
Bandwidth Reduced Parallel SpMV on the SW26010 Many-Core
Platform

Qiao Sun
Institute of Software,

Chinese Academy of Sciences
Haidian Qu, Beijing Shi, China

sunqiao@iscas.ac.cn

Changyou Zhang
Institute of Software,

Chinese Academy of Sciences
Haidian Qu, Beijing Shi, China

changyou@iscas.ac.cn

Changmao Wu∗
Institute of Software,

Chinese Academy of Sciences
Haidian Qu, Beijing Shi, China

changmao@iscas.ac.cn

Jiajia Zhang
Institute of Software,

Chinese Academy of Sciences
Haidian Qu, Beijing Shi, China

jiajia@iscas.ac.cn

Leisheng Li
Institute of Software,

Chinese Academy of Sciences
Haidian Qu, Beijing Shi, China

leisheng@iscas.ac.cn

ABSTRACT
SpMV (Sparse Matrix-Vector multiplication), in its simplest form
y = Ax , multiplies a sparse matrix with a dense vector and is a
widely used computing primitive in the domain of HPC. On the
newly SW26010 many-core platform, we propose a highly efficient
CSR (Compressed Storage Row) based implementation of parallel
SpMV, referred to as SWCSR -SpMV in the sequel. SpMV in the CSR
format can be trivially parallelized but its performance is majorly
impeded by memory access efficiency, and therefore to leverage
high-throughput memory access mechanism while avoiding redun-
dant bandwidth usage becomes the major goal of designing high
performance SpMV on the target platform. The original problem is
sequentially partitioned into row-slices, each of which can reside in
the fast scratchpad memory, so that the loaded x’es can be reused;
meanwhile, a dynamic look-ahead scheme is applied to avoid re-
dundant memory access; we split the many-core mesh into smaller
communication scope to facilitate the sharing of the common data
across the working threads via the high speed on-mesh data bus.
Beyond the above, to leverage massive parallelism balanced work-
load is ensured by both static and dynamic means. Performance
evaluation is done on a benchmark of 36 frequently used sparse
matrices in the fields of graph computing, data mining, computa-
tional fluid dynamics, etc.. While the performance upper-bound
is defined by the ratio between the minimal data access volume
required against the practically optimal bandwidth, ignoring the
computing overhead, SWCSR -SpMV can achieve an efficiency of
nearly 87%, maintaining over 75% for 1/3 of the testing matrices.
SWCSR -SpMV is further applied in a PETSc based application, a

∗Corresponding author: Changmao Wu (changmao@iscas.ac.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP 2018, August 13–16, 2018, Eugene, OR, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6510-9/18/08. . . $15.00
https://doi.org/10.1145/3225058.3225074

1.75x-2.6x speedup is sustained in a multi-process environment on
the Sunway TaiHuLight supercomputer.

CCS CONCEPTS
• Mathematics of computing → Mathematical software per-
formance; • Computing methodologies → Vector / stream-
ing algorithms; Massively parallel algorithms;

KEYWORDS
Sparse Matrices, Sparse Matrix-Vector Multiplication, CSR, Parallel
SpMV, SW26010, Sunway TiHuLight, Many-core.
ACM Reference Format:
Qiao Sun, Changyou Zhang, Changmao Wu, Jiajia Zhang, and Leisheng
Li. 2018. Bandwidth Reduced Parallel SpMV on the SW26010 Many-Core
Platform. In ICPP 2018: 47th International Conference on Parallel Processing,
August 13–16, 2018, Eugene, OR, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3225058.3225074

1 INTRODUCTION
SpMV (Sparse Matrix-Vector multiplication) is an important com-
puting primitive in scientific applications and usually dominates
the execution time [27]. Besides the typical usage in various iter-
ative solvers, the SpMV operation can be found in domains such
as graph analytics [13] and machine learning [17]. Due to the fun-
damental role SpMV plays in many applications, during the years
the research on accelerating SpMV has constantly drawn great at-
tention on various types of high performance architectures such
as multi-core CPU [32, 35, 37], GPGPU [19, 40] and MIC [28, 39].
With the emergence of the SW26010 many-core CPU [15], it is of
great value to design and implement a high performance SpMV
primitive on this novel HPC platform.

The Sunway TaiHuLight supercomputer, the current champion
in the Top-500 supercomputer list [3] in 2017, can theoretically
deliver more than 100 PFlops for double-precision floating-point
numbers and is designed for large scale scientific and engineering
applications. At its heart is the SW26010 many-core CPU. As shown
in Fig. 1, each SW26010 CPU consists of 4 CGs (Core Group), which
are interconnected via an on-chip network. Each CG contains an
MPE (Management Processing Element) and 64 CPEs (Computing
Processing Element). The main process runs on the MPE which is

https://doi.org/10.1145/3225058.3225074
https://doi.org/10.1145/3225058.3225074
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3225058.3225074&domain=pdf&date_stamp=2018-08-13

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Q. Sun et al.

Src. CPE

MPE

M
em

CPE Cluster

M
em

N
oC

MC

PPU

CG

M
em

M
em

Reg Reg

(0,0) (0,1) (0,2) (0,7)

(1,0) (1,2) (1,7)

(2,0) (2,1) (2,2) (2,7)

(7,0) (7,1) (7,2) (7,7)

Dest. CPE

Send
buffer

Receive
buffer

(1,1)

L
D

M

L
D

M

CG

CGCG

M
em

M
em

N
oC

CGCG

CGCG

SW26010

Figure 1: The architecture of a SW26010 CPU.

essentially a general-purpose processor, wherein the computation
intensive workloads can be designated to the CPEs, each of which is
a lightweight core and executes a single thread. A set of fast scratch-
pad memory, named as LDM (Local Data Memory), is embedded in
each CPE core and provides users with explicit control over data lo-
cality. The 64 CPE cores are arranged in an 8∗8mesh and connected
via row/column and signal/data buses. The MPE together with the
all the CPEs in one CG share the main memory but the whole CPE
set is able to sustain a much higher aggregate bandwidth than MPE
does when loading/storing continuous chunks of data by the DMA
(Direct Memory Access) mechanism.

idx_i

m+1

0 2 3 4 6 7

31 3 2 4 0 2idx_j

nnz

0 1 2 3 4 5 6

fa b c d e gvals
0 1 2 3 4 5 6

nnz

A

m=5
nnz=7

a b

d

e f

g

c

n=5

to CSR

Figure 2: The standard CSR format.

CSR (Compressed Sparse Row) [21] is one of the widely used for-
mats for storing sparse matrices. Due to the high compression ratio,
it has been supported by many well-known scientific computing
frameworks such as PETSc [6], Hypre [12] and Trilinos [16] etc.. As
shown in Fig. 2, anm ∗n sparse matrix “A” containing nnz (number
of non-zeros) non-zero values is compressed into three arrays: all
the numerical values of the non-zero elements are stored in the
array “vals” with their column indices put in the array idx_j in the
same order; the i-th element in the array “idx_i” is the offset of the
first non-zero in the i-th row in both vals and idx_j. Without loss
of generality, in this paper we assume the non-zeros in each row
are sorted in ascending order with respect to their column indices,
otherwise a row-wise sorting operation can help maintain the as-
sumption. Though, CSR-based SpMV, in its simplest form y = Ax,
exposes massive parallelism and the direct row-wise paralleliza-
tion to it is straightforward even on the novel SW26010 CPU, the

scalability of the trivial parallelization is hardly optimal on parallel
platforms, because the performance of SpMV is majorly impeded by
irregular memory access patterns. Moreover, as compared to main
stream many-core platforms such as GPGPU and MIC, there are
several factors that make the implementation of a high performance
SpMV operation on the SW26010 CPU more challenging. First, the
irregularity of memory access patterns of SpMV may result in a
much poorer data access efficiency when programmers are sup-
posed to take full responsibility for both memory access (mainly
by DMA) and data locality in LDM. Second, the bandwidth of DMA
conflicts with the redundant loading of vector x, i.e. acceptable
bandwidth of DMA can be achieved only when accessing continu-
ous data in large volume but a large part of the loaded data may
be useless in the case of SpMV. Thirdly unlike the platforms with
large shared cache where the common data can be reused by peer
cores, communication scheme among the CPEs must be carefully
designed to avoid repetitive access to the same data portion [14] by
different CPEs. Last but not least, the SpMV operation on highly
unstructured matrices will possibly cause severe load imbalance to
which many-core platforms are more susceptible.

In this paper, we focus on the SpMV operation on one CG of
SW26010 and propose SWCSR -SpMV. Within a lightweight pre-
process phase, we simply partition the source matrix sequentially
into row-slices, so that each row-slice can reside in LDM and is
handled individually by a certain CPE. In each LDM work-frame
of a row-slice, we use DMA mechanism to access segments of vec-
tor x, and meanwhile a dynamic look-ahead scheme is designed
to avoid loading useless elements. To further reduce the memory
footprint, worker groups of CPEs can be optionally set up, wherein
the segments can be shared by all the peers via the on-mesh buses.
As for load imbalance, we both make sure all the row-slices have
roughly equal number of non-zeros by perfect partitioning and
apply an atomic-operation based work-sharing pool at runtime.
Lastly, a parameter auto-tuning framework is proposed to make
SWCSR -SpMV more adaptive to different matrices. Experimental
results on 36 frequently used matrices in the fields of graph comput-
ing, data mining, computational fluid dynamics, etc. from the Tim
Davis sparse matrix repository [11] suggest that all the approaches
mentioned above are significantly effective. Based on the analysis
on the theoretical performance upper-bound, SWCSR -SpMV can
achieve nearly 87% of the ideal performance and maintains an effi-
ciency over 75% for 1/3 of the testing matrices. We further apply
SWCSR -SpMV to a PESTc based application which simulates the
earth magnetic field, and the result shows that this application can
be accelerated by 1.75x to 2.69x when invoking SWCSR -SpMV in a
multi-process environment on the Sunway TaihuLight supercom-
puter.

This paper is organized as follows: In Section 2 we will highlight
the key features of SW26010 which determines the design and
implementation of SWCSR -SpMV. SWCSR -SpMVwill be detailed in
Section 3. In Section 4 we are going to demonstrate the experimental
results. The related works will be discussed in Section 5 before we
draw our conclusion in Section 6.

Bandwidth Reduced Parallel SpMV on the SW26010 Many-Core Platform ICPP 2018, August 13–16, 2018, Eugene, OR, USA

2 FEATURES OF SW26010
There are distinctive features that have great impact on SWCSR -
SpMV. From the angle of hardware, one CG has a high comput-
ing power of 742.5 GFlops while the theoretical aggregate band-
width produced by the 64 CPEs is only 34 GB/s. Given the large
computing-bandwidth discrepancy, observable speedup can hardly
be gained for bound-width bounded problems such as SpMV [33]
by, vectorizing the computing kernel. As for a single CPE, the 64KB
programmer-controllable LDM plays an important role in perfor-
mance. Data structures should be designed to be fit within LDM
and programmers are supposed to manage data access behaviors
so that the cached data can be reused as much as possible. Despite
intolerably high latency, data of basic or user-defined types can
be directly accessed by CPE load/store instructions but the peak
bandwidth of the CPE mesh can only be achieved by issuing DMA
requests when accessing physically contiguous data sets. Thus, to
achieve optimal bandwidth for SWCSR -SpMV it is necessary to ac-
cess all the input/output operands by DMA, although generally the
useful elements of vector x are irregularly scattered for a row-slice.
Thanks to the data/signal buses, CPEs can exchange their local data
in LDM by register communication and the fine-grained synchro-
nization barrier within each subset of CPEs in a row/column can
be facilitated.

The “athread” library provides APIs for both spawning/joining
the CPE threads and the DMA mechanism. However, in order to
maintain balanced workload among CPEs it is required to extend
the basic fork-and-join paradigm on the CG. The register com-
munication and synchronization within a CPE subset can only be
manipulated by lower level SIMD intrinsics, which also poses great
challenge for implementing parallelism.

3 SWCSR-SPMV
3.1 The Pre-Process of SWCSR-SpMV

Table 1: The work frame of a row-slice residing in the LDM.

Name Type (Dimension) Content
sl ice_nrows int (1) The # of rows in the slice.
sl ice_nnz int (1) The # of non-zeros in the slice.
sl ice_idx_j int (local_nnz) The col. idx of the non-zeros.
sl ice_nz double (local_nnz) The non-zero values.

sl ice_idx_i int (local_nrows+1) The row offsets.
row_process int (local_nrows) The current process of each row.
x_buf f er double (size_x) The buffer storing x ’es.
y_buf f er double (local_nrows) The buffer storing y ’es.

To leverage the natural parallelism that SpMV has, we apply
the row-slice based approach [5, 8, 26, 35], and it also helps data-
locality for the rows within a slice may share the accessed x ’es.
As summarized in Table 1, a row-slice in SWCSR -SpMV contains
several contiguous sparse rows, which corresponds to a consecu-
tive segment of the resultant vector y. Thus, both the load of the
row-slices and the store of y segments can be done by DMA ef-
ficiently. We bound the volume of a row slice by “slice_nnz” and
“slice_nrow”, where slice_nnz is themax number of non-zero values
and slice_nrow is the upper-bound of the row count. Both of the pa-
rameters greatly impact the overall performance of SWCSR -SpMV,
and need extensive tuning in actual use.

Given the limitation of a row-slice, it is straightforward to per-
form a perfect partition to the source matrix [30] with regard to
the non-zero count by scanning the source matrix once. In this
way, the computing workload among each slice is balanced. The
row slicing is done in a lightweight pre-process procedure, where
the MPE produces all row-slices and in the meantime the range
of the relevant x ’es to each row-slice is narrowed down to avoid
redundancy. During the pre-process, we also need to isolate the
rows containing too many non-zeros to reside in a single LDM.
While they can be handled by a specific MPE or CPE procedure in
parallel with other row slices, SWCSR -SpMV runs faster when the
uploaded x ’es are better reused in each row slice.

A row-slice forms a work-frame for an assigned CPE, and after
the entire row-slice is uploaded to the LDM, the CPE computes by
DMA based segment-wise uploading of the vector x. The maximal
size of the x segment in each DMA request (denoted by “size_x”) is
an another performance-critical parameter to be tuned in actual use.
The rows in a row-slice can share each of the uploaded x segment
with the help of an array recording the running process of each
row.

3.2 Avoiding redundant load of x ’es
By “sparsity”, the non-zeros are logically scattered in a sparse ma-
trix, which leads to the irregular access to the source vector x. At the
row-slice level, there are often sub-intervals of useless x ’es within
the relevant x range, as shown in Fig. 3. Practical examples of this
case are the off-diagonal matrices in PETSc storing the non-zeros
from both sides of the diagonal. DMA, however, delivers a much
better bandwidth when accessing contiguous data segments, which
suggests that plenty of useless x ’es will be fetched by DMA if CPEs
only perform plain segment-wise upload. While the length of each
x segments to load is set to size_x , the number of useless x ’es can
be reduced by speculating a better point to start.

Row-Slice x y

*=

Useless x’es

Useless x’es

Jump over range

Figure 3: The conceptual illustration of useless segments of
x ’es.

During the computation across the rows in the slice, the maximal
column index jl of the used non-zeros can be determined; so the
lower-bound for the following useless interval is jl + 1. When
computation concerning the current x segment ends, each element
i in the array row_process points to the next-to-use non-zero in row
i in the slice, and the minimal column index ju of the next-to-use

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Q. Sun et al.

x ’es can be reduced. Thus the upper-bound for the following useless
interval of vector x is ju − 1. The computation can safely resume
without loading the x ’es indexed in the interval [jl + 1, ju − 1],
and may lead to a much reduced memory access. This on-chip
speculation is done in parallel with the computation of each matrix
row, and the overhead is negligible as compared with the DMA
access to the operands.

3.3 SWCSR-SpMV with Worker Group

(a) av41092. (b) poisson3Db. (c) sparsine. (d) offshore.

Figure 4: The sky-plots of the irregular sparsematrices from
[11].

When matrices are highly irregular, as exemplified in Fig. 4,
different row-slices may cover a wide range of common x’es and
the data reuse ratio of the x segments (of length size_x) may be
increased if they can be shared in the runtime. To that end, on one
hand the CPE mesh need splitting into smaller worker groups in
the way that there is a direct bus connection among all the peers.
On the other hand, in the pre-process phase, adjacent row-slices
are logically grouped into sets in a way that the number of row-
slices in each set equals to that of the workers in a worker group to
ensure a full occupancy. The union of all the indices of the required
x segments by a row-slice set can also be assembled in the pre-
process phase, so that the x segments can be collectively accessed
by the peers in a group.

Due to the directly supported synchronizing barrier among the
CPEs in a row, we are able to split the 8 CPEs into 1,2,4 groups with
8,4,2 CPEs in each group respectively. An example of a group of 4
CPEs is shown in Fig. 5. At each time, 4 row-slices are handled by
the group, and the i-th CPE is responsible for loading the i + kn-
th x segment by DMA in the k-th iteration. To ensure a higher
bandwidth occupancy, all the CPEs take part in the uploading of
the x segments in the “DMA phase”. When the entire group of the
CPEs is fed, in the “Bcast phase” the first CPE broadcasts “seg-0” to
the rest co-workers and let them resume the computation. Then the
second CPE becomes the broadcaster and the phase continues in
this way until all of the x segments are consumed. Synchronization
barriers local to the group are put to coordinate the data exchange
among the CPEs. When the number of a row-slices is smaller than
the CPE count in a worker group, some phantom work-frames
with the same behavior of loading x ’es but without computation is
patched to ensure a right synchronization.

We encapsulate the work group logic into an independent utility
which can be used in parallel algorithms where multiple CPEs are
accessing the same data set. On the downside, however, in this
approach local barrier undermines the performance severely: the
CPE with the slowest DMA operation determines the duration of
each iteration, leading to a sub-optimal collective bandwidth usage.

3.4 Dynamic Load Balance
Statically, wemake sure each row-slice in SWCSR -SpMVhas roughly
equal number of non-zeros and thus the whole number of floating
point operations as well as the size of each work frame are evenly
divided. However, the actual workload of each row-slice also lies in
its access patterns of the vector x, i.e. the total number of x ’es loaded
and the reuse ratio, which can only be known during runtime. Sim-
ilarly on the high-end GPGPU platforms where atomic operations
are available, the workload of SWCSR -SpMV can be balanced by
the atomic operation based work-sharing technique [10]. When the
row slicing is done, all the slices are sequentially numbered and
queued. Each CPE can fetch one row-slice by issuing the atomic
“fetch-and-add” instruction to a global row-slice counter. In this
way, each row-slice is handled only once and each CPE can obtain
a new task in time with merely negligible idleness. This approach
is also applied to the worker group variation of SWCSR -SpMV: the
leader of a group is responsible for fetching new workload and
wakes up the co-workers by broadcasting wake-up signals within
the group.

3.5 Parameter Auto-Tuning
In order to make SWCSR -SpMV more adaptive to various sparse
matrices, an auto-tuning framework becomes a necessity. For the
performance-critical parameters, slice_nrow , slice_nz and size_x ,
a framework traversing the entire parameter space (at a given
stride) are supposed to record the optimal parameter combination
when the highest performance is achieved. This framework is able
to resume when encountering illegal parameter combination by
judging if a row-slice can reside in the LDM. A similar approach is
designed for the worker group version of SWCSR -SpMV, which is
omitted here for brevity.

4 PERFORMANCE EVALUATION
The experiments are conducted on one CG of the SW26010 CPU.
Worth mentioning is that, the memory controller in one SW26010
chip is able to isolate the 4 CGs, so that each CG can occupy the
whole bandwidth of the near-sided memory. The MPE runs at 1.45
GHz and has a theoretical memory bandwidth about 5 GB/s. Each
CPE also runs at 1.45 GHz but the theoretical aggregate DMA
bandwidth of the CPE mesh is 34 GB/s. The compiler “sw5cc”, is
customized to compile MPE or CPE codes. In the following ex-
periments, all of the testing programs are compiled with the -O3
optimization.

4.1 Theoretical Performance Upper-Bound
The ratio α of computation against memory access of the CSR-
based SpMV on a certain sparse matrix determines the performance
upper-bound, which is denoted by Pideal in the sequel. For a given
matrix, the total number of floating point operations is c = 2 ∗

nnz and the minimal number of bytes accessed is vmin = (m +
1 + nnz) ∗ sizeo f (idx_type) + (m + n + nnz) ∗ sizeo f (val_type),
assuming the platform has a set of shared cache which is large
enough to accommodate the entire source and resultant vectors: x
and y. Combining α = c/vmin and the bandwidth B of the platform,
Pideal can be approximated by α ∗ B. Given the sparse matrix,
α can easily be computed and the next subsection will detail on

Bandwidth Reduced Parallel SpMV on the SW26010 Many-Core Platform ICPP 2018, August 13–16, 2018, Eugene, OR, USA

CPE-3

LDM
Row-slice 3

DMA_xBUF:seg-3

RC_xBUF:empty

CPE-2

LDM
Row-slice 2

DMA_xBUF:seg-2

RC_xBUF:empty

CPE-1

LDM
Row-slice 1

DMA_xBUF:seg-1

RC_xBUF:empty

x seg-0 seg-1 seg-2 seg-3

seg-0

DMA

send recv seg-0recv seg-0recv

DMA Phase:

Bcast Phase:

seg-0

CPE-0

LDM
Row-slice 0

DMA_xBUF:seg-0

RC_xBUF:empty

swap

CPE-0

LDM
Row-slice 0

DMA_xBUF:seg-0

RC_xBUF:seg-0

CPE-1

LDM
Row-slice 1

DMA_xBUF:seg-1

RC_xBUF:seg-0

CPE-2

LDM
Row-slice 2

DMA_xBUF:seg-2

RC_xBUF:seg-0

CPE-3

LDM
Row-slice 3

DMA_xBUF:seg-3

RC_xBUF:seg-0

Figure 5: The key phases in the worker group version of SWCSR -SpMV.

the practical bandwidth of the CPE mesh of SW26010. But worth
mentioning is that the above assumption on the platform is over-
simplified by the large and shared cache and we totally ignore
the computation cost (about 5 ∼ 10% of the whole execution time
in practice), which may result in an over-estimated performance
upper-bound.

4.2 Bandwidth Study

Table 2: The actual DMA bandwidth in different use case sce-
narios, measured in GB/s. A: 256-Byte aligned; B: chunks of
256 Bytes.

Operation A & B !A & B A & !B !A & !B
Only Read 26.65 26.62 26.07 25.12
Only Write 24.41 22.29 18.23 17.51
Read & Write 22.45 21.50 20.02 19.82

As pointed out by Dang et.al [22], the practically measured band-
width by benchmarks such as STREAM [29] is an important ref-
erence when considering the bandwidth efficiency of SpMV oper-
ations. Likewise, we conduct the test on the practical aggregate
bandwidth B of the CPE mesh on the basis of a lightweight parallel
benchmark program which loads/stores data chunks by DMA and
reports the sustained bandwidth. The experimental results are listed
in Table 2.

From Table 2 we notice that if all the 64 CPEs only perform DMA
load or store operations a higher bandwidth can be sustained. The
bandwidth can further increase when the size of the data chunks are
multiples of 256 bytes and the heading address is 256 byte aligned.
The peak aggregate bandwidth for read can achieve 26.65 GB/s
which is approximately 80% of the reported theoretical bandwidth
(34 GB/s). However, when the test case is mixed with both load

and store operations, the sustained bandwidth is only 22.45 GB/s.
Moreover, if the data chunks are not properly aligned or in irregular
sizes, a further 4.3%-10.8% down will occur. Our results in Table 2
are in compliance with the reported in [38]. Likewise, we also
take 22 GB/s as the practical bandwidth upper-bound B and use
it to compute Pideal for the testing matrices, which is reasonable
considering the irregular memory access patterns in SpMV.

4.3 Performance Test on SWCSR-SpMV
4.3.1 Effect of Optimizations. We select 36 matrices which are

frequently used in previous works such as [4, 7, 33, 36, 37, 39] from
the Tim Davis Sparse Matrix Repository [11], the meta informa-
tion of which are listed in Table 3 and Table 4. During the test on
each matrix, the optimization parameters are manually fixed to
profile the gains of each optimizations, which are also recorded
in Table 3 and Table 4. The dynamic look ahead scheme greatly
reduces the run-time of nearly all the matrices, which suggests
that a large number of extra x ’es is avoided. A 0.91x (“mc2depi”) to
34.07x (“Harmle3”) speedup is sustained by this approach. On top
of that, the dynamic work-sharing mechanism can help to boost
the performance of some highly irregular matrices such as “mip1”,
“cont-300” and “Hamrle3” etc.. Notably, the time for the pre-process
of SWCSR -SpMV is no more than 4.2x (“dense2000”) that of the
SWCSR -SpMV computing time and averagely only 0.96x.

4.3.2 Performance Overview. In Fig. 6, the final performance
of all the testing matrices are summarized as well as the naive
MPE SpMV reference. The matrices are listed in the same order
with that in both Table 3 and 4, for ease of reference. In spite of
the significant speedup against the MPE implementation, we also
measure the efficiency of SWCSR -SpMV, which is defined to be the
actual performance against Pideal . Thanks to exhaustive parameter
auto-tuning by the framework, as we can see, the efficiency can

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Q. Sun et al.

Table 3: The meta information of the testing square matrices and the effect of optimizations. The performance is measured
by execution time in ms.

Name M/N NNZ Sky-plot Basic Impl. Look-ahead & Static Look-ahead & Dynamic Pre-Process

cant 62451 4007383 2.55 2.55 (1.00x) 2.58 (0.99x) 1.95

pwtk 217918 11524432 20.89 8.83 (2.36x) 7.99 (1.10x) 5.68

af-shell9 504855 17588875 15.16 13.30 (1.14x) 11.99 (1.11x) 10.24

mip1 66463 10352819 43.23 10.46 (4.13x) 7.46 (1.40x) 9.60

pdb1HYS 36417 4344765 5.86 3.42 (1.71x) 3.19 (1.07x) 1.85

RS-b300-c2 28338 2943887 6.27 2.51 (2.49x) 2.17 (1.15x) 1.38

shipsec1 140874 7813404 8.65 7.00 (1.27x) 5.8 (1.19x) 3.94

consph 83334 6010480 10.83 5.11 (2.12x) 4.6 (1.10x) 1.91

dense2000 2000 4000000 3.24 3.25 (0.99x) 3.11 (1.05x) 12.81

thermal2 147900 3489300 19.80 3.05 (6.50x) 2.77 (1.10x) 2.67

water-tank 60740 2035281 1.98 1.93 (1.03x) 1.63 (1.18x) 1.37

nd6k 18000 6897316 11.60 5.65 (2.05x) 5.57 (1.02x) 2.23

pli 60740 1350309 1.22 1.34 (0.91x) 1.13 (1.19x) 0.74

RS-b162-c3 15374 610299 1.09 0.81 (1.35x) 0.61 (1.31x) 0.50

Si41Ge41H72 185639 15011265 61.35 16.57 (3.70x) 15.40 (1.08x) 6.74

torso2 115967 1033473 6.41 1.16 (5.51x) 1.11 (1.05x) 1.68

Ga41As41H72 268096 18488476 97.92 20.84 (4.70x) 20.06 (1.04x) 8.41

thermal1 17880 430740 0.74 0.54 (1.36x) 0.47 (1.15x) 0.51

mc2depi 525825 2100225 2.27 2.49 (0.91x) 2.44 (1.02x) 6.09

cont-300 180895 988195 7.60 1.48 (5.14x) 1.21 (1.22x) 2.31

econ-fwd500 206500 1273389 1.55 1.65 (0.94x) 1.57 (1.05x) 2.68

finan512 74752 596992 2.93 0.77 (3.81x) 0.75 (1.03x) 1.12

in-2004 1382908 16917053 810.66 34.56 (23.45x) 21.67 (1.59x) 19.38

epb2 25228 175027 0.22 0.23 (0.96x) 0.22 (0.93x) 0.40

Hamrle3 144736 5514242 465.66 13.67 (34.07x) 7.83 (1.74x) 17.81

sme3Da 12504 874887 1.39 1.42 (2.86x) 1.40 (1.02x) 0.53

bayer01 57735 277774 1.45 0.51 (2.81x) 0.45 (1.12x) 0.84

Bandwidth Reduced Parallel SpMV on the SW26010 Many-Core Platform ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Table 4: The meta information of the testing square matrices and the effect of optimizations. The performance is measured
by execution time in ms.

Name M/N NNZ Sky-plot Basic Impl. Look-ahead & Static Look-ahead & Dynamic. Pre-Process

av41092 41092 1683902 8.63 3.36 (2.56x) 2.78 (1.21x) 1.20

poisson3Da 13514 352762 0.76 0.76 (1.00x) 0.73 (1.03) 0.38

TF18 95368 1597545 8.30 5.01 (1.65x) 3.63 (1.37x) 1.67

sme3db 29067 2081063 5.31 5.07 (1.05x) 4.94 (1.02x) 1.05

sme3Dc 42930 3148656 11.62 10.51 (1.11x) 10.02 (1.05x) 1.51

sparsine 50000 1548988 6.32 5.25 (1.20x) 5.14 (1.02x) 1.16

helm3d01 32226 428444 1.53 1.47 (1.04x) 1.45 (1.01x) 0.62

offshore 259789 4242673 63.46 23.68 (2.67x) 16.88 (1.40x) 4.00

poisson3Db 85623 2374949 14.78 12.74 (1.16x) 11.70 (1.09x) 1.74

���

���

���

���

���

���

���

��	

��

���

���

�

�

"

'

$

)

'

�

�

�

�

&

�

�

�

!

�

$

�

$

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

&

�

�

$

&

�

�

�

�

#

"

&

$

�

�

�

"

&

�

�

�

�

�

'

�

�

%

!

�

�

)

�

'

�

%

�

'

�

"

�

"

�

	

�

$

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

'

#

%

&

#

�

�

�

�

�

&

�

�

�

�

'

�

�

%

!

�

�

!

�

�

�

�

$

�

�

#

"

'

�

�

�

�

�

�

#

"

�

�

)

�

�

�

�

�

�

"

�

"

�

�

�

�

"

�

�

�

�

�

�

$

�

�

�

�

%

!

%

�

�

&

!

�

�

�

�

�

�

*

�

%

�

�

�

(

�

�

�

�

�

$

#

�

&

&

#

"

�

�

�

�

�

�

�

&

!

�

�

�

�

&

!

�

�

�

�

&

$

�

%

&

�

"

�

�

�

!

�

�

�

�

#

�

�

&

�

#

%

�

�

�

$

#

�

&

&

#

"

�

�

�

���

���

���

���

���

���

���

���

���

�
�
�
�
�
�
�
	
�

�
�
�
�
�
�
�
�
�
�

�	�����
�����������

�	�����
�����������

�
�
�

�
�

�
�
�
�
�
�
�

�
�
�
�
�

����������

��
��������������

Figure 6: The overview of SWCSR -SpMV on all the testing matrices.

achieve as high as 86.8% for the matrix “cant”, and generally a much
higher performance can be achieved for the (quasi-)banded matrices
from numerical applications, such as “cant”, “pwtk” and “water-
tank”. For the leading 13 matrices averagely 2.67 GFlops can be
sustained, i.e. 77% of the corresponding average Pideal . Wherein, a
slight bandwidth dip happens to “dense2000” and this is because the
LDM capacity is so limited that each row-slice is consisted of only

2 rows and DMA overhead is non-negligible when uploading too
many short slice_idx_i vectors. The bandwidth together with the
performance decline for the following 14matrices. We believe there
are two disturbing factors that contribute to the decline: despite
more irregular matrix structures, some of the matrices, such as “RS-
b162-c3”, “thermal1”, “epb-2” and “bayer01”, are small in volume and

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Q. Sun et al.

the parallelization overhead as well as the DMA latency are non-
negligible. As highlighted in Fig. 6, for the last 9matrices (in Table 4)
the discrepancy between the measured DMA bandwidth and the
performance is strikingly large, which implies that a large amount
of x ’es are redundantly accessed. As shown in the next subsection,
the worker group can greatly accelerate the performance for these
matrices.

4.3.3 Worker Group for Irregular Matrices. Generally the row-
slices of the matrices in Table 4 cover a wide range of vector x. Thus
the uploaded x segments by one CPE can be potentially reused
by other CPEs. As shown in Table 5, the memory footprint of the
matrices are significantly reduced with the increase of worker count
in each group.

Table 5: The actual DMA volume (in MB) measured in nor-
mal SWCSR -SpMV and the worker group variant.

Matrix Normal Group of 2 Group of 4 Group of 8
av41092 47.41 72.54 48.85 35.21

poisson3Da 13.31 10.43 7.34 5.79
TF18 73.73 82.57 56.90 41.44

sme3db 116.08 102.30 63.37 43.86
sme3c 13.31 10.43 7.34 5.79
sparsine 115.41 102.30 63.37 43.85
helm3d01 32.78 22.86 14.20 9.82
offshore 363.99 328.29 288.36 191.80

poisson3Db 275.45 234.32 113.38 81.94

As shown by Fig. 7(a), there are sounding speedups when the
8 CPEs in a row can share the segments. As for the bandwidth,
however, despite the reduced memory access volume, the whole
CPE mesh suffers great loss as shown in Fig. 7(b). We believe this
is caused by the synchronization barrier which has to wait for the
the slowest workers.

4.4 Application in PETSc Application
SWCSR -SpMV is intended to support numerical applications ported
to Sunway TaihuLight supercomputer. We choose the application
of simulating the earth magnetic field. The application has two sets
of linear systems to solve and SWCSR -SpMV is applied to both of
them at the same time, which put the usability of SWCSR -SpMV to
the test. We conduct tests on both the strong and weak scalability
of the program and the measurement is the duration of one time
step, including that of the pre-process of SWCSR -SpMV.

In the weak-scalability test, each MPI processor compute a 3
dimensional area which is 16∗100∗100 in size, while a 64∗64∗64 area
is equally divided by the processors used in the strong-scalability
test. As shown in both Fig. 8(a) and Fig. 8(b), by using SWCSR -
SpMV alone the application can sustain a speed up of 1.75x-2.69x
in these multi-process environments, which indicates that SWCSR -
SpMV has a high usability and can potentially accelerate a set of
sparse applications. Further profiling suggests that, among other
optimizations the dynamic look ahead scheme significantly helps to
boost the performance by 41% to 2.x in the weak/strong scalability
tests respectively.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

��	

���

���

���

���

�
	
�

�
�
�
�

�
	
�
�
�
�
�
�
�
�
�

�	��	��
������

�	��	��
���

�	��	��
���

�	��	��
���

(a) Performance

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

��

��

��

�
�
�
�
�

�

	
�
�
�
�
�
�
�

�	��	��
������

�	��	��
���

�	��	��
���

�	��	��
���

(b) Bandwidth

Figure 7: The performance and bandwidth profile on the
worker group version of SWCSR -SpMV.

5 RELATED-WORK
During the past years, SpMV has always been a hot research topic
in the HPC domain. With the rapid development of HPC platforms,
different formats for storing sparse matrices are devised to adapt
SpMV with specific hardware features, such as DIA, ELL, COO and
HYB [31]. These basic formats have been selectively supported by
various libraries [1, 18, 31] on the main-stream platforms. To be
more adapted with different optimization techniques, extensions
are made and give rise to new formats such as BCCOO(+) [36],
ELLPACK, ELLR [23, 34] and ELLR-T[41]. Beyond these standalone
formats, hybrid formats also turns out to be effective as reported
in [9]. Later the formats are dynamically combined in [33], which

Bandwidth Reduced Parallel SpMV on the SW26010 Many-Core Platform ICPP 2018, August 13–16, 2018, Eugene, OR, USA

��� � � � 	 ��

�

��

��

��

��

��

��

�
�

�
�
	
�
�
�
�
�
�
�

��������	
�����

������������

���������������

(a) Weak-scalability test.

��� � � � 	 ��

�

��

��

��

��

��

��

�
�

�
�
	
�
�
�
�
�
�
�

��������	
�����

������������

���������������

(b) Strong-scalability test.

Figure 8: The scalability test on the earth magnetic field ap-
plication.

leads to the Cocktail format. By deciding the most suitable format
for different matrix partitions on-the-fly, the Cocktail format can
achieve slightly higher performance with the prior selected best
format. Although each format is proved to be suitable for a cer-
tain set of testing matrices on a specific platform, no evidence has
shown that there is a universally optimal format [22] in the case
of SpMV. The CSR format, due to its simplicity and high compres-
sion ratio, is widely adopted by numerical computing frameworks
such as Petsc and Hypre etc.. On the newly platform, SW26010, the
first priority of optimizing SpMV should lie at the compatibility
rather than demonstrating the extreme performance for some test-
ing matrices by utilizing newly developed formats. Besides, there
are disadvantages for SpMV approaches with customized sparse for-
mats: Spatially, it is a waste of memory space when the same matrix
is duplicated in different formats in applications. Temporally, these

approaches also suffer from a time-demanding format-converting
phase [4, 20, 22]. Therefore it is pointed out in [22] that the raw
performance of the computing phase of SpMV alone cannot deter-
mine the performance of SpMV, though the typical usage of SpMV
is often repetitive. In SWCSR -SpMV, the setup phase is much less
time-demanding, because it only scans the meta-information of the
sparse operator without transferring the data to newly allocated
memory spaces.

Although SWCSR -SpMV is a platform-specific solution, there are
also enlightening works on the main-stream platforms on the basis
of an extended CSR formats. SWCSR -SpMV shares similar algorith-
mic skeleton with CSR-scalar/v-ector [35], CSR-adaptive[8, 39] and
CSR-stream[2], enjoying the natural row-wise parallelism. How-
ever, these format extensions focus on the utilization of vectoriza-
tion in the computing kernel, which leads to preferable performance
on MIC and GPGPUs. On the target platform, however, the memory
access overhead is the main performance bottleneck. Moreover, due
to the lack of vectorized scatter/gather instructions on the CPE,
the direct vectorization to the computing kernel may cause per-
formance loss by the element-wise load of the oprands. The load
imbalance issue, which is caused by the fine-grained parallelism
on GPUs, has been addressed by [5, 26, 27]. We adopt the atomic
operation based load-balancing strategy in SWCSR -SpMV, which is
shown to be effective. As an across-platform approach, CSR5 based
SpMV [24] has shown excellent performance on multi/many core
CPUs and GPGPU, though it requires a relatively slow setup phase
computing auxiliary information including the tile-wise transpose
of the source matrix. Consequently, the CSR5 based approach can
only deliver noticeable speedups in cases of over 50 times of repeti-
tion [24, 25].

6 CONCLUSION AND FUTUREWORK
On the novel SW26010 many-core CPU, we have proposed an effi-
cient implementation of the parallel SpMV primitive, SWCSR -SpMV.
SWCSR -SpMV is based on the prevalent CSR format and compatible
for high-level numerical frameworks, which enables SWCSR -SpMV
to provide convenient solution to accelerating sparse applications
on the Sunway TaihuLight supercomputer. While both the hard-
ware features and the fundamental APIs of the platform are more
suitable for regular problems, several improvements have been
made in SWCSR -SpMV to handle irregular memory access patterns,
the redundant memory footprint and the imbalanced workload. The
size of each row slice is limited so that they can reside in the LDM
and the contiguously uploaded x ’es can be shared with each sparse
row. We design the dynamic look-ahead scheme to avoid load-
ing of useless x ’es by the DMA read operation. Based on register-
communication, the issue of redundant memory footprint is also
addressed at the worker group level by sharing the collectively
needed data. The workload of each CPE thread, or worker group,
is balanced both statically and dynamically: the original problem is
perfectly partitioned, in terms of the floating-point operations, into
row-slices and the atomic operation based dynamic work-sharing
strategy is applied to avoid CPE idleness during the execution. Last
but not least, an auto-tuning framework for the critical parameters
in SWCSR -SpMV is provided and the optimal combination can be
easily obtained for each target matrix. Experiments are conducted

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Q. Sun et al.

on 36 frequent used matrices and the applied optimizations are
proved to be effective and SWCSR -SpMV has demonstrated a com-
petitive overall performance: based on the theoretical performance
upper-bound, SWCSR -SpMV can achieve an efficiency of 86.8% in
the best case and 1/3 of the matrices can achieve more than 75%.
For the matrices that SWCSR -SpMV performs relatively poorly,
the worker groups formed by SWCSR -SpMV can boost the perfor-
mance by 3% - 90%. Finally, applied to both of the linear systems
in the earth magnetic filed simulating program, SWCSR -SpMV has
significantly accelerated the real-world application by 1.75x-2.69x.

In the future, the extension of this work will be two-fold on the
target platform. On one hand, SWCSR -SpMV will gain the ability to
leverage the 4CGs in a SW26010 CPU, when a customized threading
library, instead of theMPI process, is available; on the other handwe
intend to propose efficient parallel SpMV implementations in other
frequently used sparse formats, and we believe this practice may
benefit a wider range of applications on the Sunway TaihuLight
supercomputer.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous referees for their
valuable comments and helpful suggestions. The work is supported
by the National Natural Science Foundation of China under Grant
No.: 616725028, U1636213, 61379048 , the National Key Research and
Development Program of China under Grant No.: 2017YFB1400902
and the Key Research andDevelopment Plan of Hebei Province(18390308D).

REFERENCES
[1] 2014. CUSP: A C++ Templated Sparse Matrix Library.
[2] 2014. The Open Standard for Parallel Programming of Heterogeneous Systems.

https://www.khronos.org/opencl.
[3] 2017. Top-500 supercomputer list in 2017. https://www.top500.org/lists/2017/06/.
[4] Pham Nguyen Quang Anh, Rui Fan, and Yonggang Wen. 2016. Balanced Hashing

and Efficient GPU Sparse General Matrix-Matrix Multiplication. (2016), 1–12.
[5] Arash Ashari, Naser Sedaghati, John Eisenlohr, Srinivasan Parthasarathy, and P.

Sadayappan. 2014. Fast sparse matrix-vector multiplication on GPUs for graph
applications. In International Conference for High PERFORMANCE Computing,
Networking, Storage and Analysis. 781–792.

[6] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune,
Kris Buschelman, Lisandro Dalcin, Victor Eijkhout, William D. Gropp, Dinesh
Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Karl Rupp, Barry F. Smith,
Stefano Zampini, Hong Zhang, and Hong Zhang. 2016. PETSc Web page. http:
//www.mcs.anl.gov/petsc. http://www.mcs.anl.gov/petsc

[7] Vicente H. F. Batista, George O. Ainsworth Jr, and Fernando L. B. Ribeiro. 2010.
Parallel structurally-symmetric sparse matrix-vector products on multi-core
processors. Computer Science (2010).

[8] Nathan Bell and Michael Garland. 2009. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In Conference on High PER-
FORMANCE Computing Networking, Storage and Analysis. 1–11.

[9] Wei Cao, Lu Yao, Zongzhe Li, Yongxian Wang, and Zhenghua Wang. 2010. Im-
plementing Sparse Matrix-Vector multiplication using CUDA based on a hybrid
sparse matrix format. In International Conference on Computer Application and
System Modeling. V11–161 – V11–165.

[10] Hoang Vu Dang and Bertil Schmidt. 2013. CUDA-enabled Sparse Matrix–Vector
Multiplication on GPUs using atomic operations. Parallel Comput. 39, 11 (2013),
737–750.

[11] T. Davis and Y. Hu. 2018. University of Florida Sparse Matrix Collection. http:
//www.cise.ufl.edu/research/sparse/matrices/.

[12] Robert D. Falgout and Ulrike Meier Yang. 2002. hypre: A Library of High Per-
formance Preconditioners. In International Conference on Computational Science.
632–641.

[13] John R. Gilbert, Steve Reinhardt, and Viral B. Shah. 2007. High-Performance
Graph Algorithms from Parallel Sparse Matrices. In Applied Parallel Computing.
State of the Art in Scientific Computing, International Workshop, Para 2006, Umeå,
Sweden, June 18-21, 2006, Revised Selected Papers. 260–269.

[14] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. 2000. Towards Realis-
tic Performance Bounds for Implicit CFD Codes. Parallel Computational Fluid

Dynamics (2000), 241–248.
[15] F. U. Haohuan, Junfeng Liao, Jinzhe Yang, LanningWang, Zhenya Song, Xiaomeng

Huang, Chao Yang, Wei Xue, Fangfang Liu, and Fangli Qiao. 2016. The Sunway
Taihu Light supercomputer:system and applications. Science China Information
Sciences 59, 7 (2016), 072001.

[16] Michael Heroux, Roscoe Bartlett, Vicki Howle, Robert Hoekstra, Jonathan Hu,
Tamara Kolda, Richard Lehoucq, Kevin Long, Roger Pawlowski, and Eric Phipps.
2003. An Overview of Trilinos. Sandia National Laboratories 30, 1 (2003), 1095–
1101.

[17] Eun Jin Im and Katherine Yelick. 2000. Optimization of Sparse Matrix Kernels
for Data Mining. In Siam Conf on Data Mining.

[18] Intel. 2018. Math Kernel Library, MKL.
[19] Yuji Kubota and Daisuke Takahashi. 2011. Optimization of Sparse Matrix-Vector

Multiplication by Auto Selecting Storage Schemes on GPU. In International
Conference on Computational Science and ITS Applications. 547–561.

[20] Pramod Kumbhar. 2011. Performance of PETSc GPU Implementation with Sparse
Matrix Storage Schemes. (2011).

[21] D. Langr and P. Tvrdik. 2016. Evaluation Criteria for Sparse Matrix Storage
Formats. IEEE Transactions on Parallel and Distributed Systems 27, 2 (Feb 2016),
428–440. https://doi.org/10.1109/TPDS.2015.2401575

[22] D Langr and P Tvrdik. 2016. Evaluation Criteria for SparseMatrix Storage Formats.
IEEE Transactions on Parallel & Distributed Systems 27, 2 (2016), 428–440.

[23] Ruipeng Li and Yousef Saad. 2013. GPU-accelerated preconditioned iterative
linear solvers. Journal of Supercomputing 63, 2 (2013), 443–466.

[24] Weifeng Liu and Brian Vinter. 2015. CSR5:An Efficient Storage Format for Cross-
Platform Sparse Matrix-Vector Multiplication. InACM on International Conference
on Supercomputing. 339–350.

[25] Weifeng Liu and Brian Vinter. 2015. Speculative segmented sum for sparse
matrix-vector multiplication on heterogeneous processors. Parallel Comput. 49,
C (2015), 179–193.

[26] Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep Dubey. 2013. Effi-
cient sparse matrix-vector multiplication on x86-based many-core processors.
In International ACM Conference on International Conference on Supercomputing.
273–282.

[27] Yongchao Liu and Bertil Schmidt. 2015. LightSpMV: Faster CSR-based sparse
matrix-vector multiplication on CUDA-enabled GPUs. In IEEE International Con-
ference on Application-Specific Systems, Architectures and Processors. 82–89.

[28] Hiroshi Maeda and Daisuke Takahashi. 2016. Parallel Sparse Matrix-Vector Multi-
plication Using Accelerators. Springer International Publishing.

[29] John D. McCalpin. 1991-2007. STREAM: Sustainable Memory Bandwidth in High
Performance Computers. Technical Report. University of Virginia, Charlottesville,
Virginia. http://www.cs.virginia.edu/stream/ A continually updated technical
report. http://www.cs.virginia.edu/stream/.

[30] Duane Merrill and Michael Garland. 2016. Merge-based sparse matrix-vector
multiplication (SpMV) using the CSR storage format. (2016), 1–2.

[31] Nvida. 2018. CUSparse Library.
[32] S Ohshima, T Katagiri, and M Matsumoto. 2014. Performance Optimization of

SpMV Using CRS Format by Considering OpenMP Scheduling on CPUs and MIC.
In IEEE International Symposium on Embedded Multicore/manycore Socs. 253–260.

[33] Bor Yiing Su and Kurt Keutzer. 2012. clSpMV:A Cross-Platform OpenCL SpMV
Framework on GPUs. In ACM International Conference on Supercomputing. 353–
364.

[34] F. Vázquez, J. J. Fernández, and E. M. Garzón. 2011. A new approach for sparse
matrix vector product on NVIDIA GPUs. Concurrency & Computation Practice &
Experience 23, 8 (2011), 815–826.

[35] S Williams, L Oliker, R Vuduc, and J Shalf. 2009. Optimization of sparse matrix-
vector multiplication on emerging multicore platforms. Parallel Comput. 35, 3
(2009), 178–194.

[36] Shengen Yan, Chao Li, Yunquan Zhang, and Huiyang Zhou. 2014. yaSpMV: yet
another SpMV framework on GPUs. In ACM Sigplan Symposium on Principles
and Practice of Parallel Programming. 107–118.

[37] Fan Ye, Christophe Calvin, and Serge G. Petiton. 2014. A Study of SpMV Im-
plementation Using MPI and OpenMP on Intel Many-Core Architecture. Springer
International Publishing. 43–56 pages.

[38] J. Zhang, C. Zhou, Y. Wang, L. Ju, Q. Du, X. Chi, D. Xu, D. Chen, Y. Liu, and Z.
Liu. 2016. Extreme-Scale Phase Field Simulations of Coarsening Dynamics on
the Sunway TaihuLight Supercomputer. (Nov 2016), 34–45. https://doi.org/10.
1109/SC.2016.3

[39] Yunquan Zhang, Shigang Li, Shengen Yan, and Huiyang Zhou. 2016. A Cross-
Platform SpMV Framework on Many-Core Architectures. ACM Transactions on
Architecture & Code Optimization 13, 4 (2016), 33.

[40] Hong Zhou, Xiaoya Fan, and Lili Zhao. 2010. Optimizations on Sparse Matrix-
Vector Multiplication Based on CUDA. Computer Measurement & Control 18, 8
(2010), 1906–1895.

[41] Francisco Zquez, Jos Ndez, Garz, and Ester M N. 2012. Automatic tuning of the
sparse matrix vector product on GPUs based on the ELLR-T approach. Elsevier
Science Publishers B. V. 408–420 pages.

https://www.top500.org/lists/2017/06/
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
 http://www.cise.ufl.edu/research/sparse/ matrices/
 http://www.cise.ufl.edu/research/sparse/ matrices/
https://doi.org/10.1109/TPDS.2015.2401575
http://www.cs.virginia.edu/stream/
https://doi.org/10.1109/SC.2016.3
https://doi.org/10.1109/SC.2016.3

	Abstract
	1 Introduction
	2 Features of SW26010
	3 SWCSR-SpMV
	3.1 The Pre-Process of SWCSR-SpMV
	3.2 Avoiding redundant load of x'es
	3.3 SWCSR-SpMV with Worker Group
	3.4 Dynamic Load Balance
	3.5 Parameter Auto-Tuning

	4 Performance evaluation
	4.1 Theoretical Performance Upper-Bound
	4.2 Bandwidth Study
	4.3 Performance Test on SWCSR-SpMV
	4.4 Application in PETSc Application

	5 Related-work
	6 Conclusion and Future work
	Acknowledgments
	References

