
Constructing Dynamic Policies for Paging Mode Selection

Jason Hiebel
Michigan Technological University

Houghton, Michigan
jshiebel@mtu.edu

Laura E. Brown
Michigan Technological University

Houghton, Michigan
lebrown@mtu.edu

Zhenlin Wang
Michigan Technological University

Houghton, Michigan
zlwang@mtu.edu

ABSTRACT

Virtualization technology is a key component for data center man-

agement which allows for multiple users and applications to share a

single, physical machine. Modern virtual machine monitors utilize

both software and hardware-assisted paging for memory virtualiza-

tion, however neither paging mode is always preferable. Previous

studies have shown that dynamic selection, which at runtime se-

lects paging modes according to relevant performance metrics, can

be effective in tailoring memory virtualization to program work-

load. However, these approaches require low-level manual analysis,

or depend on prior knowledge of workload characteristics and

phasing.

We map the problem of dynamic paging mode selection to the

contextual bandit, a model for sequential decision making in envi-

ronments with limited feedback. Utilizing random profiling, which

executes a workload while regularly selecting paging modes at ran-

dom, we construct a paging mode selection policy that dynamically

optimizes workload performance given page fault and translation

lookaside buffer miss counts. Our approach yields an effective pol-

icy, DSP-OFFSET, for the dynamic paging mode selection prob-

lem. When trained and evaluated on subsets of the SPEC CPU2006

benchmark suite, DSP-OFFSET achieves speedups up to 44% com-

pared to static paging mode selections, which is equivalent to the

performance of the state-of-the-art ASP-SVM model. In addition,

DSP-OFFSET requires at most a tenth of the profiling time of ASP-

SVM (2.5 hours compared to over 24 hours) to achieve equivalent

performance.

CCS CONCEPTS

· Computing methodologies → Supervised learning by classifi-

cation; Cost-sensitive learning; Sequential decision making; Support

vector machines; · Software and its engineering → Virtual ma-

chines; Virtual memory;

KEYWORDS

Memory Management, Virtual Memory Paging, Contextual Bandits,

Cost-Sensitive Learning, Support Vector Machines

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPP 2018, August 13ś16, 2018, Eugene, OR, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6510-9/18/08. . . $15.00
https://doi.org/10.1145/3225058.3225082

ACM Reference Format:

Jason Hiebel, Laura E. Brown, and Zhenlin Wang. 2018. Constructing Dy-

namic Policies for Paging Mode Selection. In ICPP 2018: 47th International

Conference on Parallel Processing, August 13ś16, 2018, Eugene, OR, USA.ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/3225058.3225082

1 INTRODUCTION

Virtualization is an essential technology for cloud computing, pro-

viding anmechanism for performance isolation and resource utiliza-

tion. A virtual machine monitor, such as Xen [4] or VMWare [30],

presents guest operating systems with a virtual abstraction of a

physical machine, while providing mappings between the virtual

machine resources and actual hardware. The additional layer of

abstraction can introduce performance overhead in many ways. For

memory virtualization, there are two techniques taken by modern

virtual machine managers: Hardware-Assisted Paging (HAP) and

Shadow Paging (SP). Whether HAP or SP performs better depends

on the memory access characteristics of a workload. Workloads

with a large number of page faults will perform better using HAP.

Memory intensive workloads will perform better using SP.

Previous work has proposed dynamic methods for selecting be-

tween HAP and SP at runtime depending on workload performance

characteristics, using manual analysis and a hand-tuned model [31]

or expensive enumerative profiling and machine learning [16]. Both

cases show that dynamic selection can improve performance by

matching, and in some cases beating, the performance of a static

paging choice. While effective, both methods require time con-

suming data collection for model construction as well as manual

intervention and/or domain expertise.

In this paper, we present a dynamic selection procedure, DSP-

OFFSET, for the dynamic paging mode selection problem. We map

the problem of selective paging to the contextual bandit, a model for

sequential decision making under limited feedback. With a single,

randomprofiling execution of each benchmark in the SPEC INT2006

suite, using the Binary-Offset algorithm [5], we construct an effec-

tive dynamic paging mode selection policy which is competitive

with the state-of-the-art ASP-SVM [16] while requiring substan-

tially less profiling time. Unlike previous work, our profiling re-

quires no prior knowledge of workload structure or phasing, and

does not require extensive domain expertise or manual tuning. In

addition, our dynamic selection framework has the potential to be

applied to other system configuration problems.

The paper is organized as follows. In Section 2, we review mem-

ory virtualization and summarize work related to dynamic paging

mode selection. We also describe the contextual bandit and meth-

ods for constructing selection policies from logged random data.

Section 3 describes our application of the contextual bandit to the

dynamic paging mode selection problem. Section 4 presents our

methodology, experimental results, and analysis. Section 5 discusses

https://doi.org/10.1145/3225058.3225082
https://doi.org/10.1145/3225058.3225082
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3225058.3225082&domain=pdf&date_stamp=2018-08-13

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Jason Hiebel, Laura E. Brown, and Zhenlin Wang

Hardware-Assisted

Paging

Shadow

Paging

G
u
e
s
t

O
S

V
M

M

V2P

V2M

H
a
rd

w
a
re

V2P

P2M

Machine
Pages

Guest

Page Tables

EPT/NPTShadow PT

Figure 1: A comparison of Shadow Paging and Hardware-

Assisted Paging using extended/nested page tables.

the general applicability of our method as well as possible future

research directions. Section 6 summarizes our conclusions.

2 BACKGROUND

We first provide an overview of memory virtualization techniques,

and describe prior work for selecting paging modes dynamically at

runtime by observing workload characteristics. We then introduce

the contextual bandit, which will serve as the underlying model for

dynamic paging mode selection. Finally, we describe Binary-Offset

and the Weighted Support Vector Machine, which we will use to

construct our dynamic selection model.

2.1 Dynamic Paging Mode Selection

In virtualized systems, the virtual machine manager (VMM) is re-

sponsible for mapping virtual and physical memory addresses of

guest operating systems to hardware addresses. Fully virtualized

systems, which do not require modifications to guests, use either

Shadow Paging (SP) or Hardware-Assisted Paging (HAP) for ad-

dress translation. In SP, the VMM maintains a shadow page ta-

ble in parallel with the page table maintained by the guest. The

shadow page table maps virtual addresses in the guest directly to

machine addresses (V2M), bypassing the virtual to physical address

translation (V2P) of the guest all together. This requires updates

to the guest page table to be reflected in the shadow page table,

which results in expensive virtual machine (VM) exits and context

switches in order to maintain the synchronization between the

two tables. In HAP, an extended page table [11] (EPT) or nested

page table [6] (NPT) is maintained by the VMM and maps a guest’s

physical addresses to machine addresses (P2M). An overview of

the two methods is given in Figure 1. Page table updates in HAP

do not require synchronization and expensive VM exits; however,

address translation must access both the guest page table and the

extended/nested page table, resulting in more memory accesses

and longer latency.

The performance of either paging mode is dependent on work-

load, and both HAP and SP have cases in which they are prefer-

able [7]. Adams and Agesen [1], Gillespie [11], Wang et al. [31]

characterize the advantages of HAP and SP according to workload

behavior. Workloads which contain a large number of page faults,

and thus a large number of page table updates, will favor HAP, as

hardware virtualization does not incur the penalty of page table

synchronization. Workloads which are memory intensive will favor

SP, as page walk overhead is substantially reduced. This suggests

that VM exits, page faults, and translation lookaside buffer (TLB)

misses are effective metrics for quantifying workload behavior with

regards to memory virtualization.

To address these trade-offs, a number of dynamic paging mode

selection schemes have been proposed. These methods choose to

utilize hardware or software paging when appropriate based on

runtime performance metrics for the current workload. Bae et al. [3]

present a heuristic model for Palacios [17] which selects between

hardware and software paging at routine intervals according to a

pair of dynamic thresholds, for VM exits and for data TLB (DTLB)

misses. Wang et al. [31] conducted an extensive manual analysis

of page fault and DTLB miss counts for workloads executed using

Xen [4], and present a set of hand-crafted and system-dependent

thresholds for paging mode selection. However, both of these meth-

ods involve subjective construction by domain experts.

Kuang et al. [16] designed a procedure for labeling program

phases according the performance gain associated with each pag-

ing mode, and utilize machine learning to construct a decision

procedure. They enumerate over each phase of a program, compar-

ing the performance of selecting HAP for that phase (and SP for the

remaining phases) with the baseline performance of SP; similarly,

they enumerate and compare SP with the baseline performance of

HAP. This enumerative profiling approach is effective, but requires

extensive computation. The authors suggest that the profiling re-

quired for the SPEC INT2006 [12] required over 24 hours.

2.2 Contextual Bandits

We will model the dynamic paging mode selection problem as a

contextual bandit. The contextual bandit is a method for sequen-

tial decision making in environments which provide limited feed-

back [2, 5, 8, 18, 19, 28] . At each iteration, a contextual bandit

observes some contextual information ®x ∈ X and uses ®x and exist-

ing knowledge about the environment in order to select an action

a ∈ A. In response to taking action a, the bandit receives a reward r

dependent on both the taken action and the associated context; the

rewards for actions not taken remain unobserved. This is referred

to as bandit feedback. The goal of the bandit is to learn some policy

for action selection which maximizes the cumulative reward earned

by the learner.

Classic approaches to the contextual bandit are online and dy-

namically adjust the selection of actions to adapt to both the esti-

mates of each action’s reward and the confidence of those reward

estimates [2, 19]. These methods are said to balance exploration,

selecting an action to improve the estimate of its reward, and ex-

ploitation, selecting the action believed to be optimal. However,

Constructing Dynamic Policies for Paging Mode Selection ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Algorithm 1 Binary-Offset [5]

Require: contextual bandit instances S

S ′ = �

for each (®x ,a, r) ∈ S do

Add to S ′ the weighted classification instance

(®x ,y,W) = (®x , sign (a · r), |r |).

end for

return weighted classification instances S ′

these methods are generally not amenable to low-level implementa-

tion, e.g., in the Xen virtual machine manager, because they require

expensive numerical optimization, linear algebra, and statistical

procedures.

Alternatively, offline evaluation and construction for contextual

bandits can be performed using logged data [5, 8, 18, 28]. Here,

exploration and exploitation are not interleaved; rather, exploration

occurs for a fixed duration during a training phase, and the re-

sulting logged data is used to construct a policy which is then

exploited. The logged data can be obtained by selecting actions

uniformly at random, or from carefully constructed deterministic

action selections. These methods are also referred to as exploration

scavenging [18], as they attempt to utilize the logged data gained

from executing some other policy as a form of exploration.

Here, we focus on the Binary-Offset algorithm [5], given in Algo-

rithm 1, which requires binary actions A = {−1,+1}. Binary-Offset

is a method for transforming contextual bandit data (®x ,a, r) ob-

tained from a random policy into weighted data (®x ,y,W), where

the class y represents an estimate of the better performing action

and the weightW represents the degree to which that action im-

proves from the baseline. For paging mode selection, the context

could take the form of relevant performance metrics measured over

a sampling period and the action would indicate whether HAP or SP

should be selected for the subsequent period. Workload throughput

or speedup could both be considered as useful reward metrics.

The resulting weighted classification instances are amenable to

a broad suite of machine learning techniques for feature selection,

dimension reduction, and classifier construction. Classifiers which

directly incorporate instance weights exist in the literature [9, 10,

22, 33]. Alternatively, using the ‘Costing’ method [34], weighted

classification instances can be sampled in proportion to their weight

in order to construct a standard, unweighted labeled data set.

We use the Weighted Support Vector Machine (WSVM) [33] to

construct a dynamic selection model from the weighted classifica-

tion instances generated by Binary-Offset. For a set of n weighted

instances of the form (®xi ,yi ,Wi), the (linear) WSVM attempts to

find the classifier f (®x) = sign(®w · ®x+b)with the largest margin. This

can be found using the constrained optimization problem

arg min
®w,b, ξi

1

2
∥ ®w ∥2 +C

N
∑

i=1

Wiξi

subject to yi (®w · ®x + b) ≥ 1 − ξi ,

ξi ≥ 0.

(1)

where C is a hyper-parameter indicating the relative importance

of the margin size and the weighted misclassification error. This

//

H
A
P

SP H
A
P

SP H
A
P

SP

decision
point

observation
intervals

exploration period exploitation period exploration period

. . .

Figure 2: Design and parameters of DSP-SAMPLE.

resulting linear classifier is simple to implement in a virtual machine

manager.

3 DYNAMIC PAGING MODE SELECTION

We formulate dynamic pagingmode selection as a contextual bandit,

wherein the virtual machine monitor selects between Hardware-

Assisted Paging (HAP) and Shadow Paging (SP) at regular intervals

depending on relevant performance metrics in order to optimize

workload performance. The contextual information will take the

form of page fault and data translation lookaside buffer (DTLB)

miss counts, as they characterize the performance of the two paging

modes. The action space contains both HAP and SP. The reward

will be a measure of workload performance, based on the number

of instructions retired per cycle count (IPC) over an observation

interval, for the selected paging mode.

Here we present two methods. The first is a simple, context-less

bandit model, DSP-SAMPLE, which selects paging modes by com-

paring the IPC of HAP and SP directly at runtime without taking

advantage of page faults, DTLB misses, or any other performance

metrics. The second is a contextual bandit model, DSP-OFFSET,

which exploits both page fault and DTLB miss counts in order to se-

lect paging modes which provide a speedup compared to a random

baseline. However, unlike DSP-SAMPLE, DSP-OFFSET requires

offline profiling and training.

3.1 Direct Sampling (DSP-SAMPLE)

DSP-SAMPLE is a simple, direct sampling approach which operates

in two stages. The first stage alternates between selecting HAP and

SP several times in order to discover which paging mode provides

the highest IPC. The second stage selects the paging mode which

was found to provide the best performance on average and uti-

lizes that paging mode for a time. The two stages alternate, timed

appropriately to balance constructing a confident estimate of per-

formance, utilizing the best identified paging mode, and adapting

to changing workload characteristics. This can be described as a

method which balances exploration (sampling the performance of

each paging mode), and exploitation (utilizing the best performing

paging mode) Ð similar to the contextual bandit, but without con-

textual information. A similar model is used in Jiménez et al. [14]

for dynamic hardware prefetcher configuration.

The design of DSP-SAMPLE is summarized in Figure 2. This

method is parameterized by the length of the observation interval,

as well as the number of intervals in both the exploration and ex-

ploitation periods. A longer exploration period can provide a better

estimate of performance, which can lead to fewer poor exploita-

tion period selections. However, a longer exploration period will

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Jason Hiebel, Laura E. Brown, and Zhenlin Wang

Logged
Performance
(®xi , ai , I PCi)

Contextual
Bandit

(®xi , ai , ri)

Weighted
Data

(®xi , ci ,Wi)

Paging Mode
Selection Model

Profiling

(Random Paging)
Phase Extraction

Reward Calculation Binary Offset Weighted SVM

Figure 3: Workflow for constructing DSP-OFFSET models using random logged data.

also incur more overhead from paging mode switching. A longer

exploitation period will reduce the frequency of exploration, but

shifting workload characteristics can cause the selected paging

mode to no longer be desirable. Parameter tuning is required for

DSP-SAMPLE to be effective.

3.2 Contextual Bandit Model (DSP-OFFSET)

To construct the DSP-OFFSET model, we first must obtain logged

data from random paging mode selections for workloads of interest.

Next, the logged data must be converted into a form which is usable

to Binary-Offset. This includes identifying phasing structure and

defining a useful reward function. Finally, we transform, via Binary-

Offset, the logged data into weighted data and use the WSVM in

order to construct the DSP-OFFSET model. This construction is

illustrated in Figure 3.

As with previous work [1, 16, 31], we rely on page faults and

DTLB miss counts to characterize the relative performance of HAP

and SP. The frequency of DTLB misses is correlated with the fre-

quency of page walks, and the frequency of page faults is correlated

with page table updates; therefore, we expect HAP to outperform

SP during periods of frequent page faults and SP to outperform

HAP during periods of frequent DTLB misses. However, effective

switching requires determining the trade-off for workloads with

mixed characteristics. As page faults and DTLB misses character-

ize the relative performance of HAP and SP, we assume that the

relative performance of the two paging modes otherwise remains

unchanged by other, unobserved performance characteristics, as

well as from the historical behavior of both page faults and DTLB

misses. As we find that the distribution of both page fault and

DTLB miss counts over fixed sampling intervals are heavy tailed,

we consider the binary logarithm of both counts instead of using the

counts directly. This has the effect of leveling out the distribution

of each metric and reducing the effect of outlier behavior.

Training data is obtained from workloads by executing a random

paging mode policy. At regular sampling intervals, Xen measures

relevant performance metrics, including page faults, DTLB misses,

and IPC, and selects HAP or SP uniformly at random for use during

the next sampling interval. If the system is already using the selected

paging mode, no change happens. Otherwise, the system switches

to the new paging mode, incurring the associated cost. We associate

the performance characteristics used to make a selection (page fault

and DTLB miss counts over the interval which just ended) with

the performance resulting from that selection (IPC of the following

interval).

The logged training data must now be transformed into contex-

tual bandit data, i.e., context, action, and reward. We consider the

speedup of a paging mode selection compared to average workload

performance as a reward. However, many applications exhibit phas-

ing behavior [24ś26]. Shifting performance characteristics, either

between workloads or between phases of a workload, can skew the

weighting of our instances toward certain phases. Both milc and

xalancbmk from the SPEC CPU2006 [12] suite skew our results if

we consider IPC as a reward directly, as both contain small phases

of high IPC that would be more strongly weighted despite pro-

viding little opportunity for improved performance. Any possible

imbalance between HAP and SP due to random sampling during

these phases can amplify the effect.

To account for these extraneous effects, we consider phases of

the logged performance data. Using the change-point detection

algorithm PELT [15], we partition each random profiling execution

into a set of phases based on the sequence of IPC values. PELT is an

efficient dynamic programming algorithm for identifying changes

in the distribution of a time series, such as identifying changes to the

mean and variance of a workload’s IPC over time. PELT optimizes

the number and position of the change points given an information

criterion penalty. Given a set of change-points c j , we segment our

training data into phases
[

c j , c j+1
]

. These phases simply represent

periods of consistent workload performance. An alternative would

be to specify these phases manually, however we find that PELT is

sufficient for identifying meaningful periods and does not rely on

domain expertise.

The reward is calculated based on the logarithmic speedup of

instance performance (IPC) against the average performance of the

intervals (phase). Instances which cause a speedup in comparison to

random are given a positive reward. Instances with no speedup or

slowdown compared to the average performance of the random se-

lections have a zero reward as they represent the baseline behavior.

For Binary-Offset, instances which cause a slowdown compared to

random should be treated as instances of the opposite paging mode

with the reciprocal speedup. Therefore, for a instance i ∈
[

c j , c j+1
]

,

we calculate the reward as

ri = log
IPCi

IPC[c j ,c j+1]

, (2)

where IPC[c j ,c j+1] is the average IPC for the phase containing in-

stance i . Measuring speedup (per phase) avoids the problem of high

IPC phases having a stronger weighting, as the weighting is now

relative to the average performance of the phase. Figure 4 (top and

middle) illustrates the transformation from IPC to reward.

Using the contextual information ®xi (page fault and DTLB miss

counts), actions ai as HAP and SP (mapped to -1 and +1 respec-

tively), and rewards ri calculated according to Equation 2, we

transform the contextual bandit data (®xi ,ai , ri) into weighted data

(®x ,yi ,Wi) using Algorithm 1. This transformation is illustrated in

Figure 4 (middle and bottom). The weighted data describes, for some

set of performance metrics ®xi , which paging mode yi is expected to

provide a speedup and how strongly it is expected, i.e., the weight

Wi . We apply a linear WSVM (Equation 1) to the weighted instance

Constructing Dynamic Policies for Paging Mode Selection ICPP 2018, August 13–16, 2018, Eugene, OR, USA

IP
C

R
e
w

a
rd

W
e

ig
h

ts
astar libquantum mcf xalancbmk

0.0

0.5

1.0

1.5

2.0

−0.2

−0.1

0.0

0.1

0.2

0.00

0.05

0.10

0.15

0.20

0.25

Hardware−Assisted Paging Shadow Paging

Figure 4: Top; traces of IPC and pagingmode using a random

selection policy for a subset of select workloads.Middle; IPC

transformed to reward. Bottom; Binary-Offset transforma-

tion to weights.

data in order to construct a linear decision function which maps

page fault and DTLB miss measurements to a paging mode selec-

tion. Other algorithms (e.g., weighted logistic regression, weighted

sampling [34]) were considered but WSVM provided the best per-

formance.

To prevent rapid switching between HAP and SP, a potential

source of performance loss due to the switching overhead, we

define a margin around the decision function. Any workload which

is operating inside of the margin does not trigger a switch, as we

assume that the potential performance advantage will not outweigh

the cost of switching. We find that a quarter of the WSVM margin

results in good performance:

®w · ®x + b > +0.25: if necessary, switch to SP,

®w · ®x + b < −0.25: if necessary, switch to HAP.

Thrashing behavior which occurs because a workload alternates

between two extremes, and thus alternates outside of the margin,

would not be prevented. However, this does not happen in practice

for the workloads we investigated.

4 EVALUATION

This section describes our experimental methodology and presents

our results. We evaluate the performance of both DSP-SAMPLE

Table 1: Hardware Configuration

CPU 2.8 GHz

Memory 4 GB

Cache

L1 64 KB 4-way

L2 512 KB 8-way

L3 8192 KB 16-way

DTLB
L1 64 entries 4-way

L2 512 entries 4-way

and DSP-OFFSET, and compare both models against the state-of-

the-art ASP-SVM [16]. To conclude, we discuss the advantages of

DSP-OFFSET with respect to profiling cost (Section 4.4).

4.1 Experimental Environment

Experiments are conducted on a 1st generation Intel Core i5 pro-

cessor (Nehalem microarchitecture), running at 2.8GHz, with Intel

Turbo Boost and other adaptive clock cycle technology disabled.

The hardware configuration is summarized in Table 1. A 64-bit

host OS running Linux 2.6.18 (CentOS 5.4) is configured to run a

modified version of Xen 3.3.1 which implements the paging mode

selection mechanism for the Xen hypervisor as described in [31].

A 32-bit guest OS, also running Linux 2.6.18 (CentOS 5.4), is pro-

vided with 3GB of memory and is constrained to a single core, for

which it has sole affinity. Policies are evaluated using the SPEC

CPU2006 [12] benchmark suite as the benchmarks show a variety

of memory behavior. The benchmarks are compiled for the guest

OS using GCC 4.1.

At regular intervals, Xen measures relevant performance metrics,

including page faults and DTLB misses, and identifies if the system

should utilize HAP or SP for the following interval according to

the current policy. To measure page faults, a kernel module in the

guest OS notifies the Xen hypervisor of a shared memory address in

which the guest OS records the page fault count. To measure DTLB

misses, instructions retired, and clock cycles, the Xen hypervisor

configures and accesses the Performance Monitoring Unit [13] di-

rectly. A programmable counter is configured to measure DTLB

misses (DTLB_MISSES.WALK_COMPLETED) and IPC is measured us-

ing the fixed-function counters for retired instructions and core

clock cycles. The logarithmic page fault and DTLB miss counts are

calculated using a simple fixed-point arithmetic binary logarithm;

alternatively, these features could be approximated by identifying

the number of leading zeros in the counts.

4.2 Experimental Design

We evaluate DSP-SAMPLE with a sampling rate (observation in-

terval length) of 100ms. For the exploration period, the algorithm

measures the IPC of HAP and SP three times each (for a total of

0.6 s), and then selects the better performing paging mode to exploit

for 50 observation intervals (for a total of 5 s). This is approximately

a 1:10 exploration to exploitation ratio. We also attempted other

possible parameter settings, but found no particular setting which

was effective in all cases.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Jason Hiebel, Laura E. Brown, and Zhenlin Wang

0.8

1.0

1.2

1.4

a
s
ta

r

b
z
ip

2

g
c
c

g
o
b
m

k

h
m

m
e
r

h
2
6
4
re

f

lib
q
u
a
n
tu

m

m
c
f

o
m

n
e
tp

p

p
e
rlb

e
n
c
h

s
je

n
g

x
a
la

n
c
b
m

k

IN
T

Benchmark

N
o

rm
a

liz
e

d
 E

xe
c
u

ti
o

n
 T

im
e

Hardware−Assisted Paging

Shadow Paging

DSP−SAMPLE

DSP−OFFSET, Benchmark−Specific

DSP−OFFSET, Benchmark−Agnostic

ASP−SVM

Figure 5: Mean normalized execution times for Hardware-Assisted Paging, Shadow Paging, DSP-SAMPLE, DSP-OFFSET

(Benchmark-Specific), DSP-OFFSET (Benchmark-Agnostic), and ASP-SVM [16] on SPEC INT2006. Error bars indicate mini-

mum and maximum normalized times.

We evaluate DSP-OFFSET for both a benchmark-specific and

benchmark-agnostic setting. In the benchmark-specific case, we

train a DSP-OFFSET model for each benchmark using a single

random profiling execution from that benchmark. Each model is

then evaluated on the benchmark for which it was trained. This

evaluates the performance of DSP-OFFSET when constructed on

a wide range of training data sizes with varying workload char-

acteristics. In the benchmark-agnostic case, we construct a single

DSP-OFFSET model by aggregating data from the SPEC INT2006

benchmarks. This evaluates the effectiveness of DSP-OFFSET to

model a broad range of workload characteristics and to generalize

to other workloads not included as part of the training data. In both

cases, we use a sampling period of 1 s for both random profiling and

evaluation, and we select the hyper-parameter C for the WSVM

(Equation 1) using a simple grid search. We considered sampling

periods of 2 s, 1 s, and 100ms and found that the differences in the

resulting policies and performance were small.

4.3 Results

Figures 5 and 6 summarize the mean execution times of HAP,

SP, DSP-SAMPLE, DSP-OFFSET, and ASP-SVM, normalized to the

mean execution time of HAP, for the SPEC INT2006 and FP2006

benchmark suites. For HAP, SP, DSP-SAMPLE, and DSP-OFFSET,

we report the min, mean, and max ratios of three runs. For ASP-

SVM, we report the mean of five runs. The results for povray are

omitted for ASP-SVM, as they were not reported in [16].

We call out specific benchmarks where there is a notable differ-

ence between HAP and SP: gcc and tonto favor HAP (46%, 21%

loss with SP, respectively); cactusADM and mcf favor SP (13%, 12%

gain). On average, SP presents a performance loss of 1.6% compared

to HAP (1.6% for SPEC INT2006 and 1.5% for FP2006), and many

benchmarks show no difference in performance between the two

static policies.

4.3.1 Direct Sampling. DSP-SAMPLE presents an overall perfor-

mance loss of 0.2% compared to HAP (0.5% gain for SPEC INT2006

and 0.7% loss for PF2006). While the performance of DSP-SAMPLE

can be similar to the performance of the best static policy, as is the

case for gcc, tonto, cactusADM, and mcf, there are some cases for

which the performance of the dynamic procedure is no better than

the worst static policy. For bwaves, milc, and wrf, DSP-SAMPLE

has roughly an equivalent average performance loss to SP (3.5%,

7.3%, 3.8% loss, respectively) and for milc and wrf there is signifi-

cant variability in the performance across multiple runs. The perfor-

mance of DSP-SAMPLE may be tailored, through careful parameter

selection, to better suit certain types of workloads. However, this

can in turn negatively affect other workloads.

Constructing Dynamic Policies for Paging Mode Selection ICPP 2018, August 13–16, 2018, Eugene, OR, USA

0.8

0.9

1.0

1.1

1.2

b
w

a
ve

s

c
a
lc

u
lix

c
a
c
tu

s
A

D
M

d
e
a
lII

g
a
m

e
s
s

G
e
m

s
F

D
T

D

g
ro

m
a
c
s

lb
m

le
s
lie

3
d

m
ilc

n
a
m

d

p
o
v
ra

y

s
o
p
le

x

s
p
h
in

x
3

to
n
to

w
rf

z
e
u
s
m

p

F
P

Benchmark

N
o

rm
a

liz
e

d
 E

xe
c
u

ti
o

n
 T

im
e

Hardware−Assisted Paging

Shadow Paging

DSP−SAMPLE

DSP−OFFSET, Benchmark−Specific

DSP−OFFSET, Benchmark−Agnostic

ASP−SVM

Figure 6: Mean normalized execution times for Hardware-Assisted Paging, Shadow Paging, DSP-SAMPLE, DSP-OFFSET

(Benchmark-Specific), DSP-OFFSET (Benchmark-Agnostic), and ASP-SVM [16] on SPEC FP2006. Error bars indicate minimum

and maximum normalized times.

4.3.2 Benchmark-Specific Models. As DSP-OFFSET utilizes the

contextual information (performance metrics) available, we antici-

pate that each benchmark-specific model should provide effective

performance on the workload in which it was trained. For nearly

all benchmarks, the performance of the benchmark-specific DSP-

OFFSET model constructed from a single random profiling execu-

tion matches the performance of the best static policy. The notable

exception to the favorable performance of DSP-OFFSET is bwaves,

which performs 2.1% worse than HAP but on average better than SP.

On average, the DSP-OFFSET models present a 1.1% performance

gain (1.6% for SPEC INT2006 and 0.8% for SPEC FP2006).

4.3.3 Benchmark-Agnostic Model. Whereas in the benchmark-

specific we constructed separate models for each benchmark, here

we construct a single benchmark-agnostic model for the full suite.

The benchmark-agnostic DSP-OFFSET model presents a 1.2% per-

formance gain compared to HAP (1.4% for SPEC INT2006 and 1.0%

for FP2006). In comparison, ASP-SVM presents a 1.3% performance

gain (1.6% for SPEC INT2006 and 1.1% for FP2006). Overall, both

DSP-OFFSET and ASP-SVM have similar performance gains over

the static policies. Again, we stress that the aggregate data used

to train DSP-OFFSET contains only a single random execution for

each integer benchmark.

The paging mode selections for the benchmark-agnostic DSP-

OFFSET model are summarized in Figure 7, including periods in

which the model would have triggered a switch but did not due to

the margin. Workloads for most benchmarks cause a single pag-

ing mode to be selected almost always during the course of the

benchmark’s execution. For benchmarks which execute primarily

in SP, we observed periods at the beginning and end of the profiling

run in which HAP was utilized. These periods coincide with the

initialization and tear-down of the SPEC tools as well as with the

start and end of program execution. A larger than average number

of page faults are to be expected during these periods, and thus

these periods would favor HAP as hardware paging avoids the

cost of page table synchronization. The margin only affects bwaves

and zeusmp. For zeusmp, the margin prevents thrashing behavior

that would otherwise cause the model to switch between HAP and

SP every two or three seconds. For bwaves, we observe that the

benchmark’s workload is predominantly inside of the margin.

4.4 Profiling Cost

Collection of the training data using random selection is no more

expensive than running the benchmarks using the worst of their

static paging modes. Moreover, a single random evaluation for each

benchmark is sufficient to obtain performance equivalent to ASP-

SVM. In contrast, ASP-SVM requires an average of 6 executions of

each benchmark in the collection of the training data. The reported

data collection time for ASP-SVMwas over 24 hours; in comparison,

random profiling for SPEC INT2006 requires less than 2.5 hours for

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Jason Hiebel, Laura E. Brown, and Zhenlin Wang

zeusmp

xalancbmk

wrf

tonto

sphinx3

soplex

sjeng

povray

perlbench

omnetpp

milc

mcf

libquantum

leslie3d

lbm

gobmk

GemsFDTD

gcc

dealII

calculix

cactusADM

bzip2

bwaves

astar

Normalized Time

Hardware−Assisted Paging Shadow Paging

Margin Behavior

Figure 7: Paging modes selected over time for SPEC CPU06

benchmarks using the benchmark-agnostic DSP-OFFSET

constructed on SPEC INT06.

DSP-OFFSET, and the full SPEC CPU2006 suite requires less than

6.5 hours.

While our profiling time is reduced in comparison to ASP-SVM,

the dataset for DSP-OFFSET is several orders of magnitude larger.

For DSP-OFFSET, with a 1 s sampling period, there are approxi-

mately 25000 data samples across the twelve integer benchmark

executions (one data sample per sampling period); for ASP-SVM

there are 60ś67 samples. This is noisy data, both due to variable

workload characteristics as well as the random selection of pag-

ing modes. There are periods of a benchmark’s execution which

will be under-sampled. In some cases, random selection may also

lead to periods where one paging mode is sampled almost always.

This leads to outliers in the contextual measurements (page fault

and DTLB miss counts) as well as in the labels and weights we

eventually generate using Binary-Offset. The enumerative profil-

ing approach taken in [16] encodes knowledge and assumptions

regarding workload structure, which is a significant source of their

profiling cost. We instead compute this structure after the fact using

the random logged data.

5 DISCUSSION AND FUTURE DIRECTIONS

While we chose to apply our method specifically to paging mode

selection, the framework we present is generally applicable to a

range of dynamic configuration problems for computer systems.

One particular example is that of hardware prefetching. Modern

Intel systems are equipped with four hardware prefetchers which

can be enabled or disabled at runtime [29]. IBM POWER7 systems

are equipped with a highly configurable prefetch engine that al-

lows prefetchers to be parameterized (e.g., prefetching depth and

stride) [27]. Liao et al. [20], Rahman et al. [23] propose prefetcher

configuration recommendation methods; however, these are static,

and not dynamic approaches. A single, fixed configuration is se-

lected for a given program after a window of profiling. Jiménez

et al. [14] propose a direct sampling method, similar to the DSP-

SAMPLE approach given in Section 3.1, without using contextual

information to guide their selection.

Pagingmode selection can be seen as a small andwell understood

instance of a dynamic configuration problem. Performance can

be described by a small number of features identified by domain

knowledge (page faults, DTLBmisses), with only two configurations

(Hardware-Assisted Paging, Shadow Paging). Hardware prefetching

is an interesting application as it presents the challenge of larger

action sets (16 in total for Intel systems) and action sets which

are combinatorial in nature (4 independent hardware prefetchers).

The Binary-Offset method can be expanded into an Offset-Tree [5],

providing for larger action spaces. Hardware prefetching can also

present the opportunity to expand the contextual information used

to include additional performance metrics (our framework has no

explicit limit on the number of attributes).

While our application of Binary-Offset substantially reduces

profiling time for training, validation of the resulting dynamic

selection procedures still requires execution of the model in situ.

Methods for evaluating deterministic policies, using random or

deterministic data, are available for the contextual bandit [8, 18],

and may be amenable to the problem setting. We hope to apply

these methods in order to provide offline evaluation, in addition to

offline model construction.

Finally, we note that the application of Binary-Offset still re-

quired careful attention in order to address problems such as label

noise. Standard convex-loss methods are sensitive to label outliers

in the data [21, 32]. We hope to investigate the use of more robust

machine learning methods which are capable of addressing this

problem.

6 CONCLUSIONS

In this paper, we present DSP-OFFSET, an effective procedure for

dynamic pagingmode selection which utilizes a simple, random pro-

filing method. Dynamic paging mode selection policies are capable

of balancing the trade-off between Hardware-Assisted Paging and

Shadow Paging at runtime by dynamically switching the paging

mode at runtime according to performancemetrics.We evaluate our

approach on the SPEC CPU2006 benchmark suite and compare our

approach with an existing machine learning method. DSP-OFFSET

Constructing Dynamic Policies for Paging Mode Selection ICPP 2018, August 13–16, 2018, Eugene, OR, USA

achieves speedups up to 44% compared to static paging mode se-

lections and matches state-of-the-art performance. In addition, our

method requires substantially less profiling, an 90% reduction in

profiling time.

ACKNOWLEDGMENTS

This research is supported in part by the National Science Founda-

tion under Grant No. CSR1422342 and CSR1618384, the National

Science Foundation of China under Grant No. 61232008, 61472008,

61672053 and U1611461, Shenzhen Key Research Project under

Grant No. JCYJ20170412150946024, and the 863 Program of China

under Grant No. 2015AA015305. Any opinions, findings, and con-

clusions or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of the sponsors.

REFERENCES
[1] Keith Adams and Ole Agesen. 2006. A Comparison of Software and Hardware

Techniques for x86 Virtualization. In Proceedings of the 12th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS XII). 2ś13.

[2] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. 2003. The
Nonstochastic Multiarmed Bandit Problem. SIAM J. Comput. 32, 1 (2003), 48ś77.

[3] Chang S. Bae, John R. Lange, and Peter A. Dinda. 2011. Enhancing Virtualized
Application Performance Through Dynamic Adaptive Paging Mode Selection.
In Proceedings of the 8th ACM International Conference on Autonomic Computing
(ICAC ’11). 255ś264.

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the Art of
Virtualization. SIGOPS Operating Systems Review 37, 5 (2003), 164ś177.

[5] Alina Beygelzimer and John Langford. 2009. The Offset Tree for Learning with
Partial Labels. In Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’09). 129ś138.

[6] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. 2008.
Accelerating Two-Dimensional Page Walks for Virtualized Systems. In Proceed-
ings of the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XIII). 26ś35.

[7] Nikhil Bhatia. 2009. Performance Evaluation of Intel EPT Hardware Assist. Techni-
cal Report. VMWare.

[8] Miroslav Dudík, John Langford, and Lihong Li. 2011. Doubly Robust Policy
Evaluation and Learning. In Proceedings of the 28th International Conference on
International Conference on Machine Learning (ICML ’11). 1097ś1104.

[9] Charles Elkan. 1997. Boosting And Naive Bayesian Learning. Technical Report.
University of California, San Diego.

[10] Yoav Freund and Robert E. Schapire. 1997. A Decision-Theoretic Generalization
of On-Line Learning and an Application to Boosting. J. Comput. System Sci. 55, 1
(1997), 119ś139.

[11] Matthew Gillespie. 2009. Best Practices for Paravirtualization Enhancements from
Intel Virtualization Technology: EPT and VT-d. Technical Report. Intel.

[12] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. SIGARCH
Computer Architecture News 34, 4 (September 2006), 1ś17.

[13] Intel 2016. Intel 64 and IA-32 Architectures Developer’s Manual: Volume 3C. Intel.
[14] Víctor Jiménez, Roberto Gioiosa, Francisco J. Cazorla, Alper Buyuktosunoglu,

Pradip Bose, and Francis P. O’Connell. 2012. Making Data Prefetch Smarter:
Adaptive Prefetching on POWER7. In 21st International Conference on Parallel
Architectures and Compilation Techniques (PACT). 137ś146.

[15] Rebecca Killick, Paul Fearnhead, and I.A. Eckley. 2012. Optimal Detection of
Changepoints With a Linear Computational Cost. 107 (2012), 1590ś1598.

[16] Wei Kuang, Laura E. Brown, and Zhenlin Wang. 2015. Selective switching
mechanism in virtual machines via support vector machines and transfer learning.
Machine Learning 101, 1 (2015), 137ś161.

[17] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges, A. Gocke, S.
Jaconette, M. Levenhagen, and R. Brightwell. 2010. Palacios and Kitten: New High
Performance Operating Systems for Scalable Virtualized and Native Supercom-
puting. In 2010 IEEE International Symposium on Parallel Distributed Processing
(IPDPS ’10). 1ś12.

[18] John Langford, Alexander Strehl, and Jennifer Wortman. 2008. Exploration Scav-
enging. In Proceedings of the 25th International Conference on Machine Learning
(ICML ’08). 528ś535.

[19] John Langford and Tong Zhang. 2007. The Epoch-Greedy Algorithm for Contex-
tual Multi-armed Bandits. In Advances in Neural Information Processing Systems
20 (NIPS). 817ś824.

[20] Shih-wei Liao, Tzu-Han Hung, Donald Nguyen, Chinyen Chou, Chiaheng Tu,
and Hucheng Zhou. 2009. Machine Learning-based Prefetch Optimization for
Data Center Applications. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (SC ’09). 1ś10.

[21] Tan T. Nguyen and Scott Sanner. 2013. Algorithms for Direct 0-1 Loss Optimiza-
tion in Binary Classification. In Proceedings of the 30th International Conference
on International Conference on Machine Learning (ICML ’13). 1085ś1093.

[22] J. R. Quinlan. 1996. Bagging, Boosting, and C4.S. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI ’96). 725ś730.

[23] Saami Rahman, Martin Burtscher, Ziliang Zong, and Apan Qasem. 2015. Maxi-
mizing Hardware Prefetch Effectiveness with Machine Learning. In Proceedings
of the 17th International Conference on High Performance Computing and Commu-
nications. 383ś389.

[24] Xipeng Shen, Yutao Zhong, and Chen Ding. 2004. Locality Phase Prediction.
In Proceedings of the 11th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS XI). 165ś176.

[25] Timothy Sherwood, Erez Perelman, and Brad Calder. 2001. Basic Block Distribu-
tion Analysis to Find Periodic Behavior and Simulation Points in Applications.
In Proceedings of the 2001 International Conference on Parallel Architectures and
Compilation Techniques (PACT ’01). 3ś14.

[26] Timothy Sherwood, Suleyman Sair, and Brad Calder. 2003. Phase Tracking
and Prediction. In Proceedings of the 30th Annual International Symposium on
Computer Architecture (ISCA ’03). 336ś349.

[27] B. Sinharoy, R. Kalla, W. J. Starke, H. Q. Le, R. Cargnoni, J. A. Van Norstrand,
B. J. Ronchetti, J. Stuecheli, J. Leenstra, G. L. Guthrie, D. Q. Nguyen, B. Blaner,
C. F. Marino, E. Retter, and P. Williams. 2011. IBM POWER7 Multicore Server
Processor. IBM Journal of Research and Development (2011), 191ś219.

[28] Alexander L. Strehl, John Langford, Lihong Li, and Sham M. Kakade. 2010. Learn-
ing from Logged Implicit Exploration Data. In Proceedings of the 23rd International
Conference on Neural Information Processing Systems (NIPS ’10). 2217ś2225.

[29] Vish Viswanathan. 2014. Disclosure of H/W Prefetcher Control on some Intel
Processors. Technical Report. Intel.

[30] Carl A. Waldspurger. 2002. Memory Resource Management in VMware ESX
Server. SIGOPS Operating Systems Review 36, SI (2002), 181ś194.

[31] Xiaolin Wang, Jiarui Zang, Zhenlin Wang, Yingwei Luo, and Xiaoming Li. 2011.
Selective Hardware/Software Memory Virtualization. In Proceedings of the 7th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (VEE ’11). 217ś226.

[32] Min Yang, Linli Xu, Martha White, Dale Schuurmans, and Yao liang Yu. 2010.
Relaxed Clipping: A Global TrainingMethod for Robust Regression and Classifica-
tion. In Advances in Neural Information Processing Systems 23 (NIPS). 2532ś2540.

[33] Xulei Yang, Qing Song, and Aize Cao. 2005. Weighted Support Vector Machine for
Data Classification. In Proceedings of the 2005 IEEE International Joint Conference
on Neural Networks, Vol. 2. 859ś864.

[34] Bianca Zadrozny, John Langford, and Naoki Abe. 2003. Cost-Sensitive Learning
by Cost-Proportionate Example Weighting. In Proceedings of the Third IEEE
International Conference on Data Mining (ICDM ’03). 435ś442.

	Abstract
	1 Introduction
	2 Background
	2.1 Dynamic Paging Mode Selection
	2.2 Contextual Bandits

	3 Dynamic Paging Mode Selection
	3.1 Direct Sampling (DSP-SAMPLE)
	3.2 Contextual Bandit Model (DSP-OFFSET)

	4 Evaluation
	4.1 Experimental Environment
	4.2 Experimental Design
	4.3 Results
	4.4 Profiling Cost

	5 Discussion and Future Directions
	6 Conclusions
	Acknowledgments
	References

