
LITERARY CRI:ICISM
AND

TXGr\At%T:G X L I ' 3 AGOG-l

Corey D. Schou
Associate Professor
Information Systems

Idaho State University
Box 4043

Po~atello, Id,i~ 83205

Holand Ilord
Department 01‘ English
Idaho State (Jniversity
Pocatello, Idaho 83209

ABSTRACT

If one grants certain similarities between
the programming and writing processes,
then the critical perspectives adopted
by the readers of literature may be
generalizable to the readers of program
texts. M.H. Abrams' classification of
literary critical theories as expressive,
mimetic, pragmatic, or objective serves
as an impetus for a discussion of the
reading and writing of program texts.
Recognition t!lat program texts can be
viewed from numerous perspectives
may serve as a liberating force in
programming pedagogy.

INTRODUCTION

. ..I look at software writing
like au%orshlp, like normal
writing. Yo:;'re trying to com-
bine ideas and concepts in s
way that will make other people
think, that will be new and
exciting.
John Warnock, In Programmers nt Work 1986

This paper is based upon a set of assump-
tions: that the programming process ir; simil,?r
to the writing process, that program texts
are similar to literai;y te,:ts, and that readi?
program texts is similar to reading literary
texts. The product of the programming process
is a program text, just as a literary or written
text is the product of the writing proccs:;.
More specifically, the program text is roughly
equated with the program listing (of the source
code), which would include internal documenta-
tion but exclude external (user) documentation,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

program output, and program specifications.

Thus, a programmer creates a program text
just as a writer creates a literary text. And
just as the writer writes for a reader, the pro-
grammer programs for a reader. However, note that
the computer is not the reader; humans read pro-
gram texts. This is a most difficult claim for
many to accept, due in part to the frequent an-
thropomorphization of computer systems.

of one wi!.l ,Trant that programmers produce
program texts for readers, one may find that the
practice of literary criticism has interesting
ramifications for the pedagogy of programming
languages.

M.H. Abrams' argued that theories of literary
criticism discri.minate four elements in discussion
of a work of art, although any one theory tends to
stress a single element over (and often to the ex-
clusion of) the others:

a critic may stress the role
of the artist (writer), the
role of the audience (reader),
the role of the work (text)
itself, or the role of the world
that the work imitates.

Cxpressive theories of art emphasize the role of
the artist in creating the work. Pragmatic
theories emphasize the effects of works of art on
an audience. Obje&ive theor!es emphasize the
self-containedness of a particular work of art.
Mimetic theories emphasize the relationship of the
work of art to the world.

Thus, Wordsworth's description of poetry as
"the spontaneous overflow of powerful feelings"
emphasizes the expressive nature of art, while
Wilkie Collins' dictum, "Make 'em laugh, make 'em
cry, make 'em wait," is a pragmatic approach to
writing. The New Critics emphasized treating
works of art as objective texts, criticizing ap-
proaches that emphasized historical or bio-
graphical considerations. Aristotle's definition

0 1988 ACM 0-89791-260~8/88/0002/0067 $1.50 67

http://crossmark.crossref.org/dialog/?doi=10.1145%2F322609.322617&domain=pdf&date_stamp=1988-02-01

of‘ drama as the jmitation of' W-I act,i.on and H.D.
Howell's characterization of the artist's task as
"the truthful treatment of material" emphasize
mimetic approaches to art.

These are not the only possible critical ap-
proaches to program or literary texts; Abrams'
typology is simply a well-known and useful start-
ing point for examining critical approaches to
program texts and program pedagogy.

To appreciate this approach, one must ac-
cept that program texts--like literary texts--
are written for people to read. Such a view is
the subject of Steven Levy's anecdote about
Jerry Sussman:

Looking at Cosper's programs,
Sussman realized an important as-
sumption of hackerism: all serious
computer programs are expressions of
an individual. "It's only incidental
that computers execute programs."
Sussman would later explain. "The
important thing about a program is
that it's something you can show
to people, and they can read it
and they can learn something from
it. It carries information. It's
a piece of your mind that you can
write down and give to someone
else just like a book." Sussman
learned to read programs with
the same sensitivity that a
literature buff would read a
poem. There are fun programs
with jokes in them, there are
exciting programs which do The
Right Thing, and there are sad
programs which make y+iant tries
but don't quite fly.

The remainder of this paper deals with how one
might learn to read and treat program texts as
one would read and treat a literary text and
how that might affect the way in which one
teaches programming.

PROGRAMMERS

Much programming pedagogy suppresses the
expression of the programmer's individuality.
The basic argument is that the less individu-
alistic a program text is, the easier that pro-
gram text is to maintain. This is especially
true of large programming efforts. Thus pro-
grammers are encouraged to use library rou-
tines, to use self-documenting code, and to
structure their programs as explicitly as
possible. The egoless programming group, as
advocated by Weinberg3, is a manifestation of
such a viewpoint. Because the program text is
the product of a team, rather than an individual,
such texts are thought to be easier to debug and
to maintain, containing fewer individualistic
coding characteristics which might decrease the
ease of program text comprehension.

However, individualistic expression within a
program is not at odds with the basic philosophy
of structured programming or the use of self-

documenting code; individualistic expression is
not to be taken as synonymous with obscurity or
lack of clarity.

Furthermore, not all programmers program in
group or industrial environments, although many
programming textbooks stress industrial program-
ming techniques. It is the uncommon program text
that prints only complete programs rather than il-
lustrative lines of code taken from longer program
texts. It is also the rare textbook that prints
more than one program text to satisfy a program
specification, to demonstrate the use of a pro-
gramming technique, or to illustrate the develop-
ment of program logic or data structures. The
message to the student is that there is a best way
to do things, not that the programmer ought to ex-
periment in order to produce individualistic pro-
gram texts.

Many introductory composition textbooks pro-
vide numerous examples of complete essays de-
veloped through use of the same rhetorical modes.
Perhaps programming students need a second text-
book--a programming composition textbook con-
taining numerous program texts that could be read
and used in the same way that the essay sampler is
used by writing students. The use of student pro-
gram texts may also facilitate the programmer's
expression of individuality within program texts
in much the same way that sample student essays
facilitate the writer's expression of individu-
ality within essays. In short, students need to
read numerous program texts if they are to both
recognize the similarities and perceive the dif-
ferences between texts.

Many programming assignments are given in
terms of what the results (output) should be, not
in terms of what the formal characteristics of the
program text should be. Often, students are re-
quired to hand in program listings only as a check
that they actually wrote necessary program. In
other words, only if the student's results are in-
correct need the instructor give the program text
more than a cursory glance.

Of course, not all program texts need exten-
sive instructor comment any more than all written
texts do. Many composition instructors rely
heavily upon quantitative writing assignments,
such as journals and free writing, which are de-
signed to foster individuality and expressiveness.
Such assignments develop the writer's facility to
handle the language and to recognize topics and
concerns of interest to him/herself. Similar as-
signments may be profitably ,used in programming
courses.

Donald Murray" has argued that it is only
through reading what one has already written that
one discovers what it is that one wants to say.
Janet Emig3 has argued that writing constitutes a
unique way of learning. Both writers clearly are
emphasizing the nature of the writing process,
rather than the text as a product. Programming
assignments, however, that emphasize the product--
the results or output--are likely to ignore im-
portant aspects of the programming process.

Young, Becker and Pike 14 and Flower and

66

HayeP have found the pre-writing topics of dis-
covery and invention fruitful areas of investi-
gation in composition theory. However, too often,
little emphasis is placed upon the heuristics of
problem solving or algorithm formation within the
introductory programming classroom. The well-
intentioned instructor may eliminate expressive
aspects of a text by overdefining the program
requirements or by being overly generous in pro-
viding guidance on algorithm formation.

READERS

Since program statements take the form of
commands, one would expect that programmers and
programming instructors would be particularly
aware of pragmatic criticisms of program texts.
Yet few people, other than the programmer him/
herself, read program texts. The assumption is
that the commands are directed to the computer.
This, however, cannot be since the computer can-
not read the program text; computers execute pro-
grams. Perhaps, then, part of the difficulty in
programming is in writing for an audience which
does not seem to exist, or more correctly, one
might say that programmers typically fail to
write for any audience at all.

Part of the problem is determining how
various audiences may be addressed within a pro-
gram text. One indicator may be the remarks or
comments that form internal documentation.
Even the mere presence or absence of internal
documentation, quite aside from the content of
the documentation, may reveal the attitude of
the programmer to the reader.

The programmer may also express him/her-
self or manipulate the reader through choice of
program language, and within a language, through
choice of commands/diction. Often, in a higher
level language, one may either issue a simple
command or call a machine language subroutine
that performs the same function as the simple
command; one's choice in the matter is seldom
arbitrary. The programmer may also express
him/herself or manipulate the reader through
choice of data structures, number of program
lines, length or complexity of line, or more
commonly through program structure. While not
an exhaustive list, these are options open to
programmers that perceptive readers need to
recognize in attempting to formulate a criti-
cism of program texts.

The mere recognition that program texts are
to be read by humans is a major step forward.
The most recent proponent for reading program
texts is Donald Knuthg:

I believe that the time is ripe
for significantly better documentation
of programs, and that we can best
achieve this by considering programs
to be works of literature. Hence,
my title: 'Literate Programming.,

Let us change our traditional
attitude to the construction of
programs: Instead of imagining
that our main task is to instruct

a computer what to do, let us
concentrate rather on explaining
to human beings what we want a -
computer to do.

The practitioner of literate
programming can be regarded as an
essayist, whose main concern is
with exposition and excellence of
style... [author's italics]9

Unfortunately, Knuth,s main concern is with
documentation and the WEB programming language.
Literate programming is useful because it calls
attention to the reader of a literate program,
just as any program text is written for a reader.
Because novice programmers have much to learn be-
fore they can fully comprehend and appreciate pro-
gram texts written for more critical audiences,
they must be given opportunities to compare pro-
grams written for various audiences, much as be-
ginning writers need to read both professional
and student essays.

PROGRAM TEXTS

The critical approach that the reader of pro-
gram texts may be least likely to entertain re-
quires him/her to view a program text as a self-
contained entity, quite complete unto itself.
Usually the program critic wants to know if the
program works or does what it's designed to do.
Should the student's program supply the wrong out-
put, the instructor must dissect the code, pin-
pointing the place(s) where the student has gone
astray. Failure to produce a correctly working
program is just that, a failure. The writing
instructor, however, is able somehow to evaluate
the text as a text , quite apart from the issue of
whether or not the student followed the assignment,
as irritating as that failure may be.

Here, one might also deal with certain
aesthetic issues. Typically, good programs are
described as those that first and foremost work
correctly, that combine power and efficiency,
and that possess a certain elegance. It has al-
ready been suggested that "work correctly,, usually
refers to program output, not the program text
qua program text. One might consider a possible
interpretation of ,,work correctly,, to mean some-
thing like succeeds aesthetically.

Efficiency and power are frequently con-
sidered qualities of the program as executed on
a particular machine. There is an interesting
sense of power that has a meaning somewhat akin to
'breadth of treatment., Shakespeare's works are
powerful not only in their ability to move one
emotionally but also insofar as they create their
own world, be it the world of Elizabethan England
or the world of the Shakespearean theater. A
powerful program, in this sense, would be one that
is both broad in scope, yet detailed in construc-
tion, dealing with a subject of importance.

Programs also possess beauty. In an inter-
view, Gary Kildall, the developer of CP/M, was
asked if he found anything aesthetically pleasing
in his work:

69

Oh, absolutely r when a program is
clean and neat , nicely structured,
and consistent , it can be beautiful.
I guess I wouldn't compare a program
with the Mona Lisa, but it does
have a simplicity and elegance that's
quite handsome. Stylistic dis-
tinctions of different programs
are intriguing, very much like
the differences art critics might
see between Leonardo's Mona Lisa
and a Van Gogh.8

Beauty and style are frequent topics of con-
versation among programmers, yet very little ex-
tended commentary has been written about beauty
and style in program texts. More commonly one
can find theorists and programmers speaking of
elegance.

Paul Hide7 defines an elegant solution to a
problem as one that is both simple and ingenious,
meaning not immediately obvious. "Elegance,"
as used by programmers, seems to combine elements
of what literary critics have differentiated into
a number of categories--style, wit, and perhaps to
a degree, sublimity.

Hide also equates elegance with tricks of
the trade, which he admonishes programmers to
avoid: "Many of these are necessary, but where
they are used purely to demonstrate the mental
agility of the programmer they are not, and they
should thus be avoided117. If one is to consider.
however, programs as texts to be read, then it '
might be reasonable to reject Hide's dictum be-
cause of the adverse effects it might have on
programming style--much as if one were to have
instructed the metaphysical poets to avoid
metaphors. From an expressive perspective, one
might question what the program text is for if
it is not to demonstrate a certain amount of
mental agility on the part of the programmer.
From the reader's perspective, texts lacking
such mental qualities will have little attrac-
tion. From a textual perspective, one must won-
der what separates one text from another if it
is not more than simply a difference in subject/
topic.

REALITY

Certainly the most common critical ap-
proach to program texts has been some sort
of mimetic critical approach, suggesting t'nat
the program text ought to imitate or reflect
reality. Perhaps the most obvious example of
such an approach would be the emphasis on self-
documenting code and variable names: Naming a
real number variable "Numberll' is considered
better programming practice than naming that
same variable "Rambott because the former some-
how describes its content.

Data validation of a program is based upon a
perceived relationship between the program text
and mathematical computations. Thus the reader is
to follow the text, supplying sample data for the
appropriate variables. In the case that the
reader arrives at what seems to be an erroneous
result, the text receives critical attention.

Certainly, the early literary realists did some-
thing similar when arguing that fiction should be
the truthful treatment of life. Life, in that
sense, formed the data of their novels.

Program verification is based upon a perceived
relationship between the program text and mathe-
matical proof. This relationship is not merely
one of critical bent, for much of it is based up-
on the very nature of the programming language it-
self, much as the relationship between language
and logic is not merely one of critical choice.

Dijkstra argues that a primary motivation for
structured programming is the attempt to depict
within a program text the relationship between the
program text and a process:

The moral of the story is that when
we acknowledge our duty to control the
computations (intellectually!) via the
program text evoking them, that then we
should restrict ourselves in all humility
to the most systematic sequencing mechan-
isms, ensuring that "progress through the
computation" is mapped on "progress
through the tex

3" .
in the most straight-

forward manner.

Thus, program texts imitate reality, which ac-
cording to Dijkstra is a process:

. ..whenever a programmer states that
his program is correct, he really
makes an assertion about the com-
putations it may evoke.2

This perspective has dominated program criti-
cism in recent years. The problem is not in what
Dijkstra says, but rather in that it fails to
acknowledge other possible critical perspectives.

CONCLUSION

Insofar as programmers have examined program
texts critically, they have tended to adopt a view-
point that stresses the relationship between the
program text and the world. This is not bad, nor
is it necessarily unusual in any way. Mimetic
theories of literature, beginning with Aristotle,
have long and often held sway in literary criti-
cism.

Nevertheless, programming instructors might
find it useful to examine program texts in the
light of other critical approaches. Knuth's em-
phasis on writing 'literate programs' aimed at a
particular audience is a positive step forward,
but more needs to be done to help sutdents of
programming recognize the expressive nature of the
texts they write, to help them recognize conven-
tions of program texts, and to aid them in de-
veloping an effective style.

When asked if studying computer science is
the best way to prepare to be a programmer, Bill
Gates, developer of Microsoft BASIC, replied, "No,
the best way to prepare is to write programs, and
to study great programs that other people have
written"4. Gates' reply requires that one be able
to distinguish great programs from their more mun-

70

dane counterpart.?, and that rcquine.; that pro-
grammers develop critical reading skills

If one is willing to grant that writing and

13. Weinberg, Gerald M. The Psychology of Com-
puter Programming. Van Nostrand Reinhold
Company: NY, 1971.

programming are similar processes, the instructor 14. Young, Richard, Becker, Alton, and Pike,
of programming may soon find use for numerous ex- Kenneth. Rhetoric: Discovery and Change.
ercises now prevalent in the composition class- Harcourt, Brace & World, Inc.: NY, 1970.
room, exercises such as free-writing
storming, exercises in discovery and
exercises in the use and development
ristics, and exercises in rhetorical
al analysis to name but a few.

1. Abrams, M.H. The Mirror and the Lamp.
Oxford University Press: NY, 1953.

2 .

3.

4.

Dijkstra, Edgai‘. "Notes on structured
programming." In Structured Programming.
Eds. O.- .J. Dahl, E.W. Dijkstra, and C.A.R.
Hoare. Academic Press: NY, 1972, 1-82.

Emig, Janet. "Writing as a mode of learn-
ing." CCC, 18 (1977), 122-127.

Gates, Bill. "Bill Gates." In Programmers
at Work. Ed. Susan Lamers, Microsoft Press:
Redmond, WA, 1986, 70-90.

5. Hayes, John, and Flowers, Linda. "Problem-
solving strategies and the writing process."
ccc, 28, 4 (19771, 449-461.

6. Hayes, John, and Flowers, Linda. "The
cognition of discovery: defining a rhe-
torical problem." CCC, 31, ? (l980),
21-32.

7.

8.

9.

IO.

11.

12.

Hide, Paul. "The design of algorithms.f'
In Guide to Good Programming Practice.
Eds. Brian Meeks and Patricia Heath.
John Wiley & Sons: NY, 1980, 29-34.

Kildall, Gary. "Gary Kildall. !'In
Programmers at Work. Ed. Susan Lammers.
Microsoft Press: Redmond, WA, 1986,
56-69.

Knuth, Donald. "Literate programming."
The Computer Journal, 27,2 (I'$%), 97-
111.

Levy, Stephen. Hackers: Heroes of the
Computer Revolution. Ancor Press Doubleday:
Garden City, NY, 1984.

Murray, Donald. "Internal revision: a
process of discovery." In Research on
Composing: Points of Departure. Eds.
Charles R. Cooper and Lee Odell. NCTE:
Urbana, ILL, 1978, 85-103.

Warnock, John. "John Warnock." In
Programmers at Work. Ed. Susan Lammers.
Microsoft Press: Redmond, WA, 1586, 40-
55.

Works Cited

and brain-
invention,
of heu-
and structur-

71

