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Abstract. The steady-state joint probability distribution of queue lengths is obtained for queuing networks 
with Poisson arrivals m which some of the service-tune dlstnbunon funcuons are general (e g, not even 
differenuable). In particular, an analytical model for queuing networks which is more general than those 
considered to date is produced by using the concept of generalized function Previous results on the 
relationships between the properties of queuing discipline, product form, and local balance can be shown 
to hold m this more general setting. 
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modehng techmques, D 4 8 [Operating Systems] Performance--queuing theory 
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1. Introduction 

Dur ing  the past  few years, the scope o f  queuing network analysis has been enlarged 
considerably by various authors  [1, 2, 4-11]. The  results associated with the single 
queue  [4] can be summarized  as follows: 

(1) A differential equat ion describing the state probabili t ies o f  the queue for a class 
o f  queuing disciplines can be derived. 

(2) A n y  queue which satisfies station balance satisfies local balance and has product-  
form steady-state probabilities. Fur thermore ,  the steady-state probabilit ies o f  a 
queue which satlsifes station balance are functions o f  the mean  service times and 
are otherwise independent  o f  the service distribution. 

(3) A n y  queue with exponential  service times for all classes and produc t - form steady- 
state probabilities must  satisfy station balance. 

(4) In  any  queue which satisfies station balance, arriving customers must  commence  
service immedia te ly  ( immediate  service discipline). 

(5) Product  form implies local balance for queues with class- independent  disciplines, 
that  is, disciplines which treat all customers alike. 

The  difference between the above results and  the results o f  this paper  are that 
(i) the differential equat ion now involves generalized funcUons and  (ii) all the above 
results have been extended to arbitrary service distributions with finite mean  (the 
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nondifferentiable case included). In this paper only (1) and (2) for a single queue will 
be proved, since this illustrates the use of the proof techniques. 

The results for an open network of queues [4] can be summarized as follows: 

(1) A differential equation describing the state probabilities in the open network can 
be derived. 

(2) If  every queue in the network satisfies local balance in isolation with Poisson 
arrivals, then the entire network satisfies local balance and the steady-state 
probabilities for the network are in product form. 

(3) If  all queues in the network have class-independent disciplines, then the network 
has product-form steady-state probabilities for all customer classes if  and only 
if each queue in the network has product-form steady-state probabilities in 
isolation. 

The difference between the above results and the results obtainable by the methods 
of this paper are that in (1) the differential equation now involves generalized 
functions and all the results can be extended to arbitrary service distributions with 
finite mean (the nondlfferentiable case included). The results associated with net- 
works of queues will not be presented here, but the details can be obtained from the 
authors. 

2. Notation 

From this point on, the word distribution will mean generalized function. Distribution 
function and probability density function will retain their usual meanings from 
probability theory. 

Any Markov process considered in this paper is such that its time-dependent state 
probability density function satisfies some partial differential integrodifference equa- 
tions determined by the system. These Markov processes are assumed to be ergodic 
in the sense that the time-dependent state probability density functions are uniquely 
determined (after normalization) by the corresponding partial differential integrodif- 
ference equations and initial conditions, and the time-dependent state probability 
density functions converge to unique steady-state probability density functions 
independent of what the initial time-dependent state probability functions were. The 
important point about the stochastic processes considered in this paper is that by the 
introduction of supplementary variables, one has a parent Markov process which is 
assumed to be ergodic. This allows one to interpret the steady-state probabilities as 
proportions of time. 

DISTRIBUTIONS. The theory of distributions is a topic of functional analysis which 
would reqmre too much detail to discuss fully here. In this section we merely seek to 
develop an intuitive understanding of distributions, referring the reader to [3, 12] for 
additional information. 

The following notation is defined for general use: 

R = real numbers, 
R n = ((xl . . . . .  xn):x, ~ R, i ---- 1 . . . . .  n), 
~2~ = ((x~ . . . . .  x~):x,>_O, i =  1 . . . . .  n) ,  
C - complex numbers. 

Let ~2 be any open connected subset of R n. C~(f~) is the vector space (over C) of  
all complex-valued functions defined on ~2 which have compact support and are 
infinitely differentiable. Let Cn(f~) be the vector space (over C) of all functions 
defined on ~2 whose nth order derivatives are continuous for n = 0, 1 . . . . .  +o0. Let 
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C~(f~) be the vector subspace of  C~(f~) of  functions whose derivatives, up to and 
including the nth order, are bounded in the norm 

f--* sup If(x) I. 
xE ~  

Let ff E Cd°(f~). Let p = (pl . . . . .  pn) be such that p~, . . . ,  pn are nonnegative integers. 
Let N = ~,"_~ p~. Then, define (O/Ox)P(,#) by 

(¢) - axe' :- 7 Oxen" 

Give C~(~2) the canonical LF topology described in [12, Ch. 13-6, Ex. II]. C~(f~) is 
generally referred to as the space of test functions A linear functional on C~(f~) which 
is continuous in the canonical LF topology is called a distribution. More precisely, a 
linear functional L:  C~(~2) ~ C is a distribution if  L($k) ~ 0 as k --> +oo for any 
sequence of test functions (~,k) which satisfy: 

(a) for each p = (px . . . . .  p,,), where p, is a nonnegative integer for i = 1, . . . ,  n, the 
sequence ((0/0x)P(¢k)) converges uniformly to 0, and 

(b) there is a compact set K C ~ such that the support of  ~,k is contained in K for 
all k. 

Let ~'(f~) be the vector space of the distribution on C~(f~). 
The following examples should give an intuitive understanding of distributions. 

Example 2.1. Consider C~(R), and define 8: C~(R) ~ C by 

8 ( f )  = f ( 0 )  

for a l l f  ~ C~(~). ~ is a distribution, and it is the Dirac delta "function." 
Electrical engineers sometime write 

~(f)=f_f~(x)f(x)dx=f(O). 

The use of the integral is motivated by the fact that every locally integrable function 
can be viewed as a distribution. This can be seen in the second example. [] 

Example 2.2. L e t f b e  locally integrable on R. This means that for every compact 
set K C R, f,,If(x) ldx < oo. Define Tr: C~(R) ~ C by 

Tr(g) = f~=f(x)g(x) dx 

for all g ~ C~(R). Tr is a distribution on C~(R) which is uniquely determined byf .  
In this sense, f is identified with Tr. [] 

Finite-order distributions (see [12]) can be written as a sum of certain order 
derivatives (in the distribution sense) of continuous functions. That is, if T is a finite 
order distribution on C~(R), then there exist continuous functions f l  . . . . .  fp and 
nonnegative integers ql . . . .  qp such that 

T(@) -- f + ~  j=l ~' (-1)q~(x)~(q)(x) dx (2.1) 



Product-Form Solution for Queuing Networks 833 

for all 4, E C~(R). If  each f~ is continuously differentiable of  order qy, then (2.1) 
becomes 

T(4,) = q')(x x) dx 
= 

o o  

for all 4, E C~(R). 
The above motivates the following notation. Let T ~ ~'(£~). Denote T(f)  for 

f E  C~(~2) by (T, f ) .  That is, T(f)  = (T, f ) .  This notation is very close to that of 
inner product of two elements in a Hilbert space. 

Now, if T =  Tr(=f), then (T, 4,) = ( f  4,) = fnf(x)4,(x) dx for all q~ E C~(f~). 
The theory of distributions has been built primarily to extend some of the basic 

operations of analysis to functions for which these operations were not well defined 
in the usual sense. For instance, the derivative of a function that is not differentiable 
cannot be said to produce another well-defined function, but it does produce a 
distribution. 

The case of differentiation is considered first. Let f E C1(£~). Then, owing to the 
compactness of support of  the test functions, one has 

for all 4, E C~°(f~). With the above in mind, one can define partial derivatives and 
higher order partial derivatives of  any distribution in fL Let T E ~'(~2). Let p = 
(pl, . . . ,  pn), where px, . . . ,  pn are nonnegative integers. Let I P l  = Yg-lP,. Define 
(O/Ox)PT by 

O P 

for all ff E C~(f~). 

Example 2.3. Let f : R  ---* R be defined by 

Then for all 4, ~ C~(R), 

That is, 

x < 0 ,  
x ~ 0 .  

= - 4 , ' ( x )  , i x  = 4 , ( o )  = ( 8 ,  4 , ) .  

d f  = 8, the Dirac delta "function." 
dx 

(Note that as a function, df/dx does not make sense.) [] 

One other operation that should be considered is multiplication by any infinitely 
differentiable function. Let T E ~'(~2) and 4, ~ C~(~). Define 4,T: Cd°(f~) ~ C by 

(4,T, ~ )  = (T, 4,q~) 

for all '~' ~ C~(~2). 
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Defined in this way, ~,T is a distribution. This is the natural extension of multipli- 
cation by a function in C°°(t2) to a locally integrable function. 

With the above extended operations, one can consider partial differential equations 
whose solutions might be distributions. 

Example 2.4. Consider the equation 

d T  -~,  
dx 

where ~ is the Dirac delta and Tis unknown. We have already seen that one solution 
is To --f,  where 

{0x<0 [] 
f ( x )  = x > O. 

This concept of using partial differential equations in distribution sense will be 
indispensible in later sections of  the paper. 

Instead of developing a notation which describes a variety of queuing disciplines 
and loads, the authors use the same notation as found in Chandy et al. [4]. In order 
to illustrate the proof techniques, the differential equation that describes the equilib- 
rium state probabilities in the case of a single queue will be derived, as well as the 
theorem on station balance and product form. 

3. Single Queue 

Let P(t, X)  be the time-dependent state probability density function associated with 
state X = (S, X1 . . . . .  Am), S = (k(1) . . . . .  k(n)) of the queue. Since X1 . . . . .  Xn are 
continuous random variables (residual life) which have right-continuous decreasing 
(in X,) probability density functions, P(t, X)  will be right continuous in the X, and 
P(t, X)  ~ 0 as X, ~ +oo for any i. However, this time we can only assume that 
dP(t, X)  [ OX, is a distribution. Let 

{ y0 x ~ -- Span ~ E C<'(a,):~,(X) = ~(X) dX, 

~ .. } for someq~ECd(  , O a n d i =  1, . , n  , 

where f~,~ is as defined in the introduction and Span indicates that ~ consists of all 
finite linear (complex) combinations of  such functions. Thus ~ is a vector space 
containing C~(~2n) as a subspace. 

Now for each t _ 0, let Lt : .~n ""> C be given by 

L,(¢) --- ( ¢(X)P(t, X) dX 
Ju n 

for all ~ E . ~ .  It is obvious that Zt  is a linear functional on ~ whose restriction to 
C~°(f2,) is a distribution. For the rest of  the paper it will be convenient to abuse 
notation slightly by writing 

Lt(d?) = (e(t,  X),  dp) 

for all q~ E ~ to emphasize the idea that for each t >_ O, P(t, X )  is also a distribu- 
tion. The above abuse of notation will also be present in some of the other 
linear functionals defined on . ~  later in this paper. It will be useful to note that 
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OP(t, X)/OX, is also defined and linear on ~ and is given by 

~ / O P ( t , X ) )  fa . O~(X) 
= - X )  \ , 4' e(t, dX  

n 

835 

for all 4, E ~ .  This is just the extension of  its action as a distribution on Cg(f~,). 
Balance equations will now be obtained by equating (P(t  + At, X),  4') to an 

expression involving P(t, X), OP(t, X) /dX, ,  At, and 4'. In the time interval (t, t + At) 
the state X - (S, Xx . . . . .  An), S = (k(l), . . . ,  k(n)) is reached as the result of  an 
arrival (arr), departure (dep), or no change in occupancy (no). For  small values of  
At the effect of  multiple events will be of  order o(At) and thus can be ignored. More 
specifically we have that 

(P(t + At, X), 4') = (P(t + At, X),  4 ' )~  + (P(t  + At, X),  4'}d~p 
+ (P(t + At, X), 4')n¢. 

for all ~ ~ ~ ,  where 

(3.1) 

<e(t + at, x) ,  ¢)~ 
(P(t + At, X), 4') 
(P(t  + At, X) ,  4')d,p 
(P(t + At, X), 4') 
(P(t + tU, X), 4').° 
(P(t + At, X), 4') 

is the contribution to 
due to arrivals, 
is the contribution to 
due to departures, and 
is the contribution to 
due to no change in occupancy 
(no arrival and no departure). 

Arrivals. Suppose that X results from the arrival of  a single customer during the 
interval t to t + At. I f  the new customer was inserted at station i at t ime % t <_ "r < 
t + At, then the state of  the system at time t was )(at - i, where 

)fat - i = (S  - i, X~ + r(l  IS - OAt . . . . .  X,-1 + r(i - 1 [S - i)At, 
X~+I + r(i + 1 [S - Oat . . . .  , x .  + r ( n l S  - i)At), 

r(i[ S)  is the service rate for the customer at station i given occupancy S, and 
R(S)  = Y2-1 r(i[ S).  The new customer is of  class k(i), so his initial service requirement 
Ykt,) has probability measure Tkt,). Customers of  class k(i) arrive in accordance with 
a Poisson process with rate )~kt,), so the probability of  such an arrival is ~k~i~At + 
o(At). Station i was chosen with probabili ty a(i[ S - i, k(i)) conditional on the class 
k(i) and the prior occupancy S - i. We thus have 

(P(t + At, X), 4")~ = At ~ 7tk.)a(i[ S - i, k(i))( Tk(,), (P(t, X - i), 4"),) 
t l l  

+ o(at) ,  

where (P(t, X - i), 4"), = fa., 4"(X)P(t, X - i ) d X  ~, ~.~, is the image of  ~,, 
n under the map (xl . . . . .  x . )  ~ (xl . . . .  , x,-1, x,+l . . . . .  x . ) ,  d X  ~ = 1-IJ-x,s,., dXj, and 

(Tk.), ~t'(x,)) = fff= ff'(x,)Tk.) dx, for any ~t. ~ C~ 1) (0, +~) .  This notation will be 
used many  times in the following discussion. The error incurred by the replacement 
of  )(at - i by X - i is absorbed into o(At). 

No change. The state at time t must be 

Xat = (S, X, + r ( l [ S )A t  . . . . .  X ,  + r (n lS )A t )  
--- X + r(S)At. 
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It is easily seen that 

(P(t + ht, X), 4 , )n~- - - (1 -  k-1 ~ ~kAt-- o(At))(P(t,  X +  r(S)ht), 4,). 

Keeping in mind that the boundary of ~2,~ is some positive distance from supp(~), we 
have 

P(t, X + r(S)At), 4,) - -0,/- P(t, X + r(S)At)4,(X) d X  

P(t, X ~ ( X -  r(S)At) dX 

= e(t, X) 4,(X) - Ate_, r(j I S) dX + o(At) 
n 

(e(t, X), 4,) + At ~ . . . . .  /oe(t, X) ) = s-ar[J[~)\" "OX]- '4, +o(At)  

for At sufficiently small. Combining the above, we obtain 

K 

(P(t + At, X), 4,),c = (P(t, X), ep) - y, XkAt(P(t, X), 4,) 
k-1 

loP(t, X) ) 
+ ,-1 ~ \ ~'-X~ "' 4, r(i[S)At + o(At). 

Departures. If  state X is to result from the departure of  a single customer dur- 
ing the interval t to t + At, the customer must have occupied some station j = 
1 . . . . .  n + 1, been of  some class k, and had remaining service time 0 < ~- < 
r(j  I S + ($ k))At. Thus 

n + l  ~r( j [  S+(j,k})At 
(P(t + At, X), 4,)dep -- 2 (P(t, Xat + (j, k, ~)), 4,) dr. 

]e--] ]ml dO 

Since P(t, Xat + (j, k, r)) is right continuous in r and At, we have 

lim [ l ~ r('tiS+('t'k))At ] 
a~o -~ ao (e(t, Xht + (j, k, v)), 4,) dr 

j. 
= lira r(j I S + (j, k)) P(t, X~, + (j, k, ,)), 4') dr 

a,--,o r(jl S + (Jl k))At J0 

= (P(t, X +  (j, k, 0+)), 4,)r(j lS + (j, k)). 

We are now in a position to produce the balance equation. Subtracting (P(t, X), 
4,) from both sides of (3.1) and dividing by At, we compute the limit as At tends to 
0. We then obtain the following time dependent balance equation: 

(OP(~tX)'4,)=~'~k")a(ilS--i'k(i))(Tk")'(P(t'X--i)'4,)~},_~ 

- k-, X~(P(t,X),4,) +,,a ~ \ OX, '4, r(ilS) 

K n + l  

+ Y, Y, (r(j  I S + (j, k))(P(t, X) + (j, k, 0+), 4,) 
kma J ~ l  

for all ~ ~ OUgn. 
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Because the system is assumed to be ergodic, it has a steady-state solution P(X) 
and (P(t, X), 4,) ~ (P(X), 4,) as t ~ +oo for every bounded continuous function 
on ~,. It is important to realize that the introduction of supplementary variables has 
made X a Markov process. Thus P(S) = f u . P ( X ) d X  basically represents the 
proportion of time that the system is in state S. If S did not have this ergodic parent 
Markov process, this interpretation of P(S) would not be possible. Continuing with 
this idea of steady state, it is clear that 

lim ~.OP(t' X) > < - P ( t , X ) , o ~ >  t--,+~ \ OX, ' 4, = lim 
t --~+~ 

for all 4, ~ 9~. So there exists a unique linear functional on ~n which is denoted by 
OP(X)/OX, to which OP(t, X)/OX, converges (pointwise), and it is defined by 

OP(X) 4,>= _fa.  P'"~ O4,(X) dX 

for all 4, E ~ .  Thus we have the following balance equation: 

Xk(P(X), 4,) -- ~ r(j I S + (j, k))(P(X + (j, k, 0+)), 4,) 
k=l j--1 

= 2 Xk.)a(ilS - i, k(i))(Tk(,), ( P ( X -  i), 4,),} 

+ r(iIS) ~OP(X- OX, ' 4,>] (3.2) 

This equation balances the loss in expectation of 4, with the gain in expectation of 
4,. ~(P(X),  4,) is the loss in expectation of 4, due to arrivals; 

n + l  

r(jl S + (j, k))(P(X + (j, k, 0+)), 4,) 
j=l 

is the gain in expectation of 4, due to departures of such customers. On the right- 
hand side, 

Xk(,)a(i I S - l, k(i))(Tk,), ( P ( X -  l), 4,),) 

is the gain in expectation of 4, due to arrivals of customers at station i, and 
r(i I S)(OP(X)/OX,, 4,) is the loss due to service at station i. 

P(X) is said to satisfy local balance if 

n + l  

Xk(P(X), 4,) -- Y~ r(j I S + (j, k))(P(X + (j, k, 0+)), 4,) (3.3) 
J ~ l  

and 

Y, hk(,la(i[S-i ,k(t))(Tk.),  (P (X- i ,O)~)  + r(iIS) \ - -O-~,  0 = 0  

for all 0 ~ -~- This balances the rate of loss of expectation of 4, due to arrivals of 
customers of class k against the rate of gain of expectation of 4, due to departures of 
such customers. 
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Similarly, P(X)  is said to satisfy station balance i f  

: . l a P ( X )  ) 
Xk,)a(i I S - i, k(i))( Tk<~}, ( P ( X -  i), d?),) = - r ( i l  .~ ) \ ~ ,  ~ (3.4) 

for i = 1 . . . . .  n, all ~b E ,~rd~, and all admissible states of  S. This equation balances the 
gain in expectation of  49 due to arrivals of  customers to station i to the loss in 
expectation of  $ due to departures from that station. 

We say that p(X) is in product f o r m  if  

P(X)  -- Cq(S)  f i  Xk~,)(1 -- Fk,)(X,)) 

for all admissible X -- (S, X1, . . . ,  An), where C is a constant, q(q)) = 1, and q(S)  is 
algebraically independent of  the various X, and Xk. This means that q(S)  will be 
invariant under arbitrary changes in the Xk and X,. However, C may change owing 
to the normalization constraint. 

Proceeding just as in [4], we get three forms of  balance: 

Product-form balance: 

x~ q(S) - ~ r(jl s + (y, k))q(S + (y, k)) (P(x), ~ 
k ' l  J~l  

P 0¢ (3.5) 
= - E [a(il s - i, k(i))q(S - ,) - r(il S)q(S)] (X), 

t m l  

for all ~ ~ .,~. 

Product-form local balance: 
n + l  

q(S)  = ~ r(j] S + (j, k))q(S + (j, k)), 
j-1 (3.6) 

n n 

Y, a(i] S - i, k(i))q(S - i) = 2~ r(i I S)q(S) ,  

for all admissible S = (k(1) . . . .  , k(n)). 

Product-form station balance: 

a(i I S -  i, k(i))q(S - i) = r(i[ S )q(S)  (3.7) 

for all admissible S -- (k(1) . . . .  , k(n)) and i = 1 . . . . .  n. 

We are now in a position to illustrate the proof  techniques needed for extending 
the results of  [4] to the case where the service requirements are no longer assumed to 
have differentiable distribution functions. 

THEOREM 3.1. .4 state probability density function satisfies station balance i f  and 
only i f  it is in product f o r m  and satisfies product-form station balance. 

PROOF. If  one assumes product form and product-form station balance, it is 
trivial to verify (3.4). So assume that we have station balance. That  is, 

. . . . .  /oP(X)  > 
Ak~)a(i] S - i, k(i))( rk~,}, ( P ( X -  i), 49),) = - r ( l l a ) \ ~ ,  49 

for all ¢ ~ ~ .  The proof is completed by induction on n, the number of  customers 
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in the queue.  For  n = 0 this is trivial, so let n > 0. Let  

r 

HI(X1 . . . . .  Xr) = 1-[ Xktj)(l - Fk<+)(Xj)). 
J--I 
J~t  

Then  on one side we have 

. . . . .  /OP(X,  O) = r ( t l S ) (p (x ) ,  O~_~). 

On the other  side we have 

X~<oa(i[ S -  i, k(i))( Tk<,~, ( P ( X -  O, dp),) 

. . . . .  _/ dF~+( X')~ ) 
= Xkc,>a(i[ S - i, xtO)\- , (P(X - i), ~), 

= -hh~>a(i[ S -  i' k(O)( d ( 1 -  Fk(',(X'))dX̀ , < e ( x -  i), e~)~) 

( d<e(x-o,+>.) 
= h~<,)a(i[ S - i, k( i ) )  ( l  - Fh<o(XO), -dX, 

i a4, = ) ~ k , o a ( i l S - i , k ( i ) ) ( ( l - F ~ , o ( X O ) , ( P ( X -  ) , - ~ ) , )  

=Cq(S  i ) a ( i l S - , k ( i ) ) (  ~rn+aev X,~+t), ~X~) -- /~n+iVk.el.l~ . . . ~ • 

The last equality was gained by way of induction hypothesis. So for all ~ ~ ~, 

r(iI S ) (P(X) ,  o~X~) 

= Cq(S - i)a(i I S - i, k(i)) H2g~(X~ . . . . .  Xn+O,-ff-~, • 

Since C~(a~) C (i~,/aX,:O E o~f~), we have 

r(i[ S)(P(JO, g,> = Cq(S - Oa(i I S - i, k(i))(H,~-~(X~ . . . . .  Xn+O, ~> 

for  all ~ ~ C~(f~n). Thus  the two distributions are the same. Tha t  is, 

r(i] S)P(X) = Cq(S - i)a(il S - i, k(i)) II Xk<j~(1 - Fk<+~(Xj)). 
J--1 

That  is, 
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n 

P(X) = C a(i[ S - i, k(i)) q(S - t) I-I ~kt+)(1 - Fk<j)(Xj)), 
rq I S) j-1 

which says that  P(X) is in product  form, and  

a(i[ S - i, k(i))q(S - i) 
q(S) = r(i[ S) ' 

which is product - form station balance. [ ]  

Again, it is to be emphasized that  all o f  the theorems o f  [2] and [4] can  be ex tended  
to the case o f  general  service-time distributions in a mmilar fashion. 
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