
Inductive Analysis of the Internet Protocol TLS

Lawrence C. Paulson, University of Cambridge

Internet browsers use security protocols to protect sensitive messages. An inductive analysis of
TLS (a descendant of SSL 3.0) has been performed using the theorem prover Isabelle. Proofs

are based on higher-order logic and make no assumptions concerning beliefs or finiteness. All the

obvious security goals can be proved; session resumption appears to be secure even if old session
keys have been compromised. The proofs suggest minor changes to simplify the analysis.

TLS, even at an abstract level, is much more complicated than most protocols that researchers

have verified. Session keys are negotiated rather than distributed, and the protocol has many
optional parts. Nevertheless, the resources needed to verify TLS are modest: six man-weeks of

effort and three minutes of processor time.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specify-

ing and Verifying and Reasoning about Programs—Mechanical verification; C.2.2 [Computer-
Communication Networks]: Network Protocols—Protocol Verification

General Terms: Security, Verification

Additional Key Words and Phrases: TLS, authentication, proof tools, inductive method, Isabelle

1. INTRODUCTION

Internet commerce requires secure communications. To order goods, a customer
typically sends credit card details. To order life insurance, the customer might
have to supply confidential personal data. Internet users would like to know that
such information is safe from eavesdropping or alteration.

Many Web browsers protect transmissions using the protocol SSL (Secure Sockets
Layer). The client and server machines exchange nonces and compute session keys
from them. Version 3.0 of SSL has been designed to correct a flaw of previous
versions, the cipher-suite rollback attack, whereby an intruder could get the parties
to adopt a weak cryptosystem [Wagner and Schneier 1996]. The latest version of
the protocol is called TLS (Transport Layer Security) [Dierks and Allen 1999]; it
closely resembles SSL 3.0.

Is TLS really secure? My proofs suggest that it is, but one should draw no

The research was funded by the U.K.’s Engineering and Physical Sciences Research Council, grants
GR/K77051 ‘Authentication Logics’ and GR/K57381 ‘Mechanizing Temporal Reasoning.’
Address: Computer Laboratory, University of Cambridge, Cambridge CB2 3QG, England
email lcp@cl.cam.ac.uk

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM

Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

ar
X

iv
:1

90
7.

07
55

9v
1

 [
cs

.C
R

]
 1

7
Ju

l 2
01

9

2 · L. C. Paulson

conclusions without reading the rest of this paper, which describes how the protocol
was modelled and what properties were proved. I have analyzed a much simplified
form of TLS; I assume hashing and encryption to be secure.

My abstract version of TLS is simpler than the concrete protocol, but it is still
more complex than the protocols typically verified. We have not reached the limit
of what can be analyzed formally.

The proofs were conducted using Isabelle/HOL [Paulson 1994], an interactive the-
orem prover for higher-order logic. They use the inductive method [Paulson 1998],
which has a simple semantics and treats infinite-state systems. Model-checking is
not used, so there are no restrictions on the agent population, numbers of concur-
rent runs, etc.

The paper gives an overview of TLS (§2) and of the inductive method for verifying
protocols (§3). It continues by presenting the Isabelle formalization of TLS (§4) and
outlining some of the properties proved (§5). Finally, the paper discusses related
work (§6) and concludes (§7).

2. OVERVIEW OF TLS

A TLS handshake involves a client, such as a World Wide Web browser, and a
Web server. Below, I refer to the client as A (‘Alice’) and the server as B (‘Bob’),
as is customary for authentication protocols, especially since C and S often have
dedicated meanings in the literature.

At the start of a handshake, A contacts B, supplying a session identifier and
nonce. In response, B sends another nonce and his public-key certificate (my model
omits other possibilities). Then A generates a pre-master-secret, a 48-byte random
string, and sends it to B encrypted with his public key. A optionally sends a signed
message to authenticate herself. Now, both parties calculate the master-secret M
from the nonces and the pre-master-secret, using a secure pseudo-random-number
function (PRF). They calculate session keys and MAC secrets from the nonces
and master-secret. Each session involves a pair of symmetric keys; A encrypts
using one and B encrypts using the other. Similarly, A and B protect message
integrity using separate MAC secrets. Before sending application data, both parties
exchange finished messages to confirm all details of the handshake and to check
that cleartext parts of messages have not been altered.

A full handshake is not always necessary. At some later time, A can resume a
session by quoting an old session identifier along with a fresh nonce. If B is willing
to resume the designated session, then he replies with a fresh nonce. Both parties
compute fresh session keys from these nonces and the stored master-secret, M .
Both sides confirm this shorter run using finished messages.

TLS is highly complex. My version leaves out many details for the sake of
simplicity:

—Record formats, field widths, cryptographic algorithms, etc. are irrelevant in an
abstract analysis.

—Alert and failure messages are unnecessary because bad sessions can simply be
abandoned.

—The server key exchange message allows anonymous sessions among other
things, but it is not an essential part of the protocol.

Inductive Analysis of the Internet Protocol TLS · 3

A,Na,Sid,Pa

client server

client hello

Nb,Sid,Pb

server hello

cert(B,Kb)

server certificate

cert(A,Ka)

client certificate

{PMS}Kb

client key exchange

{Hash(Nb,B,PMS)}Ka-1

certificate verify

{Finished}clientK(Na,Nb,M)

client finished

 M = PRF(PMS,Na,Nb)

Finished = Hash(M,messages)

{Finished}serverK(Na,Nb,M)

server finished

Fig. 1. The TLS Handshake Protocol as Modelled

4 · L. C. Paulson

Here are the handshake messages in detail, as I model them, along with comments
about their relation to full TLS. Section numbers, such as tls§7.3, refer to the TLS
specification [Dierks and Allen 1999]. In Fig. 1, dashed lines indicate optional parts.

client hello A→ B : A,Na, Sid, Pa

The items in this message include the nonce Na, called client random, and the
session identifier Sid. The model makes no assumptions about the structure of
agent names such as A and B. Item Pa is A’s set of preferences for encryption
and compression; due to export controls, for example, some clients cannot support
certain encryption methods. For our purposes, all that matters is that both parties
can detect if Pa has been altered during transmission (tls§7.4.1.2).1

server hello B → A : Nb, Sid, Pb

Agent B, in his turn, replies with his nonce Nb (server random). He repeats the
session identifier and returns as Pb his cryptographic preferences, selected from Pa.

server certificate B → A : certificate(B,Kb)

The server’s public key, Kb, is delivered in a certificate signed by a trusted third
party. (The TLS proposal (tls§7.4.2) says it is ‘generally an X.509v3 certificate.’ I
assume a single certification authority and omit lifetimes and similar details.) Mak-
ing the certificate mandatory and eliminating the server key exchange message
(tls§7.4.3) simplifies server hello. I leave certificate request (tls§7.4.4) implicit:
A herself decides whether or not to send the optional messages client certificate
and certificate verify.

client certificate* A→ B : certificate(A,Ka)

client key exchange A→ B : {|PMS |}Kb

certificate verify* A→ B : {|Hash{|Nb, B,PMS |}|}Ka−1

The notation {|X|}K stands for the message X encrypted or signed using the key K.
Optional messages are starred (*) above; in certificate verify, A authenticates
herself to B by signing the hash of some items relevant to the current session. The
specification states that all handshake messages should be hashed, but my proofs
suggest that only Nb, B and PMS are essential.

For simplicity, I do not model the possibility of arriving at the pre-master-secret
via a Diffie-Hellman exchange (tls§7.4.7.2). The proofs therefore can say nothing
about this part of the protocol.

client finished A→ B : {|Finished |}clientK(Na,Nb,M)

server finished A→ B : {|Finished |}serverK(Na,Nb,M)

Both parties compute the master-secret M from PMS , Na and Nb and compute
Finished as the hash of Sid, M , Na, Pa, A, Nb, Pb, B. According to the spec-
ification (tls§7.4.9), M should be hashed with all previous handshake messages

1According to the TLS specification, client hello does not mention the client’s name. But
obviously the server needs to know where the request comes from, and in practice gets this

information from the underlying transport protocol (TCP). My formalization therefore makes the
sender field explicit. Note that it is not protected and could be altered by an intruder.

Inductive Analysis of the Internet Protocol TLS · 5

using PRF. My version hashes message components rather than messages in order
to simplify the inductive definition; as a consequence, it is vulnerable to an attack
in which the spy intercepts certificate verify, downgrading the session so that the
client appears to be unauthenticated.

The symmetric key clientK(Na,Nb,M) is intended for client encryption, while
serverK(Na,Nb,M) is for server encryption; each party decrypts using the other’s
key (tls§6.3). The corresponding MAC secrets are implicit because my model as-
sumes strong encryption; formally, the only operation that can be performed on an
encrypted message is to decrypt it using the appropriate key, yielding the original
plaintext. With encryption already providing an integrity check, there is no need
to include MAC secrets in the model.

Once a party has received the other’s finished message and compared it with
her own, she is assured that both sides agree on all critical parameters, including
M and the preferences Pa and Pb. Now she may begin sending confidential data.
The SSL specification [Freier et al. 1996] erroneously states that she can send data
immediately after sending her own finished message, before confirming these pa-
rameters; there she takes a needless risk, since an attacker may have changed the
preferences to request weak encryption. This is the cipher-suite rollback attack,
precisely the one that the finished messages are intended to prevent. TLS corrects
this error.

For session resumption, the hello messages are the same. After checking that
the session identifier is recent enough, the parties exchange finished messages and
start sending application data. On paper, then, session resumption does not involve
any new message types. But in the model, four further events are involved. Each
party stores the session parameters after a successful handshake and looks them up
when resuming a session.

3. PROVING PROTOCOLS USING ISABELLE

Isabelle [Paulson 1994] is an interactive theorem prover supporting several for-
malisms, one of which is higher-order logic (HOL). Protocols can be modelled in
Isabelle/HOL as inductive definitions. Isabelle’s simplifier and classical reasoner
automate large parts of the proofs. A security protocol is modelled as the set of
traces that could arise when a population of agents run it. Among the agents is a
spy who controls some subset of them as well as the network itself. In constrast to
formalizations intended for model checking, both the population and the number of
interleaved sessions is unlimited. This section summarizes the approach, described
in detail elsewhere [Paulson 1998].

6 · L. C. Paulson

3.1 Messages

Messages are composed of agent names, nonces, keys, etc.:

AgentA identity of an agent
NumberN guessable number
NonceN non-guessable number
KeyK cryptographic key
HashX hash of message X
CryptKX encryption of X with key K
{|X1, . . . , Xn|} concatenation of messages

The notion of guessable concerns the spy, who is given the power to generate any
guessable item. The protocol’s client random and server random are modelled
using Nonce because they are 28-byte random values, while session identifiers
are modelled using Number because they may be any strings, which might be pre-
dictable. TLS sends these items in clear, so whether they are guessable or not makes
little difference to what can be proved. The pre-master-secret must be modelled as
a nonce; we shall prove no security properties by assuming it can be guessed.

The model assumes strong encryption. Hashing is collision-free, and nobody
can recover a message from its hash. Encrypted messages can neither be read
nor changed without using the corresponding key. The protocol verifier makes
such assumptions not because they are true but because making them true is the
responsibility of the cryptographer. Moreover, reasoning about a cryptosystem
such as DES down to the bit level is infeasible. However, this is a weakness of
the method: certain combinations of protocols and encryption methods can be
vulnerable [Ryan and Schneider 1998].

Three operators are used to express security properties. Each maps a set H of
messages to another such set. Typically H is a history of all messages ever sent,
augmented with the spy’s initial knowledge of compromised keys.

—partsH is the set of message components potentially recoverable from H (assum-
ing all ciphers could be broken).

—analzH is the set of message components recoverable from H by means of de-
cryption using keys available (recursively) in analzH.

—synthH is the set of messages that could be expressed, starting from H and
guessable items, using hashing, encryption and concatenation.

3.2 Traces

A trace is a list of events such as SaysABX, meaning ‘A sends message X to B,’ or
NotesAX, meaning ‘A stores X internally.’ Each trace is built in reverse order by
prefixing (‘consing’) events to the front of the list, where # is the ‘cons’ operator.

The set bad comprises those agents who are under the spy’s control.
The function spies yields the set of messages the spy can see in a trace: all

messages sent across the network and the internal notes and private keys of the bad

Inductive Analysis of the Internet Protocol TLS · 7

agents.

spies ((SaysABX) # evs) = {X} ∪ spies evs

spies ((NotesAX) # evs) =

{
{X} ∪ spies evs if A ∈ bad
spies evs otherwise

The set used evs includes the parts of all messages in the trace, whether they are
visible to other agents or not. Now Na 6∈ used evs expresses that Na is fresh with
respect to the trace evs.

used ((SaysABX) # evs) = parts{X} ∪ used evs

used ((NotesAX) # evs) = parts{X} ∪ used evs

4. FORMALIZING THE PROTOCOL IN ISABELLE

With the inductive method, each protocol step is translated into a rule of an in-
ductive definition. A rule’s premises describe the conditions under which the rule
may apply, while its conclusion adds new events to the trace. Each rule allows a
protocol step to occur but does not force it to occur—just as real world machines
crash and messages get intercepted. The inductive definition has further rules to
model intruder actions, etc.

For TLS, the inductive definition comprises fifteen rules, compared with the
usual six or seven for simpler protocols. The computational cost of proving a
theorem is only linear in the number of rules: proof by induction considers each
rule independently of the others. But the cost seems to be exponential in the
complexity of a rule, for example if there is multiple encryption. Combining rules
in order to reduce their number is therefore counterproductive.

4.1 Basic Constants

TLS uses both public-key and shared-key encryption. Each agent A has a private
key priKA and a public key pubKA. The operators clientK and serverK create
symmetric keys from a triple of nonces. Modelling the underlying pseudo-random-
number generator causes some complications compared with the treatment of simple
public-key protocols such as Needham-Schroeder [Paulson 1998].

The common properties of clientK and serverK are captured in the function
sessionK, which is assumed to be an injective (collision-free) source of session keys.
In an Isabelle theory file, functions are declared as constants that have a function
type. Axioms about them can be given using a rules section.

datatype role = ClientRole | ServerRole

consts

sessionK :: "(nat*nat*nat) * role => key"

clientK, serverK :: "nat*nat*nat => key"

rules

inj_sessionK "inj sessionK"

isSym_sessionK "isSymKey (sessionK nonces)"

The enumeration type, role, indicates the use of the session key. We ensure that
clientK and serverK have disjoint ranges (no collisions between the two) by defining

clientKX = sessionK(X, ClientRole)

serverKX = sessionK(X, ServerRole).

8 · L. C. Paulson

We must also declare the pseudo-random function PRF. In the real protocol, PRF
has an elaborate definition in terms of the hash functions MD5 and SHA-1 (see
tls§5). At the abstract level, we simply assume PRF to be injective.

consts

PRF :: "nat*nat*nat => nat"

tls :: "event list set"

rules

inj_PRF "inj PRF"

We have also declared the constant tls to be the set of possible traces in a system
running the protocol. The inductive definition of tls specifies it to be the least set
of traces that is closed under the rules supplied below. A trace belongs to tls only
if it can be generated by finitely many applications of the rules. Induction over tls
amounts to considering every possible way that a trace could have been extended.

4.2 The Spy

Figure 2 presents the first three rules, two of which are standard. Rule Nil allows
the empty trace. Rule Fake says that the spy may invent messages using past traffic
and send them to any other agent. A third rule, SpyKeys, augments Fake by letting
the spy use the TLS-specific functions sessionK and PRF. In conjunction with the
spy’s other powers, it allows him to apply sessionK and PRF to any three nonces
previously available to him. It does not let him invert these functions, which we
assume to be one-way. We could replace SpyKeys by defining a TLS version of the
function synth; however, we should then have to rework the underlying theory of
messages, which is common to all protocols.

Nil

[] ∈ tls

Fake

[| evs ∈ tls; X ∈ synth (analz (spies evs)) |]

=⇒ Says Spy B X # evs ∈ tls

SpyKeys
[| evsSK ∈ tls;

{|Nonce NA, Nonce NB, Nonce M|} ⊆ analz (spies evsSK) |]

=⇒ Notes Spy {| Nonce (PRF(M,NA,NB)),

Key (sessionK((NA,NB,M),role)) |} # evsSK ∈ tls

Fig. 2. Specifying TLS: Basic Rules

4.3 Hello Messages

Figure 3 presents three rules for the hello messages. Client hello lets any agent A
send the nonce Na, session identifier Sid and preferences Pa to any other agent, B.
Server hello is modelled similarly. Its precondition is that B has received a
suitable instance of Client hello.

In Client hello, the assumptions Na 6∈ used evsCH and Na 6∈ range PRF state
that Na is fresh and distinct from all possible master-secrets. The latter assumption

Inductive Analysis of the Internet Protocol TLS · 9

ClientHello

[| evsCH ∈ tls; Nonce NA 6∈ used evsCH; NA 6∈ range PRF |]

=⇒ Says A B {|Agent A, Nonce NA, Number SID, Number PA|}

evsCH ∈ tls

ServerHello

[| evsSH ∈ tls; Nonce NB 6∈ used evsSH; NB 6∈ range PRF;

Says A′ B {|Agent A, Nonce NA, Number SID, Number PA|}

∈ set evsSH |]

=⇒ Says B A {|Nonce NB, Number SID, Number PB|} # evsSH ∈ tls

Certificate

evsC ∈ tls =⇒ Says B A (certificate B (pubK B)) # evsC ∈ tls

Fig. 3. Specifying TLS: Hello Messages

precludes the possibility that A might choose a nonce identical to some master-
secret. (The standard function used does not cope with master-secrets because
they never appear in traffic.) Both assumptions are reasonable because a 28-byte
random string is highly unlikely to clash with any existing nonce or future master-
secret. Still, the condition seems stronger than necessary. It refers to all conceivable
master-secrets because there is no way of referring to one single future. As an
alternative, a ‘no coincidences’ condition might be imposed later in the protocol,
but the form it should take is not obvious; if it is wrong, it might exclude realistic
attacks.

The Certificate rule handles both server certificate and client certificate. It
is more liberal than real TLS, for any agent may send his public-key certificate to
any other agent. A certificate is represented by an (agent, key) pair signed by the
authentication server. Freshness of certificates and other details are not modelled.

constdefs certificate :: "[agent,key] => msg"

"certificate A KA == Crypt(priK Server){|Agent A, Key KA|}"

4.4 Client Messages

The next two rules concern client key exchange and certificate verify (Fig. 4).
Rule ClientKeyExch chooses a PMS that is fresh and differs from all master-secrets,
like the nonces in the hello messages. It requires server certificate to have been
received. No agent is allowed to know the true sender of a message, so ClientKey-
Exch might deliver the PMS to the wrong agent. Similarly, CertVerify might use
the Nb value from the wrong instance of server hello. Security is not compromised
because the run will fail in the finished messages.

ClientKeyExch not only sends the encrypted PMS to B but also stores it inter-
nally using the event NotesA {|B,PMS |}. Other rules model A’s referring to this
note. For instance, CertVerify states that if A chose PMS for B and has received
a server hello message, then she may send certificate verify.

In my initial work on TLS, I modelled A’s knowledge by referring to the event
of her sending {|PMS |}Kb to B. However, this approach did not correctly model
the sender’s knowledge: the spy can intercept and send the ciphertext {|PMS |}Kb

without knowing PMS . (The approach does work for shared-key encryption. A
ciphertext such as {|PMS |}Kab identifies the agents who know the plaintext, namely

10 · L. C. Paulson

ClientKeyExch

[| evsCX ∈ tls; Nonce PMS 6∈ used evsCX; PMS 6∈ range PRF;

Says B′ A (certificate B KB) ∈ set evsCX |]

=⇒ Says A B (Crypt KB (Nonce PMS))

Notes A {|Agent B, Nonce PMS|}

evsCX ∈ tls

CertVerify
[| evsCV ∈ tls;

Says B′ A {|Nonce NB, Number SID, Number PB|} ∈ set evsCV;

Notes A {|Agent B, Nonce PMS|} ∈ set evsCV |]

=⇒ Says A B (Crypt (priK A) (Hash{|Nonce NB, Agent B, Nonce PMS|}))

evsCV ∈ tls

Fig. 4. Client key exchange and certificate verify

A and B.) I discovered this anomaly when a proof failed. The final proof state
indicated that the spy could gain the ability to send client finished merely by
replaying A’s message {|PMS |}Kb.

Anomalies like this one can creep into any formalization. The worst are those
that make a theorem hold vacuously, for example by mis-stating a precondition.
There is no remedy but constant vigilance, noticing when a result is too good to
be true or is proved too easily. We must also check that the assumptions built into
the model, such as strong encryption, reasonably match the protocol’s operating
environment.

4.5 Finished Messages

Next come the finished messages (Fig. 5). ClientFinished states that if A has sent
client hello and has received a plausible instance of server hello and has chosen
a PMS for B, then she can calculate the master-secret and send a finished message
using her client write key. ServerFinished is analogous and may occur if B has
received a client hello, sent a server hello, and received a client key exchange
message.

4.6 Session Resumption

That covers all the protocol messages, but the specification is not complete. Next
come two rules to model agents’ confirmation of a session (Fig. 6). Each agent, after
sending its finished message and receiving a matching finished message apparently
from its peer, records the session parameters to allow resumption. Next come
two rules for session resumption (Fig. 7). Like ClientFinished and ServerFinished,
they refer to two previous hello messages. But instead of calculating the master-
secret from a PMS just sent, they use the master-secret stored by ClientAccepts
or ServerAccepts with the same session identifier. They calculate new session keys
using the fresh nonces.

The references to PMS in the Accepts rules appear to contradict the protocol
specification (tls§8.1): ‘the pre-master-secret should be deleted from memory once
the master-secret has been computed.’ The purpose of those references is to restrict
the rules to agents who actually know the secrets, as opposed to a spy who merely
has replayed messages (recall the comment at the end of §4.4). They can probably

Inductive Analysis of the Internet Protocol TLS · 11

ClientFinished

[| evsCF ∈ tls;

Says A B {|Agent A, Nonce NA, Number SID, Number PA|} ∈ set evsCF;

Says B′ A {|Nonce NB, Number SID, Number PB|} ∈ set evsCF;

Notes A {|Agent B, Nonce PMS|} ∈ set evsCF;

M = PRF(PMS,NA,NB) |]

=⇒ Says A B (Crypt (clientK(NA,NB,M))

(Hash{|Number SID, Nonce M,

Nonce NA, Number PA, Agent A,

Nonce NB, Number PB, Agent B|}))

evsCF ∈ tls

ServerFinished

[| evsSF ∈ tls;

Says A′ B {|Agent A, Nonce NA, Number SID, Number PA|} ∈ set evsSF;

Says B A {|Nonce NB, Number SID, Number PB|} ∈ set evsSF;

Says A′′ B (Crypt (pubK B) (Nonce PMS)) ∈ set evsSF;

M = PRF(PMS,NA,NB) |]

=⇒ Says B A (Crypt (serverK(NA,NB,M))

(Hash{|Number SID, Nonce M,

Nonce NA, Number PA, Agent A,

Nonce NB, Number PB, Agent B|}))

evsSF ∈ tls

Fig. 5. Finished messages

ClientAccepts

[| evsCA ∈ tls;

Notes A {|Agent B, Nonce PMS|} ∈ set evsCA;

M = PRF(PMS,NA,NB);

X = Hash{|Number SID, Nonce M,

Nonce NA, Number PA, Agent A,

Nonce NB, Number PB, Agent B|};

Says A B (Crypt (clientK(NA,NB,M)) X) ∈ set evsCA;

Says B′ A (Crypt (serverK(NA,NB,M)) X) ∈ set evsCA |]

=⇒ Notes A {|Number SID, Agent A, Agent B, Nonce M|} # evsCA ∈ tls

ServerAccepts

[| evsSA ∈ tls; A 6= B;

Says A′′ B (Crypt (pubK B) (Nonce PMS)) ∈ set evsSA;

M = PRF(PMS,NA,NB);

X = Hash{|Number SID, Nonce M,

Nonce NA, Number PA, Agent A,

Nonce NB, Number PB, Agent B|};

Says B A (Crypt (serverK(NA,NB,M)) X) ∈ set evsSA;

Says A′ B (Crypt (clientK(NA,NB,M)) X) ∈ set evsSA |]

=⇒ Notes B {|Number SID, Agent A, Agent B, Nonce M|} # evsSA ∈ tls

Fig. 6. Agent acceptance events

12 · L. C. Paulson

be replaced by references to the master-secret, which the agents keep in memory.
We would have to add further events to the inductive definition. Complicating the
model in this way brings no benefits: the loss of either secret is equally catastrophic.

ClientResume

[| evsCR ∈ tls;

Says A B {|Agent A, Nonce NA, Number SID, Number PA|} ∈ set evsCR;

Says B′ A {|Nonce NB, Number SID, Number PB|} ∈ set evsCR;

Notes A {|Number SID, Agent A, Agent B, Nonce M|} ∈ set evsCR |]

=⇒ Says A B (Crypt (clientK(NA,NB,M))

(Hash{|Number SID, Nonce M,

Nonce NA, Number PA, Agent A,

Nonce NB, Number PB, Agent B|}))

evsCR ∈ tls

ServerResume

[| evsSR ∈ tls;

Says A′ B {|Agent A, Nonce NA, Number SID, Number PA|} ∈ set evsSR;

Says B A {|Nonce NB, Number SID, Number PB|} ∈ set evsSR;

Notes B {|Number SID, Agent A, Agent B, Nonce M|} ∈ set evsSR |]

=⇒ Says B A (Crypt (serverK(NA,NB,M))

(Hash{|Number SID, Nonce M,

Nonce NA, Number PA, Agent A,

Nonce NB, Number PB, Agent B|})) # evsSR

∈ tls

Fig. 7. Agent resumption events

Four further rules (omitted here) model agents’ confirmation of a session and a
subsequent session resumption.

4.7 Security Breaches

The final rule, Oops, models security breaches. Any session key, if used, may end
up in the hands of the spy. Session resumption turns out to be safe even if the spy
has obtained session keys from earlier sessions.

Oops

[| evso ∈ tls;

Says A B (Crypt (sessionK((NA,NB,M),role)) X) ∈ set evso |]

=⇒ Says A Spy (Key (sessionK((NA,NB,M),role))) # evso ∈ tls

Other security breaches could be modelled. The pre-master-secret might be lost
to a cryptanalytic attack against the client key exchange message, and Wagner
and Schneier [1996, §4.7] suggest a strategy for discovering the master-secret. Loss
of the PMS would compromise the entire session; it is hard to see what security
goal could still be proved (in contrast, loss of a session key compromises that key
alone). Recall that the spy already controls the network and an unknown number
of agents.

The protocol, as modelled, is too liberal and is highly nondeterministic. As in
TLS itself, some messages are optional (client certificate, certificate verify).
Either client or server may be the first to commit to a session or to send a finished
message. One party might attempt session resumption while the other runs the full

Inductive Analysis of the Internet Protocol TLS · 13

protocol. Nothing in the rules above stops anyone from responding to any message
repeatedly. Anybody can send a certificate to anyone else at any time.

Such nondeterminism is unacceptable in a real protocol, but it simplifies the
model. Constraining a rule to follow some other rule or to apply at most once
requires additional preconditions. A simpler model generally allows simpler proofs.
Safety theorems proved under a permissive regime will continue to hold under a
strict one.

5. PROPERTIES PROVED OF TLS

One difficulty in protocol verification is knowing what to prove. Protocol goals are
usually stated informally. The TLS memo states ‘three basic properties’ (tls§1):

(1) ‘The peer’s identity can be authenticated using . . . public key cryptography’

(2) ‘The negotiated secret is unavailable to eavesdroppers, and for any authenti-
cated connection the secret cannot be obtained, even by an attacker who can
place himself in the middle of the connection’

(3) ‘no attacker can modify the negotiation communication without being detected
by the parties’

Authentication can mean many things [Gollmann 1996]; it is a pity that the
memo does not go into more detail. I have taken ‘authenticated connection’ to
mean one in which both parties use their private keys. My model allows A to
be unauthenticated, since certificate verify is optional. However, B must be
authenticated: the model does not support Diffie-Hellman, so Kb−1 must be used
to decrypt client key exchange. Against an active intruder, an unauthenticated
connection is vulnerable to the usual man-in-the-middle attack. Since the model
does not support unauthenticated connections, I cannot investigate whether they
are secure against passive eavesdroppers.

Some of the results discussed below relate to authentication. A pair of honest
agents can establish the master-secret securely and use it to generate uncompro-
mised session keys. Session resumption is secure even if previous session keys from
that session have been compromised.

5.1 Basic Lemmas

In the inductive method, results are of three sorts: possibility properties, regularity
lemmas and secrecy theorems. Possibility properties merely exercise all the rules
to check that the model protocol can run. For a simple protocol, one possibility
property suffices to show that message formats are compatible. For TLS, I proved
four properties to check various paths through the main protocol, the client verify
message, and session resumption.

Regularity lemmas assert properties that hold of all traffic. For example, no
protocol step compromises a private key. From our specification of TLS, it is easy
to prove that all certificates are valid. (This property is overly strong, but adding
false certificates seems pointless: B might be under the spy’s control anyway.) If
certificate(B,K) appears in traffic, then K really is B’s public key:

[| certificate B KB ∈ parts(spies evs); evs ∈ tls |] =⇒ pubK B = KB

The set parts(spies evs) includes the components of all messages that have been sent;

14 · L. C. Paulson

in the inductive method, regularity lemmas often mention this set. Sometimes the
lemmas merely say that events of a particular form never occur.

Many regularity lemmas are technical. Here are two typical ones. If a master-
secret has appeared in traffic, then so has the underlying pre-master-secret. Only
the spy might send such a message.

[| Nonce (PRF (PMS,NA,NB)) ∈ parts(spies evs); evs ∈ tls |]

=⇒ Nonce PMS ∈ parts(spies evs)

If a pre-master-secret is fresh, then no session key derived from it can either have
been transmitted or used to encrypt.2

[| Nonce PMS 6∈ parts(spies evs);

K = sessionK((Na, Nb, PRF(PMS,NA,NB)), role);

evs ∈ tls |]

=⇒ Key K 6∈ parts(spies evs) & (∀ Y. Crypt K Y 6∈ parts(spies evs))

Client authentication, one of the protocol’s goals, is easily proved. If certificate
verify has been sent, apparently by A, then it really has been sent by A provided
A is uncompromised (not controlled by the spy). Moreover, A has chosen the
pre-master-secret that is hashed in certificate verify.

[| X ∈ parts(spies evs); X = Crypt KA−1 (Hash{|nb, Agent B, pms|});

certificate A KA ∈ parts(spies evs);

evs ∈ tls; A 6∈ bad |]

=⇒ Says A B X ∈ set evs

5.2 Secrecy Goals

Other goals of the protocol relate to secrecy: certain items are available to some
agents but not to others. They are usually the hardest properties to establish.
With the inductive method, they seem always to require, as a lemma, some form
of session key compromise theorem. This theorem imposes limits on the message
components that can become compromised by the loss of a session key. Typically
we require that these components contain no session keys, but for TLS, they must
contain no nonces. Nonces are of critical importance because one of them is the
pre-master-secret.

The theorem seems obvious. No honest agent encrypts nonces using session keys,
and the spy can only send nonces that have already been compromised. However,
its proof takes over seven seconds to run. Like other secrecy proofs, it involves a
large, though automatic, case analysis.

evs ∈ tls =⇒
Nonce N ∈ analz (insert (Key (sessionK z)) (spies evs)) =

(Nonce N ∈ analz (spies evs))

Note that insertxA denotes {x} ∪ A. The set analz(spies evs) includes all message
components available to the spy, and likewise analz({K} ∪ spies evs) includes all
message components that the spy could get with the help of key K. The theorem
states that session keys do not help the spy to learn new nonces.

2The two properties must be proved in mutual induction because of interactions between the Fake
and Oops rules.

Inductive Analysis of the Internet Protocol TLS · 15

Other secrecy proofs follow easily from the session key compromise theorem, using
induction and simplification. Provided A and B are honest, the client’s session key
will be secure unless A herself gives it to the spy, using Oops.

[| Notes A {|Agent B, Nonce PMS|} ∈ set evs;

Says A Spy (Key (clientK(NA,NB,PRF(PMS,NA,NB)))) 6∈ set evs;

A 6∈ bad; B 6∈ bad; evs ∈ tls |]

=⇒ Key (clientK(NA,NB,PRF(PMS,NA,NB))) 6∈ parts(spies evs)

An analogous theorem holds for the server’s session key. However, the server cannot
check the Notes assumption; see §5.3.2.

[| Notes A {|Agent B, Nonce PMS|} ∈ set evs;

Says B Spy (Key (serverK(NA,NB,PRF(PMS,NA,NB)))) 6∈ set evs;

A 6∈ bad; B 6∈ bad; evs ∈ tls |]

=⇒ Key (serverK(NA,NB,PRF(PMS,NA,NB))) 6∈ parts(spies evs)

If A sends the client key exchange message to B, and both agents are uncom-
promised, then the pre-master-secret and master-secret will stay secret.

[| Notes A {|Agent B, Nonce PMS|} ∈ set evs;

evs ∈ tls; A 6∈ bad; B 6∈ bad |]

=⇒ Nonce PMS 6∈ analz(spies evs)

[| Notes A {|Agent B, Nonce PMS|} ∈ set evs;

evs ∈ tls; A 6∈ bad; B 6∈ bad |]

=⇒ Nonce (PRF(PMS,NA,NB)) 6∈ analz(spies evs)

5.3 Finished Messages

Other important protocol goals concern authenticity of the finished message. If
each party can know that the finished message just received indeed came from
the expected agent, then they can compare the message components to confirm
that no tampering has occurred. These components include the cryptographic
preferences, which an intruder might like to downgrade. Naturally, the guarantees
are conditional on both agents’ being uncompromised.

5.3.1 Client’s guarantee. The client’s guarantee has several preconditions. The
client, A, has chosen a pre-master-secret PMS for B. The traffic contains a finished
message encrypted with a server write key derived from PMS . The server, B,
has not given that session key to the spy (via Oops). The guarantee then states
that B himself has sent that message, and to A.

[| X = Crypt (serverK(Na,Nb,M))

(Hash{|Number SID, Nonce M,

Nonce Na, Number PA, Agent A,

Nonce Nb, Number PB, Agent B|});

M = PRF(PMS,NA,NB);

X ∈ parts(spies evs);

Notes A {|Agent B, Nonce PMS|} ∈ set evs;

Says B Spy (Key (serverK(Na,Nb,M))) 6∈ set evs;

evs ∈ tls; A 6∈ bad; B 6∈ bad |]

=⇒ Says B A X ∈ set evs

One of the preconditions may seem to be too liberal. The guarantee applies to any
occurrence of the finished message in traffic, but it is needed only when A has

16 · L. C. Paulson

received that message. The form shown, expressed using parts(spies evs), stream-
lines the proof; in particular, it copes with the spy’s replaying a finished message
concatenated with other material. It is well known that proof by induction can
require generalizing the theorem statement.

5.3.2 Server’s guarantee. The server’s guarantee is slightly different. If any mes-
sage has been encrypted with a client write key derived from a given PMS—which
we assume to have come from A—and if A has not given that session key to the
spy, then A herself sent that message, and to B.

[| M = PRF(PMS,NA,NB);

Crypt (clientK(Na,Nb,M)) Y ∈ parts(spies evs);

Notes A {|Agent B, Nonce PMS|} ∈ set evs;

Says A Spy (Key(clientK(Na,Nb,M))) 6∈ set evs;

evs ∈ tls; A 6∈ bad; B 6∈ bad |]

=⇒ Says A B (Crypt (clientK(Na,Nb,M)) Y) ∈ set evs

The assumption (involving Notes) that A chose the PMS is essential. If the client
has not authenticated herself, then B knows nothing about her true identity and
must trust that she is indeed A. By sending certificate verify, the client can
discharge the Notes assumption:

[| Crypt KA−1 (Hash{|nb, Agent B, Nonce PMS|}) ∈ parts(spies evs);

certificate A KA ∈ parts(spies evs);

evs ∈ tls; A 6∈ bad |]

=⇒ Notes A {|Agent B, Nonce PMS|} ∈ set evs

B’s guarantee does not even require his inspecting the finished message. The very
use of clientK(Na,Nb,M) is proof that the communication is from A to B. If we
consider the analogous property for A, we find that using serverK(Na,Nb,M) only
guarantees that the sender is B; in the absence of certificate verify, B has no
evidence that the PMS came from A. If he sends server finished to somebody
else then the session will fail, so there is no security breach.

Still, changing client key exchange to include A’s identity,

A→ B : {|A,PMS |}Kb ,

would slightly strengthen the protocol and simplify the analysis. At present, the
proof scripts include theorems for A’s association of PMS with B, and weaker the-
orems for B’s knowledge of PMS . With the suggested change, the weaker theorems
could probably be discarded.

The guarantees for finished messages apply to session resumption as well as to
full handshakes. The inductive proofs cover all the rules that make up the definition
of the constant tls, including those that model resumption.

5.4 Security Breaches

The Oops rule makes the model much more realistic. It allows session keys to be
lost to determine whether the protocol is robust: one security breach should not
lead to a cascade of others. Sometimes a theorem holds only if certain Oops events
are excluded, but Oops conditions should be weak. For the finished guarantees,
the conditions they impose on Oops events are as weak as could be hoped for: that
the very session key in question has not been lost by the only agent expected to
use that key for encryption.

Inductive Analysis of the Internet Protocol TLS · 17

6. RELATED WORK

Wagner and Schneier [1996] analyze SSL 3.0 in detail. Much of their discussion
concerns cryptanalytic attacks. Attempting repeated session resumptions causes
the hashing of large amounts of known plaintext with the master-secret, which
could lead to a way of revealing it (§4.7). They also report an attack against
the Diffie-Hellman key-exchange messages, which my model omits (§4.4). Another
attack involves deleting the change cipher spec message that (in a draft version of
SSL 3.0) may optionally be sent before the finished message. TLS makes change
cipher spec mandatory, and my model regards it as implicit in the finished
exchange.

Wagner and Schneier’s analysis appears not to use any formal tools. Their form
of scrutiny, particularly concerning attacks against the underlying cryptosystems,
will remain an essential complement to proving protocols at the abstract level.

In his PhD thesis, Dietrich [1997] analyses SSL 3.0 using the belief logic NCP
(Non-monotonic Cryptographic Protocols). NCP allows beliefs to be deleted; in the
case of SSL, a session identifier is forgotten if the session fails. (In my formalization,
session identifiers are not recorded until the initial session reaches a successful
exchange of finished messages. Once recorded, they persist forever.) Recall that
SSL allows both authenticated and unauthenticated sessions; Dietrich considers the
latter and shows them to be secure against a passive eavesdropper. Although NCP
is a formal logic, Dietrich appears to have generated his lengthy derivations by
hand.

Mitchell, Shmatikov, and Stern [1997] apply model checking to a number of simple
protocols derived from SSL 3.0. Most of the protocols are badly flawed (no nonces,
for example) and the model checker finds many attacks. The final protocol still
omits much of the detail of TLS, such as the distinction between the pre-master-
secret and the other secrets computed from it. An eight-hour execution found no
attacks against the protocol in a system comprising two clients and one server.

7. CONCLUSIONS

The inductive method has many advantages. Its semantic framework, based on
the actions agents can perform, has few of the peculiarities of belief logics. Proofs
impose no limits on the number of simultaneous or resumed sessions. Isabelle’s
automatic tools allow the proofs to be generated with a moderate effort, and they
run fast. The full TLS proof script runs in 150 seconds on a 300Mhz Pentium.

I obtained the abstract message exchange given in §2 by reverse engineering the
TLS specification. This process took about two weeks, one-third of the time spent
on this verification. SSL must have originated in such a message exchange, but I
could not find one in the literature. If security protocols are to be trusted, their
design process must be transparent. The underlying abstract protocol should be
exposed to public scrutiny. The concrete protocol should be presented as a faith-
ful realization of the abstract one. Designers should distinguish between attacks
against the abstract message exchange and those against the concrete protocol.

All the expected security goals were proved: no attacks were found. This unexcit-
ing outcome might be expected in a protocol already so thoroughly examined. No
unusual lines of reasoning were required, unlike the proofs of the Yahalom proto-

18 · L. C. Paulson

col [Paulson] and Kerberos IV [Bella and Paulson 1998]; we may infer that TLS is
well-designed. The proofs did yield some insights into TLS, such as the possibility
of strengthening client key exchange by including A’s identity (§5). The main in-
terest of this work lies in the modelling of TLS, especially its use of pseudo-random
number generators.

The protocol takes the explicitness principle of Abadi and Needham [1996] to
an extreme. In several places, it requires computing the hash of ‘all preceding
handshake messages.’ There is obviously much redundancy, and the requirement
is ambiguous too; the specification is sprinkled with remarks that certain routine
messages or components should not be hashed. One such message, change cipher
spec, was thereby omitted and later was found to be essential [Wagner and Schneier
1996]. I suggest, then, that hashes should be computed not over everything but over
selected items that the protocol designer requires to be confirmed. An inductive
analysis can help in selecting the critical message components. The TLS security
analysis (tls§F.1.1.2) states that the critical components of the hash in certificate
verify are the server’s name and nonce, but my proofs suggest that the pre-master-
secret is also necessary.

Once session keys have been established, the parties have a secure channel upon
which they must run a reliable communication protocol. Abadi tells me that the
TLS application data protocol should also be examined, since this part of SSL once
contained errors. I have considered only the TLS handshake protocol, where session
keys are negotiated. Ideally, the application data protocol should be verified sep-
arately, assuming an unreliable medium rather than an enemy. My proofs assume
that application data does not contain secrets associated with TLS sessions, such
as keys and master-secrets; if it does, then one security breach could lead to many
others.

Previous verification efforts have largely focussed on small protocols of academic
interest. It is now clear that realistic protocols can be analyzed too, almost as a
matter of routine. For protocols intended for critical applications, such an analysis
should be required as part of the certification process.

ACKNOWLEDGMENTS

Mart́ın Abadi introduced me to TLS and identified related work. James Margetson
pointed out simplifications to the model. The referees and Clemens Ballarin made
useful comments.

REFERENCES

Abadi, M. and Needham, R. 1996. Prudent engineering practice for cryptographic proto-
cols. IEEE Trans. Softw. Eng. 22, 1 (Jan.), 6–15.

Bella, G. and Paulson, L. C. 1998. Kerberos version IV: Inductive analysis of the se-
crecy goals. In J.-J. Quisquater, Y. Deswarte, C. Meadows, and D. Gollmann Eds.,

Computer Security — ESORICS 98 , LNCS 1485 (1998), pp. 361–375. Springer.

Dierks, T. and Allen, C. 1999. The TLS protocol: Version 1.0. Request for Comments:
2246, on the Internet at ftp://ftp.isi.edu/in-notes/rfc2246.txt.

Dietrich, S. 1997. A Formal Analysis of the Secure Sockets Layer Protocol. Ph. D. thesis,
Adelphi University, Garden City, New York. Department of Mathematics and Computer
Science.

Inductive Analysis of the Internet Protocol TLS · 19

Freier, A. O., Karlton, P., and Kocher, P. C. 1996. The SSL protocol version 3.0.

Internet-draft draft-freier-ssl-version3-02.txt.

Gollmann, D. 1996. What do we mean by entity authentication? In Symposium on Secu-
rity and Privacy (1996), pp. 46–54. IEEE Computer Society.

Mitchell, J. C., Shmatikov, V., and Stern, U. 1997. Finite-state analysis of SSL 3.0 and

related protocols. In H. Orman and C. Meadows Eds., Workshop on Design and Formal
Verification of Security Protocols (Sept. 1997). DIMACS.

Paulson, L. C. 1994. Isabelle: A Generic Theorem Prover. Springer. LNCS 828.

Paulson, L. C. Relations between secrets: Two formal analyses of the Yahalom protocol.

Journal of Computer Security. in press.

Paulson, L. C. 1998. The inductive approach to verifying cryptographic protocols. Journal
of Computer Security 6, 85–128.

Ryan, P. Y. A. and Schneider, S. A. 1998. An attack on a recursive authentication

protocol: A cautionary tale. Information Processing Letters 65, 1 (Jan.), 7–10.

Wagner, D. and Schneier, B. 1996. Analysis of the SSL 3.0 protocol. In D. Tygar Ed.,
USENIX Workshop on Electronic Commerce (1996), pp. 29–40. USENIX Association.

	1 Introduction
	2 Overview of TLS
	3 Proving Protocols Using Isabelle
	3.1 Messages
	3.2 Traces

	4 Formalizing the Protocol in Isabelle
	4.1 Basic Constants
	4.2 The Spy
	4.3 Hello Messages
	4.4 Client Messages
	4.5 Finished Messages
	4.6 Session Resumption
	4.7 Security Breaches

	5 Properties Proved of TLS
	5.1 Basic Lemmas
	5.2 Secrecy Goals
	5.3 Finished Messages
	5.3.1 Client's guarantee
	5.3.2 Server's guarantee

	5.4 Security Breaches

	6 Related Work
	7 Conclusions

