction. For each i = 1, . . . ,  n, let 
w,-1 = x ,u,y ,  and w, = x,v,y, ,  where (u,, v,) E S is the relatton used to obtain 
w,-1 _._>z w,. Then f o r  each i = 1, . . . ,  n, the string x, is irreducible (mod S) .  

LEMMA 3.2. Let  S be a Thue system. 

(a) For every x there exists an trreducible y such that x _~ Z y.  
(b) Suppose S t s  Church-Rosser.  For all x and all lrreductble y,  x ~ y i f  and only i f  

x . ~ z  y.  Thus, f o r  all x there is a unique irreducible y such that x _~r y. 
(c) Suppose S is almost-confluent. For all x and all Irreducible y ,  x ~ y implies that 

f o r  some irreductble z, x _~z z and z ~-q y. 

PROOF 

(a) Given S, let S '  be any subsystem of S with the following properties: 

(i) For each string u such that for some v, (u, v) ~ S and l ul > Iv I, there is 
exactly one v' such that (u, v') ~ S'  and I u l > [ v'l .  

0i) If  (u, v) E S', then [ u I > I v I. 

From property (i) it is clear that a string is irreducible (mod S) if and only if it 
is irreducible (mod S'). From property (ii) and Lemma 3.1 (b) it is clear that for 
each string x there is a y  such tha ty  is irreducible (mod S')  and there is a leftmost 
reduction o f y  from x using at most I xl steps. 

(b) If  S is Church-Rosser, then for each x there is a unique irreducible y such that 
x ~ y. From part (a) the uniqueness o f y  implies x _~Ly. 

(C) For any x there is an irreducible z such that x _~L Z (part (a)). I f y  ~ x, then 
y ~-% z. Since S is almost-confluent, there exist g and h such that y -~ g, z ~ h, 
and g [-~ h. Since z is irreduoble, z -~ h implies h = z. If  y is irreducible, 
y -~ g implies g = y. Thus y ~-~ z. [] 

Now the first result can be established. 

THEOREM 3.3. Let  S be a f inite monadic Thue system with the property that 
(u, v) E S and (u, v') ~ S imply v' = v. I f  R ts a regular set o f  strings, then the set 
(x  l f o r  some irreducible y E R, x _~L y} lS a deterministic context-free language. 
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PROOF. Let t = m a x { l u l  I f  o r  some v, (u, v) E S) .  Construct a deterministic 
pushdown store acceptor D that operates as follows. 

Initially the pushdown store is empty. When the store is empty, attempt to read a 
new input symbol and push it onto the store. When the store is not empty, read at 
most the top t symbols on the store and determine whether there exists a string u 
stored on the top I u I -< t squares of  the store (with the rightmost symbol of  u to the 
top) such that for some v, (u, v) ~ S. If  there is such a u, replace u by v, and once 
again determine whether there exists a string on the top of  the store that can be 
replaced (this will not be the case if v = e but may be the case if I v[ = 1); if there is 
no such u on the top of the store, attempt to read a new input symbol from the input 
string and push it onto the top of  the store. If there are no more input symbols to be 
read, empty the store symbol by symbol and determine whether the string y remaining 
on the store (with the rightmost symbol of y on the top) is accepted by a finite-state 
acceptor A which recognizes all and only strings in the regular set (ff lw E R ), where 
for any string w, ~ is the reversal of w; the acceptor A can be considered to be a 
portion of D's finite-state control. Accept the input string If and only if the string y 
is in R. 

The description of  D's operation makes it clear that if x - ~  L y and y is irreducible, 
then D accepts x if and only l f y  G R. 

Suppose that in D's computation on an input string w there are n stages where a 
string is popped from the top of the pushdown store. For each i = 1 , . . . ,  n, let x,u, 

be the contents of the pushdown store before u, is popped, let x,v, be the contents of  
the pushdown store after u, is replaced by v,, and let y, be the input string that 
remains to be processed. Then for each i = 1 . . . . .  n, x~u~y, ~ x,v,y~ is a leftmost 
reduction. To prove this, proceed by induction. 

If  Ul is replaced by Vl, then from the description of  D's operation it is clear that 
xlul ~ xlvl  is leftmost, and so XlUlyl ~ x l v l y l  is leftmost. Assume that for all i < k, 
x,u~y, ~ x,v,y, is leftmost, and consider XkUkyk ~ XkVkyk. By the induction hypothesis 
Xk-xUh-xyk-~ ~ Xk-aVk-ayk-1 is leftmost, so that Xk-1 is irreducible by Lemma 3.1. I f  
vk-1 = e, then Xk-~Vk-~ = Xk-~ and XkUkyk ~ XkVkyk iS such that xk-1 is a proper pret-Lx 
of  XkUk, and so xkukyk ~ XkVkyk is leftmost since uk is the first string in Xk-~yk-1 
which is the left-hand side of a relation in S. If  vk-a # e, then Irk-l[ -- 1, so vk-~ E 
]g, and after uk-~ is replaced by vk-~, vk-1 is the symbol on the top of  the store. If  
Xk-~Vk-x is irreducible, then as above XhUhyh ~ XhVkyk is leftmost; if Xk-aVh-~ is not 
irreducible, then XkUk = Xk-lVk-~ since I v~-,I = 1 (otherwise there would be x ' ,  y '  
such that x ' u k y '  = xk and xk-~ is not irreducible). Thus x,uk ~ x~v~ is leftmost, and 
so XkUk y~ ~ X,V, yk is leftmost. 

By choice of  n the top of the pushdown store is not popped while D processes the 
stnng y ,  with x , v ,  on the pushdown store. Thus from the description of  D's  operation, 
x , v , y ,  is irreducible. Now x , v , y ,  ~ R if  and only if(XnV, y , )  is in (~[z  ~ R}, which 
is a regular set since R is regular. Thus, for any input string w, if D accepts w, then 
for some irreducible z ~ R, w .~_~L Z. [] 

Now consider Thue systems that are both monadic and Church-Rosser. 

THEORE~ 3.4. Let  S be a finite monadic Thue system, l f  S is Church-Rosser, then 
f o r  any regular set R, the set tA{[y] ly  is irreducible and y ~ R)  is a deterministic 

context-free language. 

PROOF. Given S, let S '  be any subsystem of  S with the property that for each 
string u such that for some v, (u, v) ~ S, there is exactly one v' such that (u, v') ~ S'. 
Since S'  is a subsystem of S and S is monadic, S '  is monadic. Clearly a string y is 
irreducible (mod S) if and only if it is irreducible (mod S'). The system S '  satisfies 
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the hypothesis of  Theorem 3.3, so that for any regular set R, the language L(S ' )  = 
{x[ for some irreducible y ~ R, x ~-~, y )  is deterministic context-free. Since S is 
Church-Rosser, for all x there is a unique irreducible y such that x .~L y (Lemma 
3.2(b)). But for all x there exists an irreducible z such that x -~s  L, z (Lemma 3.2(a)), 
and since S'  is a subsystem of  S, this means that z = y,  so x _ ~ L y .  Thus  L(S') -- 
{x if  or some irreducible y ~ R, x -~s  L y}. Since S is Church-Rosser, x ~* y and y 
irreducible implies x .~L y, SO that L(S ' )  = (x If or some irreducible y E R, x .~L y} 
= L3 {[y] l Y is irreducible (rood S) and y E R }. As noted above, L(S ' )  is deterministic 
context-free. [] 

COROLLARY 3.5. Let S be a fimte monadw Thue system. I f  S is Church-Rosser, 
then every congruence class and every finite union of  congruence classes of  S is a 
deterministic context-free language. 

A finite Thue system that is special and Church-Rosser is a Dyck system. 
Cochet and Nivat [10, 11, 16] have shown that if S is a Dyck system, then every 

congruence class of  S is an unambiguous context-free language. Since every deter- 
mmistic context-free language is unambiguous, the complement of  a deterministic 
context-free language is also deterministic context-free, and there exists an unambig- 
uous context-free language whose complement is unambiguous context-free but not 
deterministic, Theorem 3.4 considerably strengthens the result of  Cochet and Nivat. 

Theorem 3.4 does not hold for a confluent system that is not monadic. Berstel [3] 
attributes the following example to Nivat [16] and Cochet [10]. Let S = 
{(abc, ab), (bbc, cb)}. Then S is confluent but not mona&c, since (u, v) E S 
implies Ivl -- 2. The string abb is irreducible and [abb] N {a}*{b}*{c}* = 
{ab2n+~cnln >_ 0}, which is not a context-free language. 

Now consider almost-confluent systems. 

THEOREM 3.6. Let S be a finite Thue system such that (u, v) ~ S tmphes  eaher 
I u l = I v I, o r  l ul > I v l and 1 >_ I v l. I f  S is almost-confluent, then for  any regular set R 
with the property that x E R, x irreducible, and y ~-~ x imply y ~ R, the set U { [ x ] l x  
is irreducible and x E R } is a determmlsttc context-free language. 

PROOF. By Lemma 3.2(c), if w _~L Z and z is wreducible, then z H z '  for all 
irreducible z' such that w--~ z'. Thus one can use the condmons on R to modify the 
construction given m the proof of  Theorem 3.3 to obtain a deterministic pushdown 
store acceptor to recognize ID{[x]lx is irreducible and x E R}. [] 

COROLLARY 3.7. Let S be a finite Thue system such that (u, v) E S lmphes either 
l ul = I v I, or  I u l > I v l and 1 >_ I v I. I f  S t s  almost-confluent, then every congruence 
class and every finite umon of  congruence classes of  S is a deterministic context-free 
language. 

Sakarovitch [19] has independently established Corollary 3.7 using entirely differ- 
ent methods. 

There exist Thue systems that are not almost-confluent. For example, let S = 
{(abc, e), (ab, ba)}. The system S is preperfect but is not almost-confluent, since 
abbc is irreducible and abbc H babc ~ b so that abbc is not mlmmal. The 
congruence class of  e (mod S) is not context-free since [e] fq {a}*{b}*{c}* = 
{anbncn I n >_ 0}, which is not context-free. 

Let S = {(abc, e), (cba, e)}. The system S is special but not preperfect: ab ~ abcba 
ba, so ab ~-~ ba, but ab and ba are minimal and it is not the case that ab ~-q ba. 

The congruence class of  e is not context-free, since [e] fq {a}*{b}*{c}* = 
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{anbncnln >_ 0} is not context-free. The system S '  = {(abc, e), (ab, ha), (ac, ca), 
(bc, cb)} is preperfect and is eqmvalent to S. 

Now consider special systems with a single defining relation. 
The system $1 = {(aba, e)} is not preperfect, since ab ~ ababa ~ ba so that 

ab ,-% ba, but ab and ba are minimal and it is not the case that ab ~ ba. However, 
$2 = {(aba, e), (ab, ba)} IS preperfect and $2 is equivalent to S~. It is easy to see that 
no finite system equivalent to $1 is almost-confluent. 

Let S = {((ab)ka, e)} for some symbols a, b and integer k >__ 1. Then 
((ab)ka)ba = ab((ab)ka), so that ab ~ ha. Thus, for every w ~ {a, b}* there 
are integers p, q --> 0 such that w ~ aPb q and ]w I = p + q. In this case, S '  = 
{(ak+~b k, e), (ba, ab)} is a preperfect system with the property that for every w E 
{a, b}* there are unique mtegers p, q ~ 0 such that w ~ aPb q and either p >_ 0 
and q < k or p < k + 1 and q _> 0. It is easy to see that every congruence 
class and every finite union of  congruence classes of  S is a deterministic context- 
free language. 

I f  w is a nonempty string such that there are no u, v with I u I < I w l and uw = wv, 
then it is easy to see that the system {(w, e)} is confluent. I f  w Is a nonempty string 
such that w = yk for some y and some k > 1 and there are no u, v with I u I < I Y I and 
uy = yv, then the system {(w, e)} Is confluent. I f  w is a string such that uw = wv for 
some u, v with l ul < I wl and u # v, then there exist nonempty strings x, y and 
k _> 1 with x # y and w = (xy)kx  [14]. In this case the system {(w, e)} is not confluent, 
since x y  ~ x y w  = wyx  ~ y x  so that x y  and y x  are irreducible, congruent, and 
unequal. For such systems it may still be the case that every congruence class is a 
context-free language as seen by the above examples. In fact, if  x, y are strings such 
that x y  ~ yx ,  then there is a finite-state machine which gwes the unique factonzation 
of  each string w E {x, y}* as a concatenation of  x ' s  and y ' s  [6]. This leads to the 
following fact. 

THEOREM 3.8. Let  u, v be two strings such that uv ~ vu. Let  w be a string m 
{u, v}*, w ~ e. The system S = ((w, e), (uv, vu)} has the property that the intersection 
o f  {u, v)* with any congruence class or any f inite umon o f  congruence classes o f  S is a 
deterministic context-free language. 

At one point the author conjectured that for every string w, every congruence class 
of  the Thue system ((w, e)} is a deterministic context-free language. However, 
Jantzen [13] has shown that if w -- abbaab, then the Thue system S = {(w, e)} 
generates a congruence that cannot be generated by any finite preperfect system and 
no congruence class of  S is context-free. 

4. The Word Problem 

It is known [1] that the word problem for special Thue systems with a single relation 
is decidable; however, the question of  decidability of  the word problem for nonspecial 
Thue systems with a single defining relation is open. In this section It is shown that 
for fimte Thue systems that are Church-Rosser,  the word problem is solvable in 
linear time. 

Consider the deterministic pushdown store acceptor D described in the proof  of  
Theorem 3.3. The first phase of  D 's  computation on an input string x produces an 
irreducible string y on its pushdown store with the property that x -~ e y. I f  D is 
altered so as to output the final contents of  the pushdown store, then one can run D 
on xl producing irreducible yl such that xl _~Ly~, run D on x2 producing irreducible 
y2 such that xz _~L y2, and then compare yl and y2. I f  S is Church-Rosser ,  then xl 
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and x2 are congruent if and only if  yl is equal to y2. Since deterministic pushdown 
store acceptors can be made to run in linear time, this shows that if S is a finite 
monadic Thue system that is Church-Rosser, then the word problem for S is solvable 
in linear time. 

Consider a finite Thue system that is Church-Rosser but not monadlc. It still is 
the case that two strings are congruent if and only if they are both leftmost reducible 
to the same irreducible string. But if the system is not monadic, then it may not be 
possible to implement every leftmost reduction with a pushdown store machine, for 
it may be the case that xzu~y, ~ x,v,y, and x,+lu,+ly,+l ---> x~+lvz+ly,+l are leftmost but 
[v, [ _> 2 and X,+lU,+l is a proper prefix of  x,v, However, It is still the case that the 
word problem is solvable in linear time. To prove this, it is useful to first establish a 
property of  all finite Thue systems. 

THEOREM 4.1. I f  S is a finite Thue system, then there ts an algorithm that on input 
x produces output y such that y Is irreducible and x .~L y. This algorithm operates in 
time linear in the length of  the input strmg. 

PROOF. Recall from Secuon 3 that it is assumed that if (u, v) C S, then [u I _> I v[. 
As in the proof of Lemma 3.2(a), let S'  be a subsystem of  S with the following 
properties: 

(i) For every string u such that for some v, (u, v) E S and [ u[ > I v I, there is exactly 
one v' such that (u, v') C S'  and [ u[ > [ v' I . 

(ii) If  (u, v) C S', then [ u[ > I v[. 

As in the proof of  Lemma 3.1(a), for every x there is a unique y such t h a t x - - ~ , y  
and y is both irreducible (mod S') and also irreducible (mod S). Thus it is sufficient 
to construct any such subsystem S'  from S and construct the algorithm from S'. 

Let tl -- m a x ( l u l l f o r  some v, (u, v) ~ S ' ) ,  and let t2 = max{[v l l fo r  some u, 
(u, v) E S'}.  By construction of  S', t~ > t2. 

Construct a deterministic Turing machine D with two pushdown stores, store 1 
and store 2, that operates as follows. Imtlally, store 1 is empty and store 2 contains 
a string x with the leftmost symbol of  x on the top of  store 2. The step-by-step 
computation of  D is described in terms of  two operations. 

(i) READ. D attempts to read a new symbol from store 2, popping that symbol 
from store 2, and pushing that symbol onto the top of  store 1. If  D is able to read 
such a symbol, then it performs the SEARCH operation. If  D is not able to read such 
a symbol, then its computation on x is complete, and the result is the contents of  
store 1. 

(ii) SEARCH. D reads at most the top tm symbols from store 1 and determines 
whether there exists a stnng u stored on the top [ u I squares of  store 1 such that for 
some v, (u, v) ~ S'. When there is such a string, D finds the longest such u and pops 
the top [ u [ squares of  store 1 while writing the corresponding v on the top I v [ squares 
of  store 2 such that the leftmost symbol of  v is on the top of  the store. When there is 
no such string, D simply restores the top tl symbols of  store 1. In the former case, 
perform the SEARCH operation again; in the latter case, perform the READ 
operation. 

By definition of S', if(u, v) E S', then there is no v' # v such that (u, v') E S'; thus 
D operates deterministically. By construction, if (u, v) E S', then [ u [ > [ v I, and so 
each time a string u is popped from store 1 and the corresponding string v is pushed 
onto store 2, the sum of  the length of  the contents of  store 1 and the length of  the 
contents of  store 2 is decreased. Thus D's computation on x must halt after at most 
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Ix [ "pop u, push v" steps. The running time of  D on x is bounded by the product of  
the number  of  times D performs READ and the cost of  performing SEARCH.  The 
number  of  times D performs READ is [ x [ plus the total number  of  symbols written 
on store 2 in all of  the applications of  SEARCH, and this sum is bounded by 
I x I + t2 [ x 1, since there are at most I x [ "pop u, push v" steps. The cost of  performing 
SEARCH is 2tl. Thus there is a constant k depending only on S '  such that the 
running time of  D on input string x is bounded by k lx I. 

I f  y is the string remaining on store 1 after D has completed its computation on x, 
where the leftmost symbol o f y  is on the bottom of  store 1, then y is irreducible and 
there is a left-to-right reduction x . .~L y .  [] 

Recall from Lemma 3.2(b) that if S is Church-Rosser,  then for every x there is a 
unique irreducible y such that x _~L y. Thus, if  S is finite and Church-Rosser,  given 
xi and x2 use the algorithm of  Theorem 4.1 to produce irreducible yl and y2 such 
that xl -~Lyl a n d  X2"-~Ly2; compare ya and y2 and decide that xl Is or is not congruent 
to x2, depending on whether yl is or is not equal to y2. 

THEOREM 4.2. I f  S is a finite Thue system that is Church-Rosser, then there is a 
linear-time algorithm to decide the word problem for  S. 

I f  S is a fimte Thue system that Is preperfect, then the word problem for S Is 
deodable  nondetermmlstlcally using at most hnear space, and there is an algorithm 
to solve the uniform word problem for all finite preperfect systems that uses 
polynomial space. Jantzen and Monied (reported m [4]) have shown that there exists 
a fimte almost-confluent system whose word problem is PSPACE-complete.  

In [5] it is shown that certain infinite monadic Thue systems that are confluent 
have word problems that are solvable determmlstically in polynomial  time. 
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