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Computation offloading is a programming model in which program fragments (e.g., hot loops) are anno-
tated so that their execution is performed in dedicated hardware or accelerator devices. Although offloading
has been extensively used to move computation to GPUs, through directive-based annotation standards like
OpenMP, offloading computation to very large computer clusters can become a complex and cumbersome
task. It typically requires mixing programming models (e.g., OpenMP and MPI) and languages (e.g., C/C++ and
Scala), dealing with various access control mechanisms from different cloud providers (e.g., AWS and Azure),
and integrating all this into a single application. This article introduces computer cluster nodes as simple
OpenMP offloading devices that can be used either from a local computer or from the cluster head-node.
It proposes a methodology that transforms OpenMP directives to Spark runtime calls with fully integrated
communication management, in a way that a cluster appears to the programmer as yet another accelerator
device. Experiments using LLVM 3.8, OpenMP 4.5 on well known cloud infrastructures (Microsoft Azure and
Amazon EC2) show the viability of the proposed approach, enable a thorough analysis of its performance, and
make a comparison with an MPI implementation. The results show that although data transfers can impose
overheads, cloud offloading from a local machine can still achieve promising speedups for larger granularity:
up to 115X in 256 cores for the 2ZMM benchmark using 1GB sparse matrices. In addition, the parallel imple-
mentation of a complex and relevant scientific application reveals a 80X speedup on a 320 core machine when
executed directly from the headnode of the cluster.
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1 INTRODUCTION

Parallelizing loops is a well-known research problem that has been extensively studied. Most of
the approaches to this problem use DOALL [2], DOACROSS [3], DSWP [4], vectorization [5], data
rearrangement [6], and algebraic and loop transformations [7] to improve program performance.
However, the combination of large data-center clusters and Map Reduce-based techniques, like
those found in Internet search engines [8], has opened up opportunities for cloud-based paral-
lelization, which could eventually improve program performance.

Although there is a number of approaches to loop parallelization, in general-purpose com-
puters this is typically achieved through message passing programming models like MPI [9] or
multi-threading-based techniques such as those found in the OpenMP standard [10]. OpenMP is
a directive-based programming model in which program fragments (e.g., hot loops) are annotated
to ease the task of parallelizing code. The last version of the OpenMP standard [11] (Release 4.5)
introduces new directives that enable the transfer of computation to heterogeneous computing
devices (e.g., GPUs). From the programmer viewpoint, a program starts running on a typical pro-
cessor host, and when an OpenMP annotated code fragment is reached, the code is transferred
to the indicated device for execution, returning the control flow to the host after completion, a
technique called offloading.

Although OpenMP offloading has been extensively used in combination with powerful comput-
ing devices like GPUs, parallelizing computation to very large clusters can become a complex and
cumbersome task. It typically requires mixing different programming models (e.g., OpenMP and
MPI) and languages (e.g., C/C++ and Scala), dealing with access control mechanisms from distinct
cloud services, while integrating all this together into a single application. This task can become a
major programming endeavor that can exclude programmers who are not parallel programming
experts from using the huge computational resources available in the cloud [12].

To address such a problem, this article presents an open-source development framework, called
OmpCloud,! which integrates OpenMP directives, Spark-based MapReduce parallelization, and re-
mote communication management into a single OpenMP offloading device that can be seen by the
programmer as available from its local computer. To achieve that, it relies on the OpenMP accel-
erator model to include the cluster as a new device target. The cluster resources (e.g., execution
nodes, data storage) are identified using a specific configuration file and a runtime library allows
the programmer to get rid of all glue code required for the interaction with the cloud infrastructure.
The main contributions of this article are the following:

e It proposes a new distributed parallel programming model that combines traditional paral-
lelization techniques with map-reduce-based computation to enable the generation of par-
allel distributed code;

e [t introduces remote cluster nodes as OpenMP computing devices making the task of map-
ping local source code to local or remote clusters transparent to the programmer, a useful
tool specifically for those programmers who do not master parallel programming skills and
cloud computing;

The remainder of this article is organized as follows. First, we start by introducing the basic con-
cepts involved in directive-based programing and cloud computing (Section 2). We then describe
the proposed approach in Section 3. Section 4 presents and analyzes the experimental results, and
Section 5 discusses the related works. Finally, we conclude in Section 6.

10mpCloud is freely available at http://ompcloud.github.io.
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1 | void MatMul(float *A, float *B, float *C) {

2 // Offload code fragment to the cloud

3 #pragma omp target device(CLOUD)

4 #pragma omp target map(to: A[L:N*NJ, BL[:N*NJ]) map(from: C[:N*N1J)
5 // Parallelize loop iterations on the cluster

6 #pragma omp parallel for

7 for(int i=0; i < N; ++i) {

8 for (int j = @; j < N; ++j) {

9 CLi * N + j] = 0;

10 for (int k = @; k < N; ++k)

11 CLi * N + j] += A[i » N + k1 * B[k * N + jI;
12 }

13 } // Resulted matrix 'C' is available locally

14 |3}

Listing 1. Using the OpenMP accelerator model for executing matrix multiplication on a computer cluster.

2 BACKGROUND

Cloud computing has been considered a promising platform that could free users from the need to
buy and maintain expensive computer clusters, while enabling a flexible and pay-as-needed com-
putational environment. Although it has been successfully used to handle the rise of social media
and multimedia [13], all such systems have been designed using a programming abstraction that
clearly separates the input/output of local data from cloud computation. This goes against a clear
tendency in computing to ease the integration of data collection to the huge resources available
in the cloud, as demanded by modern mobile devices and Internet-of-Things (IoT) networks. For
example, by collecting data from a cellphone and transparently sending it to the cloud, one could
use expensive Machine Learning (ML) algorithms to identify the best device parameters, thus tun-
ing its operation to the user usage profile. Easing the integration of local code with the cloud is
central to enable such type of applications. The OmpCloud approach proposed in this article aims
to bridge this gap.

The MapReduce [8] programming model associated with the Hadoop Distributed File System
(HDFS) [14] has become the de facto standard used to solve large problems in the cloud [15, 16]. A
generalization of the MapReduce model, Spark [17] has enabled the design of many complex cloud-
based applications and demonstrated very good performance numbers [18-21]. To achieve such
performance, the Spark runtime relies on an innovative data structure, called Resilient Distributed
Dataset (RDD) [17], which is used to store distributed data collections with the support of parallel
access and fault-tolerance.

Although it has been used to solve many large-scale problems, the combination of MapReduce
and HDFS has not become a programming model capable of turning the cloud into a computing
device easily used by non-expert programmers. However, the emergence of multicore computing
platforms has enabled the adoption of directive-based programming models, which have simplified
the task of programming such architectures. In directive-based programming, traditional program-
ming languages are extended with a set of directives (such as C pragma) that informs the compiler
about the parallelism potential of certain portions of the code, usually loops but also parallel sec-
tions and pipeline fragments. OpenACC [22] and OpenMP [10] are two examples of such language
extensions that rely on thread-level parallelism. Due to its simplicity and seamless mode, OpenMP
is probably the most popular directive-based programming interface in use today.

Listing 1 presents a simple program loop describing a matrix multiplication that was annotated
with OpenMP directives to offload the computation to an accelerator. In the OpenMP abstract
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Fig. 1. Applications can be run from the user computer or from the headnode of the cluster (in gray is the
cluster).

accelerator model, the target pragma defines the portion of the program that will be executed by
the target device. The map clause details the mapping of the data between the host and the target
device: inputs (A and B) are mapped to the target, and the output (C) is mapped from the target.
While typical target devices are DSP cores, GPUs, Xeon Phi accelerators, and so on [23, 24], this
article introduces the cloud as yet another target device available from the local computer, giving
the programmer the ability to quickly expand the computational power of its own computer to a
large-scale cloud cluster. Using OmpCloud, the programmer can leverage on his/her basic OpenMP
knowledge. He first uses standard annotations to validate a small computation in a local machine
and then, after a few modifications, migrates the computation to the cloud for a more expensive
execution.

3 USING OPENMP ACCELERATOR MODEL FOR DISTRIBUTED EXECUTION

Instead of parallelizing program fragments across heterogeneous cores within a single computer,
our runtime automatically parallelizes loop iterations by offloading kernels across multiple ma-
chines of a computer cluster that can be available locally or in the cloud. To achieve that it uses
the Apache Spark framework, while transparently providing desirable features like fault toler-
ance, data distribution, and workload balancing. Most cloud providers have made the deployment
of Spark clusters pretty straightforward thanks to dedicated web interface and custom Linux dis-
tribution (e.g., Azure HDinsight or Amazon EMR). The OmpCloud user can easily create his own
cluster with just a few clicks without knowing much about parallel programming and cloud com-
puting.

As shown in Figure 1, the execution of the OpenMP annotated code on the cluster device can
have two different operation modes: the offloading mode when the program is started from the
user computer (Figure 1(a)) or the intra-cluster mode when the program is started from the head
node of the cluster (Figure 1(b)). In both modes, the user needs to use a Spark cluster, which was
previously deployed at his local cluster or through his favorite cloud provider. In offloading mode,
the user must first store the credentials of the cluster into a specific configuration file (detailed
later in Section 3.1). The program is then started by the user in its own local machine and runs
locally until the OpenMP annotated code fragment is reached. A method is then called to initialize
the cloud device @. Offloading is done dynamically, and thus if the cloud is not available the
computation is performed locally. The runtime sends the input data required by the kernel as
binary files to a cloud storage device (e.g., AWS S3 or any HDFS server) @. After all the input data
has been transmitted, the runtime submits the job to the Spark cluster and blocks until the end of
the job execution. The driver node, which is in charge of managing the cluster, reads the input data
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from the cloud file system (@, transmits the input data and distributes the loop iterations across
the Spark worker nodes @, which are in charge of the computations. Next, the worker nodes run
the mapping function that computes the loop body in parallel (. The output of the loop is then
collected, reconstructed by the driver (® and stored into the cloud storage (D to be transmitted
back to the local program (®, which then continues the execution on the local machine. In intra-
cluster mode, the behavior is similar except that the user runs its application directly from within
the cluster headnode. Thus, the runtime does not copy input and output data to the cloud storage
but directly accesses the local memory of the headnode computer. Hence, although the overhead
induced by the offloading is removed, the user has connect to the cluster trough SSH and setup the
headnode with the program and its data before running the execution. In fact, such an execution
model is very similar to the one used by scientists who run batch jobs on clusters through SSH.

3.1 Offloading to Local and Cloud Clusters

Our workflow relies on a flexible implementation of the OpenMP accelerator model, presented
in Figure 2. Such an implementation was developed by Jacob et al. within the OpenMP offload-
ing library [25, 26] (known as libomptarget) and the LLVM compiler [27]. Their implementation
relies on runtime calls made by the host device for the execution of the offloaded code on the
target device. In the initial implementation, offloading was implemented only for typical devices
like general-purpose processors (x86 and PowerPC) and NVIDIA GPUs (running CUDA code). In
this article, we extended the LLVM compiler to generate code for Spark-based cloud devices and
the libomptarget library to allow the offloading of data and code to such devices. The extensions
proposed in this article are shown in gray in Figure 2.

To ease the implementation of new accelerators, Jacob et al. [25] decomposed their implemen-
tation in distinct components (see Figure 2):

Q@ Fat binary generated by LLVM—which contains host and target codes. While host
code (contained in the main(...) function) and target codes (such as function
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ppc_region(...)) are typically embedded in the same fat binary using the ELF for-
mat, cluster devices require an additional file to be generated: the Scala code describing
the Spark job (compiled to JAR binary). When submitting the job to the cluster, the dri-
ver node runs the Scala program and distributes the loop iterations among the worker
nodes. Then, the workers natively run (in C/C++) the function describing the loop body
(JNI_region(...)) through the Java Native Interface (JNI) to avoid the translation of
C/C++ code to Scala. Obviously, this code had to be compiled to a binary format compat-
ible with the architecture of the cluster nodes;

® Target-agnostic offloading wrapper—which is responsible for the detection of the available
devices, the creation of devices’ data environments, the execution of the right offloading
function according to the device type. The wrapper implements a set of user-level runtime
routines (such as omp_get_num_devices(. . .)) and compiler-level runtime routines (such
as _tgt_target(...)), which allow the host code to be independent of the target device
type;

® Target-specific offloading plug-ins—which performs the direct interaction with the devices,
according to their architecture and provides services such as the initialization and trans-
mission of input and output data, and the execution of offloaded computation. In our case,
the plugin is used to initialize the cluster, to compress and transmit the offloaded data
through the cloud file storage (HDFS or S3), when using remote clusters, and to submit
the Spark jobs locally or through SSH connection.

There are some major differences when using the cloud to offload computation when compared
to other traditional target devices, such as GPUs. For instance, the host-target communication
overhead might be reduced by compressing offloaded data, and transmitting them in parallel. Our
cloud plugin automatically creates a new thread for transmitting each offloaded data (possibly af-
ter gzip compression [28, 29] if the data size is larger than a predefined minimal compression size).
Additionally, the user can choose to print the log messages of Spark to the standard output of the
host computer to check the current state of the computation. Another remarkable difference is that
cloud devices cannot be detected automatically, since they are not physically hosted at the local
computer. As a matter of fact, the user has to provide identification/authentication information
(e.g., address and login) to allow the connection of the current application to the cloud service,
which will be used for offloading (cluster and storage). Our plugin reads at runtime a configura-
tion file @ to properly set up the cluster device and to avoid the need to recompile the binary
(assuming compatible instruction-sets). Besides the login information, the file might also contain
a set of runtime configurations to allow more advanced users to fine-tune the execution (passing
any supported options to the Spark runtime for example). In general, when the user is also the
developer of the application, he is responsible for deploying the cluster and setting up the config-
uration file before running the application. However, for commercial use-cases when the user is
not the developer, the cloud cluster could be provided by the developers to the end-user through
a predefined configuration file.

To allow an easy portability over existing cloud services, our plugin was implemented as a mod-
ular infrastructure where the communication with the cloud can be customized for each existing
cloud service by taking into account their specificities (e.g., storage services, security mechanisms,
etc.). For now, our plugin supports computation offloading to Spark clusters running within a pri-
vate cloud, Amazon Elastic Compute Cloud (EC2), or Microsoft Azure HDInsight. We also support
data offloading to HDFS, Amazon Simple Storage Service (S3), and Microsoft Azure Storage. This
approach can be easily extended to support other commercial cloud services, like Cloudera or
Google Cloud. Moreover, during offloading our library is also able to (on-the-fly) start and stop
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#pragma omp target device(CLOUD)
#pragma omp target map(to: A[L:NxNJ], BL:NxNJ]) map(from: CL:NxN1J)
#pragma omp parallel for
for(int i=0; i < N; ++i) {
// Partitions A and C matrices among the worker nodes
#pragma omp target data map(to: A[Li*N:(i+1)*N]) map(from: CLi*N:(i+1)*N])
for (int j = 0; j < N; ++j) {
CLi * N + j] = 0;
for (int k = @; k < N; ++k)
CLi * N+ j] += A[i * N + k] » B[k * N + j1;

_
= O O 00NNV R WN =

—
™o
(-

Listing 2. Extending OpenMP data map directive to enable dynamic data partitioning.

virtual machines from the EC2 service. In other words, the EC2 instance can be started when
offloading the code and stopped after it ends its execution. As a result, the programmer can auto-
matically control the usage of the cloud infrastructure, thus allowing him/her to pay for just the
amount of computational resources used.

3.2 Extending OpenMP for Distributed Data Partitioning

One central issue in distributed parallel execution models is to enable a data partitioning mech-
anism that assigns a specific data block to the worker node containing the kernel code that will
use it. By doing so, programs can considerably benefit from locality, thus reducing the overhead
of moving data around interconnecting networks. Nevertheless, automatic data partitioning is a
hard task that cannot typically be achieved solely by the compiler or runtime. In most applica-
tions the programmer knowledge is essential to enable an efficient data allocation. Unfortunately,
the OpenMP standard does not have directives specifically designed for data partitioning within
offloaded regions. As a result, the programming model proposed in this article extends the use of
the OpenMP directive target data map to allow the programmer to express the data distribution to
the cloud Spark nodes. No syntax modification was required in this directive; it was only used in
a way that is mentioned as undefined behavior by the current OpenMP specification. To do that,
the programmer should indicate after the to/from specifier of the map directive the first element
of the partitioned data block followed by colon and the last element of the corresponding block.
Consider, for example, the code fragment in Listing 2 extracted from the matrix multiplication
example in Listing 1. It is well-known that matrix multiplication C = AXB implies in multiplying
the rows of A by the columns of B storing the result as elements of C. Hence, to improve locality
the programmer can insert line 6 of Listing 2 to specify the partitioning of the matrices during the
iterations of the parallel loop. For example, in line 6 of Listing 2 the rows of matrix A are indexed
using variable i.? By using map(to:i*N: (i+1)*N) the programmer states that all elements of row
i of A ranging from index i*N to (i+1)#*N should be allocated into the same Spark node. Please
notice that B is deliberately not partitioned, because its partition interval depends on the internal
loop counter j (indexing the column). In our implementation, the partitioning that reduces the
amount of data moving through the network is performed by the Spark driver node. But Spark
only knows the values taken by the induction variable of the outer loop (i.e., the parallel for
annotated loop). Partitioning B would require us to coalesce the internal loop into the external one,
which would increase the number of iterations, thus reducing the granularity of the paralleliza-
tion and increasing the scheduling and communication overheads. For this reason, each worker

2Matrices A, B, and C in Listing 2 are represented in their linearized forms.
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node receives a full copy of B to perform its part of the computation. In reality, the communica-
tion overhead will be limited by the efficiency of BitTorrent protocol used by Spark to broadcast
variables.

3.3 Matching Spark Execution Model

As said before and shown in Figure 2, Spark clusters are composed by one driver node associated
with a set of worker nodes (or simply workers). The driver is in charge of communication with the
outside world (i.e., host computer), resource allocation and task scheduling. The workers perform
computation by applying operations, mostly map and reduce, in parallel on large datasets. In our
programming model, given that the loop has been annotated using a parallel for pragma, the pro-
grammer assumes that it is a DOALL loop. Thus, the different iterations can be distributed and
computed in parallel among cloud cores without any restriction, as no loop-carried dependence
exists between iterations.

To achieve such a parallelism, Spark relies on a specific data structure called Resilient Distributed
Dataset (RDD) [17]. An RDD is basically a collection of data that is partitioned among the workers
that apply parallel operations to them. To allow the parallel execution of a DOALL loop with N
iterations, we build an initial RDD, such that

N-1
RDDyy = U {@ Vin ()}, (1)

i=0
‘/IN(I) = {VvINg(i)s""‘/INKq(i)}’ (2)
where i € {0,..., N — 1} are the values taken by the loop index during loop execution and Vi (i)
is the set of K input variables (i.e., r-values) read during the execution of the loop body at iteration
i. For any iteration i, each input Viy, (i) with k € {0,...,K — 1} can be either a full variable or a

portion of it depending if the programmer has described the partitioning as presented in Listing 2.
RDDyy is divided automatically by the driver in equal parts and distributed among the workers
w € {0,1,...,W — 1}, such that
(w+1)x[N/W -1
RDDin(w) = | ) {m Vin(m)). 3)
m=wx|N/W|]
A map operation (Equation (4)) is then applied to the RDD that passes the values taken by the
loop index and the input variables through a function describing the loop body (Equation (5)) and
returns a new RDDoy 7, such that

RDDoyr = MAP(RDDqN, loopbody), (4)

Vour(i) = loopbody(i, Vin (i), 5)

Vour (i) = {(Vour, (i), ..., Vour,_, (i)}, (6)
N-1

RDDour = |G, Vour(i))), )

i=0
where Voyr(i) (Equation (6)) is the set of L output variables (i.e., I-values) produced at iteration i
by the workers. In fact, each call to the loopbody function produces a partial value of the output
variables Voyr, since each iteration accesses a different part of the output variables in DOALL
loops. Similar to the input variables, each output Voyr, (i) with [€{0,...,L — 1} can be either a
full variable or a portion of it depending if the programmer has annotated a partitioning. As a
result, the loopbody function will only partially compute output variables at each call, even if we
know they are not partitioned. Thus, we need to reconstruct the complete outputs Voyr from

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 35. Publication date: August 2018.



Cluster Programming using the OpenMP Accelerator Model 35:9

!
— ] L = ol o)
istri - Map & 20-pe=(§)
(@Pertue L1 R | ] @) | &y
‘ | Broadcast P A il 3 NI oot
! . B! Az i L3 Imanmuii 4 8 1 Cs |
| | @ LA Worker Node 0
| 1 r
\—-’{‘*-—’-4"—‘tr:‘>_45 " rem
| | A |5 P g !
| ~ e[ 6 | =) | o @
| @i 2‘73 v a4, ) L C7 2
i - ! Worker Node 1
T
1 "___T‘\\
- RN
‘ : A: _\! 10 % i Cio i @
i 5 A b 1 a4, 8§ C11
i LA Worker Node 2
r
' [
— *’TIW_DEB Map 1 G123
VAN |13 1 G134
| IR RV O SR P SO
' | JNI_ ' !
: 1A LIS | a4, )} C5 !
! 1A ] Worker Node 3
| T
B N o |
o @
3 -1~ Driver Node I Reconstruct

yA
Cloud Storage

c)

Fig. 3. Using map-reduce computational model to perform matrix multiplication C = AXB in Spark cluster.

those partial output values Voyr (i) as expected by the host computer. This is done according to
the following equations:

v _ | Reconstruct(RDDouyr., [) ®)

OUT: = Y REDUCE(RDDoyr, L, bitor)
V(’)UTl(u, Z)) = bil’OI"(VOUTl (u), VOUTI (U)), (9)
Vour = Vour,s - --»Vour, ), (10)

where VO’UTI(u, v) is the partial output value obtained by combining Vour, (1) and Vour,(v)
(Equation (9)). If the loop body has several outputs (Equation (10)), then RDDoyr will simply
be composed of tuples that are reconstructed separately before being written back in different bi-
nary files. Thus, we consider the set of all partial values of each output variable Voyr, (i) as arrays
of bytes. If the variable was partitioned, then the driver allocates the full variable and writes each
value at the right index. If the programmer has not annotated the partitioning, then we simply ap-
ply a bitwise-or reduction (Equation (8)) to join them together. Additionally, if one of the outputs
has been defined as a reduction variable by the OpenMP clause, Spark just performs the reduction
using the predefined function instead of the bitwise-or.

To illustrate this process, let us consider the matrix multiplication C = AXB presented previ-
ously in Listing 1. As shown in Figure 3, the Spark driver node gets the files @ representing the
input data from the cloud storage (HDFS or S3), and loads them as ByteArray objects. It then
generates RDD(I), which contains the successive values taken by the loop index i (0,...,15 in
our case), splits A according to the partitioning bound defined by the user (as a function of i), dis-
tributes them equitably to the worker cores @ while broadcasts B (2 to the same cores. Notice that
Spark automatically compresses all data transmitted through the network and use the BitTorrent
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protocol for broadcasting efficiently. The driver orders a map transformation that applies the
MatMult function corresponding to the loop body (through JNI) for each loop iteration using
partitions of A and copies of B. The workers decompress the input data and perform in parallel
the mapping tasks assigned to their cores ®. As a result, they produce an RDD containing sixteen
versions of C, which needs to be collected to produce the final result for array C. To achieve that
the workers compress and send the values to the driver (©. Then, the driver starts by allocating
variable C to its full size, before sequentially writing at the right index the values contained by
each piece of the array C, until obtaining its final format 9. The driver finally writes out the final
values of C to a new file into the cloud storage ® (line 20), after which the local computer is able
to read them back and continue its execution.

3.4 OpenMP Loop Scheduling

An important feature of the OpenMP execution model is its ability to define loop scheduling strate-
gies. Programmers can decide how the OpenMP runtime schedules the loop iterations to the pro-
cessor cores by adding specific clauses to the parallel for directives. OpenMP scheduling can
be: static, dynamic or guided for a given iteration chunk size. In our workflow, we need to ensure
that the Spark runtime follows the choice made by programmers. Spark scheduling is controlled
by the number and the size of partitions within RDDs. When performing the map operation, each
partition is assigned to one core that performs all the operations related to the elements of the
given partition. If the number of partitions is higher than the number of cores, then the later par-
titions will be dynamically assigned to cores as soon as they become available. As a result, the
OmpCloud runtime generates the partitions according to the following loop scheduling strategies
set by the programmer:

e Static scheduling: the runtime simply divides the RDD containing the loop iterations into
C equal-sized partitions with C being the number of worker cores available in the cluster.
The chunk size is always set to N/C, which is generally the best choice to benefit from
data locality. However, parametrized chunk size could be supported using a custom Spark
partitioner, which would attribute a partition P(i) to a given index i according to the chunk
size S such that P(i) = Léj mod C. In fact, static scheduling does not benefit from custom
chunk sizes because of data locality, except when the ordering is enforced (using the ordered
clause) but this will not be supported by OmpCloud due to performance issues on distributed
systems.

e Dynamic scheduling: the runtime splits the RDD in partitions of chunk size. Then, the inter-
nal task queue of the Spark driver automatically gives a partition (i.e., a chunk-sized block
of loop iterations) to each worker core. When a core finishes, it retrieves the next partition
from the task queue of the driver. By default, the chunk size is 1, but the programmer needs
to be careful when using this scheduling policy because of the extra overhead involved with
the communication between the driver and the worker nodes. For Spark, the most common
advice is to define 3 to 5 tasks (or partitions) to each core.

e Guided scheduling is not yet supported but could be implemented using another custom
Spark partitioner.

In addition, our compiler automatically adjusts the iteration number of the outer-loop according
to the cluster size using loop tiling to reduce JNI overhead, such as presented in Algorithm 1.
Indeed, since each iteration will require one call to JNI, the closer the number of iterations is to the
number of partitions, the smaller will be the overhead. The chunk size K is passed as an argument
when Spark is calling the map functions to avoid any recompilation when executing on different
clusters. In case some of the input/output variables are partitioned, the lower and upper bounds

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 35. Publication date: August 2018.



Cluster Programming using the OpenMP Accelerator Model 35:11

ALGORITHM 1: Reducing overhead with loop tiling.

1: // Original parallel for

2: fori=0to N —1do

3:  loopbody

4: end for

1: // Tiling the loop for a K chunk size

2: forii=0to N —1byKdo

3:  fori=iitomin(ii+ K-—1,N—-1) do
4: loopbody

5. end for

6: end for

of the partitions will also be readjusted dynamically according to the tiling size, hence increasing
their granularity.

3.5 Application Domain and Programming Model

Before moving into the details of the application domain, it is important to highlight that the goal
of the programming model proposed herein is to make the resources of the cloud transparently
available to the common non-expert programmer who uses a regular laptop and wants to run
large workloads. A typical example is a user that locally collects a large amount of data from a
scientific experiment or a mobile device and wants to perform some heavy computation on it [30-
32]. Another good use-case for OmpCloud could be the rendering engine of 3D modeling software
(e.g.,Blender [33]), which requires large amounts of computation to render a big movie project [34].
The rendering could be offloaded to the cloud cluster while the resulting movie would be displayed
at the designer desktop computer. Indeed, designers currently need to export their projects from
the modeling software and import it by hand to rendering farms within the cloud. It is not a goal
of this work to claim a programming model that can deliver HPC type of speedups for a complex
specialized scientific application (e.g., ocean simulation): there is already a huge amount of tools
and programming models (e.g., MPI) that work well in this scenario [35].

Of course, this specific solution does not match well the computation requirements of any kind
of application. First, the problem to be solved has to be sufficiently complex to allow the application
to take advantage of the large parallel processing capabilities of the cloud when compared to the
overhead cost of the data offloading task. Nevertheless, one might run his application directly from
the driver node of the Spark cluster, thus removing the overhead of host-target communication.
Second, applications should be described in C/C++ and annotated using directives defined by the
OpenMP accelerator model. While this article presents a matrix multiplication annotated with just
one target pragma, one target map and one parallel for, our approach also supports more complex
OpenMP constructs such as those using several parallel for loops within the same target region, as
illustrated by the vector multiplications presented in Listing 3. This is implemented by performing
successive map-reduce transformations within the Spark job. Moreover, similar techniques also
allow one to implement the offloading of sequential code kernels or nested parallel loops. As an
example, Listing 4 presents another vector multiplication where vector A is initialized within the
target region. Please notice that A has been mapped using the alloc type. This allows programmers
to define mapped variables with undefined initial values that can be allocated on the device without
copying from/to the host memory.

Additionally, OpenMP allows programmers to add an if clause to target pragmas to condition
the offloading according to a boolean expression (For example, the size of the vector in Listing 3).
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1 |#pragma omp target if(N > 1000)

2 map(to: A[:NJ1, BL[:NJ1, CL[:N1)

3 map(from: D[:NJ], E[:N1)

4| 1 | #pragma omp target map(alloc: A[:N])
5 |#pragma omp parallel for 2 map(to: BL:NI) map(from: C[:NJ)
6 for(int i=0; i < N; ++i) 3 14

7 D[il = A[i]l = B[il; 4 init (A);

8 |#pragma omp parallel for 5 #pragma omp parallel for

9 for(int i=0; i < N; ++i) 6 for(int i=0; i < N; ++i)

10 E[i] = C[i] = D[il; 7 C[i] = A[i]l * B[il;

1 |3 8 |2

Listing 3. 2 parallel multiplications of vector in 1tar- Listing 4. Serial code in target region.
get region.

In fact, the automatic decision of offloading to a computer cluster versus running on the program-
mer’s processor is an interesting but complex problem that is not supported by our runtime in its
current state but will certainly deserve additional research.

Finally, our cloud device does not support the synchronization constructs of the OpenMP model,
since Spark relies on a distributed architecture. Thus, offloaded OpenMP regions that use atomic,
flush, barrier, critical, or master directives are not supported. A full implementation of OpenMP
on cloud clusters would require a distributed shared memory mechanism [36, 37], which has not
yet been proved to be efficient and is incompatible with the map-reduce model. Alternatively, a
dedicated programming model suited for distributed nodes could be employed, but we believe that
the popularity of OpenMP makes it a better choice.

4 EXPERIMENTAL RESULTS

This section explores two sets of experiments that cover the offloading and intra-cluster modes
described in Section 3: the offloading of a set of benchmarks to the cloud executed from the user’s
computer and the distributed parallelization of a scientific simulation directly from the head node
of the cluster.

For all experiments, the applications have been compiled with OmpCloud v0.3.1, our custom
fork of Clang/LLVM v3.8, using only the standard O3 optimization flag. For this work, we chose
not to use more advanced optimization techniques, like polyhedral optimizations, as we wanted
to characterize a typical use-case and compilation scenario. However, for future work, we can
definitely see advantages on using such compilation techniques [38, 39], as they might enable
performance improvements by means of cluster-wide tiling and loop optimizations.

4.1 Cloud Offloading of Benchmarks

In our experiments, the local machine is a simple laptop (Intel Core i7 4750HQ and 16GB of RAM)
with Ubuntu 16.04, which interacts with an AWS cluster through an Internet connection. Our
experiments intend to be a realistic test-case where the client computer is far away from the cloud
data-center. The cloud instances were acquired and configured using a third-party script called
cgcloud®. This script allowed us to quickly instantiate a fully operational and highly customizable
Spark cluster within AWS infrastructure. For now, the size of the cluster is predefined by the user
when running the script but the parallel loop is tiled dynamically to use all instances with the
minimal overhead. Our experimental Spark cluster was composed of 1 driver node and 16 worker
nodes, all of them running Apache Spark 2.1.0 on top of Ubuntu 14.04. Each node of the cluster is

3cgcloud is freely available at http://github.com/BD2KGenomics/cgcloud/.
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Fig. 4. Speedup over single core execution for AWS cloud offloading and multi-threaded OpenMP.

an EC2 instance of type c¢3.8xlarge, which has 32 vCPU (executing on Intel Xeon E5-2680 v2) and
60GB of RAM. Each worker is configured to run one Java Virtual Machine (commonly called Spark
executor) that manages all 32 vCPUs and a heap size of 40GB. Since each EC2 vCPU corresponds to
one hyper-threaded core according to Amazon description (e.g., 1 dedicated CPU core corresponds
2 vCPUs), we configured Spark to assign two vCPUs to each map and reduce task that we need
to run (spark.task.cpus=2). Thus, the following benchmark results are presented according to the
number of dedicated CPU cores used by all workers (from 8 to 256 cores that are configured thanks
to spark.cores.max and spark.default.parallelism parameters).

We used benchmarks from the Polyhedral Benchmark suite [40] and the MgBench suite [41],
which were previously adapted for the OpenMP accelerator model. We selected for our experi-
ments the set of benchmarks that contains only the supported OpenMP constructs and that could
benefit the most of cloud offloading: SYRK, SYR2K, COVAR, GEMM, 2MM, and 3MM from Poly-
bench; and Mat-mul and Collinear-list from MgBench. All data used in the benchmarks consisted of
32-bit floating point numbers (single precision). The dimension of the datasets used by the bench-
marks has been scaled to benefit from the Spark distributed execution model. As an example,
most matrices used by the benchmarks have been scaled to 16,000 X 16,000 (about 1GB). More-
over, to evaluate the impact of gzip compression [28, 29] on performance, we have deliberately
executed the benchmarks using two types of input data: sparse matrices (most of the elements
are zero) and dense matrices (the elements are randomly generated). As expected, sparse matri-
ces are compressed faster with better compression rates (about 1,000:1 and 1.2:1, respectively).
All benchmarks used in our experimentation used the classical for loop implementations without
any advanced optimizations that would be written by the standard programmer. As a reference,
the single-threaded OpenBLAS-based implementation of the matrix multiplication is executed in
about 200s on the same architecture.

Figure 4 presents the execution speedups obtained with the benchmarks parallelized with tradi-
tional multi-threading of OpenMP (Figure 4(a)) and the cloud offloading of OmpCloud (Figures 4(b)
and 4(c)). They were measured when running the benchmarks on both sparse and dense matrices
to explore the impact of the data type on the performance, but include the whole offloading time
(communication and computation). The multi-threaded OpenMP experiments used only 8 and 16
threads, since the largest AWS EC2 instance of type c3 has only 16 cores. Results with OpenMP
show close-to-linear speedups except for COVAR and collinear-list, which, respectively, reach only
6% and 2X on 16 cores. Globally, all speedups of OmpCloud tend to increase with the number of
cores: up to 55x/115x with 256 cores for 3MM on dense and sparse matrices, respectively. In fact,
even collinear-list, which shows the worst performance with multi-threading, was able to reach
almost 20X on 256 cores. Results show that the benchmarks having the biggest computing com-
plexity, like 2MM and 3MM, benefits the most from larger cluster.
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Fig. 5. Average load distribution of AWS cloud offloading according to the total number of worker cores and
the data type.

All speedups presented here are interesting indicators to determine the effectiveness of the of-
floading, since they were computed against single-core execution performed locally (without of-
floading). However, the problem of determining the effectiveness of offloading depends not only
on the size of the dataset and the computation but also on other parameters such as the computing
power of the local platform, the connection bandwidth, and so on. This is a very interesting but
complex problem that will require additional research.

The execution times of cloud offloading are presented in Figure 5 along with those for
multi-threaded OpenMP on a single node. Results also show that: (a) 2 benchmarks are executed
on 8 cores in between 10 and 25min; (b) 5 in between 30min and 1h; and (c) 1 in about 1h 30min.
Although offloading to a larger cluster could probably benefit from even longer execution times,
we were limited by the maximal size of the arrays supported by the Java Virtual Machine. As
shown in Figure 5, the distribution of the execution time of all benchmarks were broken into three
parts: Host-target communication including compression and transmission overhead between the
local computer and the cloud device, Spark overhead including scheduling and communication
within the cluster, and computation time (i.e., the execution of loop iterations in parallel through
JNI). Such decomposition shows that while the computation time decreases as the number of
cores increases, the overhead induced by cloud offloading and Spark distributed execution stays
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constant. Moreover, both overheads increase substantially when processing dense matrices (in
comparison with sparse ones) but the variation is negligible for the computation time. This
demonstrates that the data type (and especially its compressibility) can have a huge impact
on performance because of the host-target and intra-cluster communications. Additionally,
results of collinear-list presented in Chart 5h show a negligible overhead of the communication
and scheduling. In fact, collinear-list processes a much smaller amount of data than the other
benchmarks, showing that cloud offloading scales well when the dataset size stays small according
to the computation (i.e., high computation to communication ratio).

In addition, the comparison of the execution times of cloud offloading to those from multi-
threaded OpenMP on 8 and 16 cores (i.e., one worker node) revealed small overheads: (a) just 1.8%
when considering only the computation time, what confirms the efficiency of JNI to run native
code kernels; (b) 8.8% when considering the spark overhead, what demonstrates the competitive
performance of the Spark execution model with respect to multi-threading, even within a driver-
worker infrastructure; and (c) 13.6% when considering the total execution time, what shows the
limited cost of offloading data to the cloud.

4.2 Intra-Cluster Parallelization of Collision Cross-Section

As discussed above, the OmpCloud programming model was not designed to speedup HPC work-
loads, but to enable the usage of large computing clusters by programmers who do not have access
to these resources, or that are not parallel programming experts. However, HPC and its program-
ming models (e.g., MPI) have always worked as an upper bound on the limitations of computation.
Hence, in this section, we use a relevant scientific application to evaluate and compare OmpCloud
to MPL

Mass spectrometry is a vital tool for molecular characterization in many areas of Biochemistry
analysis. Ion-Mobility Mass Spectrometry (IM-MS) is an analytical (experimental) technique used
to separate and identify ionized molecules moving through a drifting gas based on their mobility.
In such experiments, molecules move in a tube and bump into the gas molecules. As a result, gas
molecules are reflected and the combination of the resulting collision angles is used to estimate the
Collision Cross Section (CCS), which depends on the molecule structure. CCS measurements have
a number of applications such as determining the conformation of molecules. CCS can also be
estimated using simulation of the collision process. The result helps to interpret the experimental
CCS obtained from IM-MS. There are a number of methods to simulate CCS computation. The TM
method [42, 43] is the most accurate, since it uses Monte Carlo Statistical simulation to handle lots
of highly charged big molecules. It is also expensive as it depends on a large number of collisions to
calculate the average of the collision angles. In this section, the various parallel implementations
of CCS computation are called HPCCS [44].

Three different implementations of HPCCS have been tested during our experiments: a standard
OpenMP implementation that relies on multithreading (i.e., on single node only), tested with static
and dynamic loop scheduling; an OmpCloud implementation that we have especially adapted to
our workflow using the OpenMP accelerator model, tested with static and dynamic loop sched-
uling; and a mixed MPI+OpenMP implementation, that allows the comparison with a more tradi-
tional distributed implementation. The MPI implementation used static loop distribution at cluster-
level but dynamic loop scheduling inside each node, and has been experimented with MPICH v3.2.
All implementations used the LLVM OpenMP runtime to allow for a fair performance comparison.
Our experiments have been performed within the Microsoft Azure cloud using D15v2 dedicated
virtual machines of which have 20 vCPUs (executing on Intel Xeon E5-2673 v3 at 2.4 GHz) and
140GB of RAM. We deployed Spark clusters running on top of CentOS 7.2 using MapR (v5.2) and
MPI clusters running on top of Ubuntu 16.04 using Azure Resource Manager. The experiments have
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Fig. 6. Performance of the different implementations of HPCCS for various sized proteins running on a single
node computer (with 20 cores).

been performed on two sets of variously sized protein samples taken from real experiments [44].
The datasets are sized from 80KB for the smallest protein to about 300KB for the largest one, which
is much smaller than the benchmarks previously tested where each matrix was about 1GB.
Figure 6 presents the performance, execution times and speedups, obtained from the execution
on a single computer. On the abscissa are the proteins sorted by their corresponding number of
atoms. Results show that the application benefits from the dynamic loop scheduling of OpenMP
runtime. Indeed, contrary to matrix multiplication, the computation time of HPCCS iterations
is irregular. However, the performances of static and dynamic scheduling stay quite similar
when using the OmpCloud runtime. Additionally, results shows the overhead induced by each
distributed runtime: while MPI does not have any overhead on a single node, the overhead of Om-
pCloud is significant, from about 30s on small proteins to 30min on the larger ones, but the impact
on the speedup reduces for larger proteins thanks to longer execution times. On smaller proteins,
the overhead can be explained by the load of the Spark runtime, which could be reduced using
advanced tools for dedicated Spark job submission, like Apache Livy [45] or Spark Job Server [46].
Those tools introduce submission through RESTful APIs and maintain a unique Spark context
alive between all jobs, thus enabling lower initialization latency. However, we choose not to use
them, since they are not yet integrated into common Spark distributions. However, the overhead
is increasing significantly on larger proteins, so the load time, more or less constant, cannot
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explain it entirely. Since there is no inter-nodes communication (single node), this demonstrates
that OpenMP is more efficient than Spark for multithreading. As a result, future OmpCloud imple-
mentations could really benefit from automatically using the OpenMP runtime instead of Spark to
parallelize within each cluster node, similarly to what is done manually in mixed MPI+OpenMP
implementations.

Figure 7 presents the execution times and the speedups obtained from the execution of Omp-
Cloud and MPI implementations on a 16-node cluster. All executions have been performed 5 times
and, as shown by the standard deviations presented on the bars, the performance variability of the
cloud clusters is negligible. The execution time of OmpCloud implementations range from about
70s to almost 3h on 2 nodes and from 55s to 1.5h on 16 nodes. Knowing the largest protein of our
dataset only requires 300KB of memory, we can affirm that the computation-to-communication
ratio of HPCCS is largely superior to the ratio of the linear algebra kernels previously tested. As
expected, the MPI implementation always obtains the best speedups, varying between 70X and
150X on 320 cores. The OmpCloud implementation is showing poor speedups with small proteins
but its efficiency increases with the protein size. In fact, the performance of the smaller proteins
are degrade on larger clusters, while they stay relatively stable for larger proteins. For example,
we obtained less than 15X on 320 cores with the IMLT protein, which is only composed by 432
atoms but 80x on the same number of cores with the 1GZX protein, which is much bigger (4,392
atoms). The dynamic scheduling of OmpCloud clearly shows better performance than the static
one even if the results can be more mitigated on small proteins.

Figure 8 presents the parallel efficiency of the MPI and OmpCloud implementations for each
protein. Results shows that the MPI implementation has a better efficiency on smaller proteins
(Figure 8(a)) while the efficiency of OmpCloud implementation improves on larger proteins (Fig-
ure 8(b)). In fact, the efficiency of the two implementations looks very similar for larger proteins
except for the first value of each curve (corresponding to the efficiency of the execution on a
20-core single node), which is around 0.8 for MPI and 0.7 for OmpCloud. This demonstrate that
OmpCloud parallelization is competitive against MPI from the cluster perspective when the com-
putation complexity is sufficient but confirms that OmpCloud multithreading within each node
needs to be improved to reach the global efficiency of mixed MPI+OpenMP implementations. On
the contrary, the efficiency of the MPI implementation seems to reduce when the size of the pro-
tein increases. This could be explained by the fact that loop iterations are statically distributed to
the computer nodes in this MPI implementation.

5 RELATED WORKS

Cloud offloading has been largely studied for mobile computing to increase the computational ca-
pabilities of cellphones [47]. Some frameworks have been proposed to facilitate the development
of mobile applications using cloud resources [48—-50]. Contrary to our approach, which relies on
C/C++, they mostly rely on .NET or Java, which are the most popular environments for mobile
device. One of the key challenges of those offloading frameworks, not treated in this article, is how
to dynamically determine if it is worth offloading the computation in terms of the communication
overhead and energy consumption [51]. Some of those frameworks even explore the paralleliza-
tion of the execution by providing multi-threading support, or virtual machine duplication, but
this is a considerable programming effort for non-experts, and their results do not present very
large speedups (up to 4x). Additionally, older works used a similar offloading execution model to
accelerate spreadsheet processing in grid computing [52, 53].

Recent works have been proposed to port scientific applications from various domains to
private and public clouds [54-57] by using a mixture of MPI and OpenMP; an approach that
benefits from the communication efficiency of MPI primitives and the easy parallelization of
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Fig. 7. Performance of the different implementations of HPCCS running on 16-node cluster for various sized

proteins.

OpenMP annotations. Experimental results usually show good performance, but they also reveal
the difficulties associated to MPI programming, which requires a level of expertise and platform

programmers away from parallelizing their applications, constraining the computational power

knowledge that is far beyond the knowledge of typical programmers. Such drawbacks keep most
of the cloud cluster to a small set of expert programmers and specialized applications [12].
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Fig. 8. Parallel efficiency of the different implementations of HPCCS running on 16-node cluster for various
sized proteins.

Several other works have proposed to use directive-based programming for programming com-
puter clusters. First, Nakao et al. proposed a new directive-based programming language similar to
OpenMP but specialized to HPC clusters [58]. Their directives allow to micromanage paralleliza-
tion and communication within the distributed architecture of the cluster; their custom compiler
then translates pragmas into MPI calls. The OpenACC accelerator model is used to offload compu-
tation to a GPU within each node. If, on one hand, their work demonstrates very good scalability,
close to handmade MPI implementation, then, on the other hand, their extensions do not follow
the OpenMP standard and require information about the cluster architecture (e.g., the number of
nodes), which reduces its portability. Second, Wottrich et al. [59] proposed a set of new OpenMP
directives based on a Hadoop MapReduce framework to extend the standard towards cloud com-
puting. Similarly to our work, they consider the offloading from local computer to the cloud. Al-
though their approach was supported by a set of proofs-of-concept, their code transformation was
performed by hand and did not include any evaluation of the communication overhead. More-
over, they defined a new syntax for mapping variables to the cloud, which is not compliant to
the OpenMP and C standards. Next, Duran et al. introduced another directive-based program-
ming language, called OmpSs [60], to program heterogeneous multi-core architectures. In fact,
experiments was performed using OmpSs on multi-CPU (several sockets) / multi-GPU architec-
tures [61]. OmpSs have also been extended to support distributed architecture [62, 63] using GAS-
Net [64], a software infrastructure for Partitioned Global Address Space (PGAS) languages over
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high-performance networks, generally used in supercomputing infrastructure. Their results show
scalable performance quite on par with MPL. However, their methodology to support distributed
systems with multiple address-spaces using multi-level task directives is programmatically com-
plex. Finally, Jacob et al. introduced a new methodology relying on the OpenMP accelerator model
to run applications on a cluster using the MPI infrastructure [25]: the host code is executed by the
master node and the offloaded kernels by the worker nodes. Offloading to a set of worker nodes is
then achieved by defining the offloaded kernel inside a parallel loop body. However, this requires
various handmade modifications to applications, such as programmatically splitting (and merg-
ing) the offloaded data and defining nested DOALL loop to parallelize the execution on multicore
worker nodes.

Most of the rest of the literature that strictly follows the OpenMP accelerator model studied
GPU offloading and demonstrate good results [23, 24]. Nevertheless, some of them look for more
untraditional targets like the Intel Xeon Phi platform or FPGAs [65]. Several interesting works
also explore the usability of the programming model as well as the performance portability of the
application over different platforms [66-68]. In particular, Hahnfeld et al. explore programming
patterns to allow pipeline parallelism between host-device communication and computation [69].

Unlike previous works, our approach aims at enabling clusters as new OpenMP accelerators
that can be accessed from the headnode of a cloud cluster or directly from the computer of the
programmer, while respecting the OpenMP standard. We fully implemented our approach in ex-
isting tools allowing us to experiment it on a set of benchmarks and a real world application: we
also analyzed the performance cost involved in cloud offloading and compare the performance
with an MPI-based implementation. Last, contrary to most previous works, which rely on MPI, we
rely on Spark a modern framework that has already been extensively used in the industry and is
supported by a very dynamic community.

6 CONCLUSION

In this article, we addressed two problems: offloading computation to cloud infrastructures and
programming distributed computer clusters to benefit from their quasi-unlimited parallel process-
ing capabilities. We chose to base our methodology on a directive-based programming paradigm
because of its simplicity, and especially on the OpenMP accelerator model, which is one of the
most used parallel programming framework. To ease the utilization of the cloud infrastructure
and computer clusters, we designed a runtime that offloads, maps and schedules computation au-
tomatically. Our approach allows portability over HPC clusters, commercial cloud services and
private clouds. Indeed, by using a configuration file, our runtime is able to easily switch from
one infrastructure to another without recompiling the program (assuming compatible instruction-
sets). The communication with cloud storage services and the execution within the Spark cluster
is handled automatically according to the given configuration. Experiments were performed on a
set of benchmarks and a real scientific application described using the OpenMP accelerator model.
Our results show that, because of data compression, the overhead induced by the offloading and
the distributed computation heavily depends on the type of data processed by the application.
However, promising performance was demonstrated by good speedups, reaching up to 115X on
256 cloud cores for the 2MM benchmark using 1GB sparse matrices. Finally, our results show that
OmpCloud implementation can be competitive in performance with MPI when running directly
from the headnode of the cluster if there is sufficient computation workload. For example, on a
more complex application resolving the Collision Cross-Section problem, our parallel implemen-
tation reached up to 80X on a 320 core cluster. In the future, we plan to implement data caching
and pipeline parallelism (using OpenMP tasks) to limit the cost of host-target communications.
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Additionally, we would like to explore the potential benefits of using polyhedral analysis and op-
timization within our workflow.
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