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Figure 1: A gallery of unedited long exposure photographs taken with our computation light painting (Triceratops and Cow
models) and kinetic photography (Mermaid and HumpbackWhale models) systems. The pink curves illustrate the display or
camera motion.

ABSTRACT
We present a computational framework for creating swept volume
light painting and kinetic photography. Unlike conventional light
painting technique using hand-held point light source or LED ar-
rays, we move a flat-panel display with robot in a curved path. The
display shows real-time rendered contours of a 3D object being
sliced by the display plane along the path. All light contours are
captured in a long exposure and constitute the virtual 3D object
augmented in the real space. To ensure geometric accuracy, we use
hand-eye calibration method to precisely obtain the transformation
between the display and the robot. A path generation algorithm
is developed to automatically yield the robot path that can best
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accommodate the 3D shape of the target model. To further avoid
shape distortion due to asynchronization between the display’s
pose and the image content, we propose a real-time slicing method
for arbitrary slicing direction. By organizing the triangular mesh
into Octree data structure, the approach can significantly reduce
the computational time and improve the performance of real-time
rendering. We study the optimal tree level for different ranges of
triangle numbers so as to attain competitive computational time.
Texture mapping is also implemented to produce colored light
painting. We extend our methodologies to computational kinetic
photography, which is dual to light painting. Instead of keeping
the camera stationary, we move the camera with robot and capture
long exposures of a stationary display showing light contours. We
transform the display path for light painting to the camera path for
kinetic photography. A variety of 3D models are used to verify that
the proposed techniques can produce stunning long exposures with
high-fidelity volumetric imagery. The techniques have great poten-
tial for innovative applications including animation, visible light
communication, invisible information visualization and creative
art.
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1 INTRODUCTION
Light painting is created by moving a light source in the space
while being captured by long exposure. The technique has been
used for over a century for artistic and scientific purposes. In 1889,
physiologists and chronophotographers Étienne-Jules Marey and
Georges Demeny created the first light painting when studying the
movements of humans. They attached light bulbs at the joints of a
human and took long exposure photographs when the person was
walking. Light painting technique has been used by many famous
artists and photographers including Man Ray, Pablo Picasso, Henri
Matisse, and Gjon Mili. This aesthetic art form has engaged many
professional photographers and hobbyists in the past and is still
very popular now. Scientists and engineers have also used light
painting technique to visualize various forms of signals, such as
invisible light and radio frequency, by varying the brightness or
color of the light at different locations.

A similar long exposure technique called kinetic photography
can also create artistic light patterns. Rather than moving the light
source, a camera is moved or thrown into the air (camera tossing)
while its shutter opens. Both light painting and kinetic photography
techniques involve the relative movement between the camera and
the light source. The configuration of the two techniques are dual
to each other. Sometimes kinetic photography is also called light
painting.

In conventional light painting, the light source is usually point
light or other simple handheld light made by attaching an array of
LEDs to a stick or a ring. Whereas in conventional kinetic photog-
raphy, the camera motion is uncontrolled. The images created by
these approaches are limited to freehand strokes, abstract shapes
and blurred light patterns.

The goal of this work is to provide a framework for creating
long exposure photographs with high fidelity and representational
3D imagery while keeping the whole process highly automatic and
accurate.

We present computational light painting and computational ki-
netic photography in which the intensity, color or shape of the light
source is precisely controlled based on the instantaneous relative
position between the camera and the light source during a long
exposure. We use a flat-panel display as the light source in order to
deploy high-resolution pixels in the space efficiently in a controlled
manner. Similar to volumetric 3D display, when a flat display moves,

it sweeps out a volume populated with pixels that can be captured
by a camera with slow shutter speed. The volume can be used to
display various kinds of data such as 3D models. One of the key
challenges is how to ensure the shape fidelity of the light-painted
3D patterns.

We use a 6-axis robot arm to move the display. Apart from ef-
ficiency, the advantage of using robot is that the real-time pose
of the display can be precisely controlled and acquired. No pose
estimation or motion tracking is needed.

We develop a set of methodologies to tackle the challenges in
the robotic light painting process. We further apply and extend the
methodologies to accomplish computational kinetic photography.

The primary contributions of this work include:

• We calibrate the relative pose of the display and camera
based on robotic hand-eye calibration.

• We develop an automatic path generation algorithm to yield
the camera or display paths that can best accommodate the
3D shape of the target model.

• We propose a real-time, Octree-based model slicing algo-
rithm that is applicable for arbitrary directions and can sig-
nificantly improve rendering time.

• We apply texture mapping to create colored and textured
light painting.

• We design a pipeline to convert our calibration, path genera-
tion, and contour rendering methods to solve the computa-
tional kinetic photography problem.

• We conduct experiments with a variety of 3D models to
verify our methodologies.

To the best of our knowledge, this work is the first to propose
swept volume kinetic photography. Kinetic photography has re-
ceived relatively less attention in research domain, but it has im-
mense potentials in emerging media technologies and commercial
applications. For example, a moving car with a camera can cap-
ture the lights from a large screen installed on a highway or at
the entrance of a tunnel. 3D information and imagery can be auto-
matically and efficiently presented to the driver without the hassle
of establishing wireless communication. Other application scenar-
ios exist which suggest that computational kinetic photography is
useful for visible light communication.

Light painting and kinetic photography have great potential for
innovative applications such as visible light communication, invis-
ible information visualization, animation, and creative art. How-
ever, this area remains largely unexplored. We are inspired to use
computational methods to leverage the application range of these
interesting photography techniques and to light on this untapped
territory of research.

2 RELATEDWORK
We provide an overview of existing works using light painting
technique, as well as works in other related areas including hand-
eye calibration and model slicing.

2.1 Light painting
Light painting has been widely used in sciences, commercial pho-
tography, entertainment, and creative arts. Conventionally, the
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light source is moved by hand along some specific paths to cre-
ate an immaterial structure, which is recorded in 2D images by
camera long exposure [Acar and Kavuran 2016; Arnall et al. 2013;
Wada et al. 2016]. Reed and Clemens [Reed and Clemens 2010] used
a light source to write some characters in mid-air, in which the
strokes are in pure hand-writing style. Some mobile applications
are developed to realize swept volume light painting [Anzalichi
[n. d.]]. However, since the light patterns do not synchronize with
the device’s pose, user’s jiggly motions will result in distortion in
the photos. Sturgeon and Ray [Sturgeon and Ray 2015] used light
painting technique to visualize electromagnetic fields surrounding
physical objects.

Computational light painting refers to the technique using long-
exposure to record the light source which is precisely synchronized
and computed at every time instant. Mann et al. [Mann et al. 2014]
proposed an interactive wearable computational photography de-
vice which allows the wearer to see light painted virtual objects
augmented in the real space. While this work used random moving
path, the light source just generated simple shapes that contain
limited information. Salamon, Lancelle, and Eisemann [Salamon
et al. 2017] used virtual exposure to create computational light
painting from video frames. However, the resultant light pattens
are limited to single color strokes.

Robots have a wide variety of applications including photog-
raphy. Kruysman and Proto [Kruysman and Proto 2013] used a
robot arm to mount a display and draw volumetric light, but the
robot path is limited to linear. Robotic immaterial fabrication is
proposed by Keating and Oxman [Keating and Oxman 2013] us-
ing robotic arm to control light source for generating light objects.
However, the display contents in some works are not real-time
rendered and synchronized with robot motion [Keating and Oxman
2013; Kruysman and Proto 2013]. Besides, no path planning is taken
into consideration. Crossman [Crossman 2014] mounted a RGB
LED at the end effector of an industrial robot to draw volumetric,
colored model. While using a point light source, the process is time
consuming. Recently, we have introduced a computational light
painting system [Huang et al. 2016] that swepts a flat-panel dis-
play showing successive contours of 3D model using a robot arm
moving along some curved paths, resulting in three-dimensional
high-fidelity light painting photographs. Despite that the results
show convincing volumetric imagery, the frames displayed were
not generated in real-time, thus causing shape distortion. Moreover,
the motion paths of robot arm were manually created. The goal of
this paper is to address the above challenges.

2.2 Calibration
For long exposure photography in the context of creating non-linear
relative motion between the light source and the camera, the posi-
tion and orientation of the light source must be under supervised
control to keep the resultant light painting undistorted. Thus, a
calibration process is necessary to obtain the geometric relationship
between the display and the robot arm, when the former is rigidly
mounted to the latter. Hand-eye calibration, as commonly used
in robotic applications like visual servoing, is the technique for
determining the relative transformation between a camera and the
end-effector of robot where the sensor is attached to. Solving the

transformation can allow the robot arm to act in the camera coordi-
nate system in order to grip a target that the camera is looking at. In
addition, placing the camera to the exact position and orientation
with respect to the reference frame is essential for application likes
3D scene reconstruction. Such transformation is difficult to be mea-
sured by hand because the origin of the involved coordinate frames
are most likely to be located inside the physical chassis of the de-
vices. The hand-eye calibration problem is commonly described as
a homogeneous transform equation of the form AX = XB, which
can be solved by using the method of a two-stage solution [Cheung
and Ahmad 1989; Tsai and Lenz 1989] for doing tool-to-end effector
calibration based on the geometric interpretations of the eigenval-
ues and eigenvectors of a rotation matrix. Some other later works
also follow the two-stage approach [Wang 1992; Zhuang et al. 1994].
Since the rotation component of the equation is decoupled from
the translational one, such approach suffers from error propagation
problem in which the errors in solving the rotation component will
propagate to the translation component. These methods require at
least two motions (three poses) with distinct rotation axes to yield
a unique solution. Horaud and Dornaika [Horaud and Dornaika
1995] applied a simultaneous non-linear minimization for solving
rotation and translation of the unknown transformation X. The
method overcomes the propagation problem but it requires a proper
initial guess to achieve global minimum.

2.3 Model slicing
Another procedure necessary in our light painting process is to
compute the display content in real-time and synchronize it with
the robot arm motion. In order to create light patterns representing
the surface of a 3D model in the long exposure, what is to be shown
at every time instant should be the contour of the object obtained
by slicing the model using the display surface as the slicing plane.

A 3D model is composed of unordered triangles. In order to
obtain a 2D contour of a model sliced by an arbitrary plane, one
could exhaustively check every single triangle to see if the slicing
plane intersects with it and collect all the intersection segments
[Chalasani et al. 1991]. In order to improve the computational ef-
ficiency, Tata et al. and Vatani et al. [Tata et al. 1998; Vatani et al.
2009] proposed some pre-processes to group all the triangles along
z-direction. The approach is not applicable for arbitrary slicing
directions as re-grouping is needed every time when the slicing
direction changes, which makes the computational efficiency even
lower than the traversal approach. Other researchers proposed al-
ternative approach utilizing the topology information [Huang et al.
2002; Rock and Wozny 1991]. However, these methods still only
relied on fixed slicing direction and it is time-consuming to find
the first intersection point between the model and the slicing plane.
Despite the fact that slicing algorithm has been widely explored,
previous works always focused on slicing in one direction and the
process is offline.

3 METHODOLOGIES
3.1 Calibration
Computational light painting requires a precise mapping between
the display content and the robot arm position, which is based on
the prerequisite that the rotation and translation between display
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and robot arm is known. As our light painting deals with curved
motion path, inaccurate pose of the display will cause distortion in
the resultant long exposure photograph.

Figure 2: System calibration.

3.1.1 Preliminaries. We set the world coordinate frame at the
base of robot arm. bTe denotes the homogeneous transformation of
the end effector frame with respect to the world coordinate frame
(i.e. robot pose), eTd denotes the homogeneous transformation
of the display with respect to the end effector, and dTc denotes
the homogeneous transformation of the camera with respect to
the display. The geometric relationship of the computational light
painting system is shown in Figure 2.

3.1.2 Hand-eye Calibration. The goal of calibration step is to
solve the unknown transformation between the robot and the dis-
play mounted onto it (i.e. eTd ). First, a chessboard pattern is shown
on the display to conduct camera calibration [Zhang 2000]. During
the process, the display is moved to multiple arbitrary positions
while the chessboard pattern is captured by a camera placed at a
fixed position. The transformation from the camera to the display
(chessboard) dTc is then obtained from the extrinsic parameters of
the camera matrix. On the other hand, the robot pose bTe is also
known by the robot controller. Let n be the number of robot poses
during the camera calibration process. Each robot arm’s position is
recorded and paired with dTci for i = 1 to n. Thus, the only miss-
ing link in the transformation from robot base to camera is eTd ,
which is constant throughout the whole calibration process since
the display is rigidly attached to the robot arm. Moreover, since the
camera pose bTc is fixed throughout the process, we have

bT
c = bT

e
i eT

d
dT

c
i = bT

e
j eT

d
dT

c
j ∀i, j (1)

Our method to solve eTd is inspired by [Zuang and Shiu 1993].
We estimate the matrix using a nonlinear minimization technique,
which can provide the quality and the confidence of the solution
by analysing the depth and the width of the global minimum re-
spectively. There are 9 unknown parameters associated with the
rotational component and 3 with the translational component of
eTd . In fact, the rotation matrix can be expressed as 3 unknown
rotation angles along x , y and z axis, representing 3 degree of free-
dom, of end effector coordinate frame. The direct manipulation

of these 3 variables guarantees the orthogonality of the resultant
rotation matrix. A set of

∑n−1
i=1 i equations forms an overdetermined

system. The result acquired from the closed-form, non-iterative
solution [Cheung and Ahmad 1989] is used as the initial guess for
Levenberg-Marquardt least square minimization.

min
x


n−1∑
i=1

n∑
j=i+1

∥bT
e
i eT

d (x)dT
c
i − bT

e
j eT

d (x)dT
c
j ∥

2 : x ∈ R6

(2)

For computational kinetic photography where the camera in-
stead of the display is mounted to the robot, we used the same
calibration method to yield the transformation between the camera
and the robot end effector.

3.2 Automatic Path Planning
In order to efficiently utilize the volume swept by the moving dis-
play, we develop an algorithm to automatically yield the robot path
based on the geometry of the target 3D model. The idea is to find
the longest path in the skeleton of the model that matches its shape
tendency, and then smooth the path by curve fitting method.

3.2.1 Preliminaries. Various skeletonization methods can be
used. Without loss of generality, a mesh-based curve skeleton ex-
traction algorithm is used to obtain the skeleton of given 3D model
[Tagliasacchi et al. 2012]. The process formulates the skeletoniza-
tion problem via mean curvature flow. Figures 3(a) and 4(a) show
the raw skeletons of a dragon model and a dolphin model obtained
by the mean curvature flow method. Despite the raw skeleton S im-
plies the structural information of the 3D model, however, it cannot
be directly used as the robot path which is required to be smooth
and robust. Our next target is to prune the unwanted branches from
S while keeping the major backbone, which likely covers most parts
of the model for light painting. The skeleton S is originally formed
as a point set P, in which pe denotes an extremity point with only
one adjacent point; pl denotes a link point with two adjacent points;
and pj denotes a joint point with more than two adjacent points.
The skeleton point set P is further grouped as a branch set B, in
which each branch is composed of a point sequence that includes
pj or pe at both ends of the sequence and all pl in between. An
extremity branch is defined as a branch with at least one pe at its
both ends. The weight of a branch is recorded as the total length of
it.

3.2.2 Longest Path Extraction. We turn the backbone extraction
problem to the problem of finding the longest path in the skeleton
and by treating the branch set B as a graph, Breadth-first Search
(BFS) algorithm is used to realize it. The search starts from any
vertex in the graph. The search conquers the unvisited neighbors
of the current vertex at the same depth level before visiting any
other vertices at the next level. The path with heaviest weight is
recorded at each iteration until all vertices in graph are visited.
Then, a second round of BFS is executed again starting from the
extremity point in path with the heaviest weight in the first round.
The result of this step is an unbranched, longest path in the object
model skeleton S. Figures 3(b) and 4(b) show the longest path of
given models.
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Figure 3: (a) The skeleton of a dragonmodel. (b) The longest
path in the skeleton. (c) The OBB of themodel. (d) The green
branches are removed as they violate the major axis orien-
tation of OBB. (e) The backbone obtained. (f) The final path
automatically generated by polynomial curve fitting. (g) The
light painting result with path generated by proposed path
planning algorithm.

Figure 4: (a) The skeleton of a dolphinmodel. (b) The longest
path in the skeleton. (c) The OBB of themodel. (d) The green
branches are removed as they violate the major axis orien-
tation of the OBB. (e) The revised backbone by adding ad-
ditional branches in the skeleton aligning with the OBB. (f)
The final path automatically generated by polynomial curve
fitting. (g) The light painting result with path generated by
the proposed path planning algorithm.

3.2.3 OBB Refining. Despite in some cases the longest path ob-
tained can already represent a reasonable reference curve, further
pruning and planting are necessary for some models. The ultimate
goal is to generate the most representative path of a 3D structure,
which should follow the tendency of 3D object model. Oriented
Bounding Box (OBB) is ultilized to define the tendency of object

model. The covariance matrix of the model, which is a generaliza-
tion of variance to higher dimension, is used to fit the OBB. Based
on the algorithm by Gottschalk, Lin, and Manocha [Gottschalk
et al. 1996], the eigenvectors of the covariance matrix determine
the rotation of the fitting box with respect to the world coordinate
frame. Given the 3D coordinates of the vertices of the target object,
the mean position in 3D, denoted as x̂ , ŷ, ẑ, and covariance matrix,
denoted as C, are computed as follow:

C =

E[xx] − x̂x̂ E[xy] − x̂ŷ E[xz] − x̂ẑ
E[yx] − ŷx̂ E[yy] − ŷŷ E[yz] − ŷẑ
E[zx] − ẑx̂ E[zy] − ẑŷ E[zz] − ẑẑ


x̂ =

1
N

N∑
i=1

xi , ŷ =
1
N

N∑
i=1

yi , ẑ =
1
N

N∑
i=1

zi

(3)

where N is the number of vertices, E[a] represents the expected
value of argument a. Then, the eigenvectors are yielded from the
covariance matrix. The transformation matrix of the OBB is deter-
mined by the position and the eigenvectors, and finally scaling the
bounding box of the input model. Figures 3(c) and 4(c) show the
OBB of the given models.

The same OBB computation process is also applied to every
branch along the longest path, in which the 3D coordinates of the
point set of the skeleton are used to build the covariance matrix.
The branch with more similar direction with the OBB will be given
higher priority. By comparing the OBB of each branch and the OBB
of the entire model, the branch with very different directions with
the OBB of the model will be pruned (green branches in Figures
3(d) and 4(d)). Then, we will get a shortened path of the model.

However, since the target path is required to cover the entire
3D model, in some cases, it is hard to be realized by a shortened
path obtained from the former process as shown in Figure 4(d).
Each unused branch connecting to either end nodes of the current
path is sorted out, and added to the path if its OBB aligns well with
the model OBB, thus extending the path as shown in Figure 4(e).
The resultant path spans the entire object model and is defined
as the final backbone of the model. Figures 3(e) and 4(e) show the
backbone of given models. In some cases, no new branch is added
to the backbone, such as the dragon model as shown in Figure 3(d)
and (e).

3.2.4 Path Smoothen and Extension. The backbone is a subset
of B of the given model, but sudden inflection point along the back-
bone makes the path unsafe for robot motion. On the other hand,
the extracted backbone is completely inside the model body, fur-
ther extension is needed to ensure the swept path covers the entire
model. We use polynomial curve fitting to smoothen and extend the
backbone. We treat all skeleton points on the backbone as the input
control points, a smooth curve can be easily obtained. The resultant
curve is a desirable path to be applied for robot motion. Figures 3(f)
and 4(f) show the final light-painting paths automatically generated
for the given models.

3.2.5 Evaluation. In addition to simplifying the path creation
process for light painting, the automatically generated curved path
shows higher space efficiency than a linear motion path. It means
that with the same display area, light painting with a curved path
can get a larger swept volume compared to linear path. In other
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Table 1: Comparison of efficiency between curve path and
OBB

words, to obtain a fixed workspace, the display size required by
a curved path is always smaller than that required by a linear
path. To quantitatively evaluate the efficiency of the curved paths
automatically generated by our method, we compute the ratio of
the minimum display size required to cover various 3D models
using the curved paths obtained and linear paths. The direction of
linear path for each model is defined as the major axis direction
of its OBB. Given a model, the ratio γ is defined as the minimum
display area needed to cover the entire model when using curved
path (Ac ) versus the minimum display area needed when using
linear path (AOBB ), which is γ = Ac

AOBB
. Table 1 shows the ratios

γ for different models.

3.3 Real-time rendering and model slicing
During light painting, in order to guarantee the model is fully cov-
ered, the designed robot path is always longer than the backbone.
Pre-rendered video or image stacks may work for linear robotic
paths with constant speeds as proposed by most previous works.
However, for curved paths which yield better efficiency, synchro-
nization between the robot arm pose and the video content is critical
for avoiding distortion of the resultant light painted object, which
is composed of many closely stacked layers of contours in different
orientations. Thus, an efficient slicing algorithm for obtaining the
contour of a 3D mesh at arbitrary orientation is necessary. In this

subsection, we describe an Octree-based model slicing algorithm
used for generating the light contours in real-time.

3.3.1 Real-time Slicing of Un-textured Model. We adopt the slic-
ing algorithm that we previously proposed [Wong et al. 2017]. The
Axis Aligned Bounding Box (AABB) based Octree data structure is
built to represent the hierarchical mesh information of the model.
We determine the optimal tree level based on empirical approach
in order to achieve the best computational efficiency. The Octree
does not need to be rebuilt when the model is sliced. Furthermore,
slicing of Octree-structured model can be implemented by parallel
computing to further improve efficiency.

During real-time slicing, the position and orientation of the slic-
ing plane are computed based on the robot pose streamed from the
robot controller and the calibrated end effector-display transfor-
mation eTd . The slicing plane will access the Octree from the root
to leaf node recursively. All triangles intersecting with the slicing
plane are extracted and line segments constructing the contour(s)
are collected. The query will stop at the node that does not intersect
with the slicing plane, which can efficiently reduce the number of
triangles to be processed so as to speed up the rendering.

Table 2 compares the computational time using Octree-based and
traversal (naive) slicing methods. The Octree level for each model
was selected based on its triangle numbers [Wong et al. 2017]. For
each model. 100 slicing planes were randomly sampled. The time
involved to extract the intersection lines between the model and
each slicing plane using both methods are recorded. We have per-
formed the test on over 30 models and Octree method always yield
a shorter computational time than the traversal method. Selected
examples are listed in Table 2.

Table 2: Comparison of efficiency between Octree method
and traversal method

Number of
triangles

Octree
level

Average slicing
time using Octree

(ms)

Average slicing
time using

traversal method
(ms)

2424 0 1.14 1.27
16762 2 2.35 3.62
47730 3 3.28 9.91
99994 3 5.94 18.04
213504 3 11.21 37.27
220174 3 10.74 35.19
527916 4 21.48 84.90
1710982 4 76.96 277.25
2565012 4 128.09 425.50

3.3.2 Texture Mapping. We further extend our rendering tech-
nique to produce colored contours based on the model texture. The
goal in this process is to color every position along the intersection
line segments obtained in the slicing process with the correspond-
ing color of the given model using the triangle vertices and the
corresponding texture uv coordinates. As shown in Figure 5(a),
given a model and a slicing plane, the corresponding line segment
is shown in red and the intersection points between the triangles
on of the mesh and the slicing plane are shown as yellow dots. The
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sub-image in Figure 5(a) is the texture map of the model. Figure
5(a) and (b) show the geometric relationship of vertices of a green
triangle in 3D space and the 2D texture map respectively.V ′

1 ,V
′
2 ,V

′
3

denote the 3D coordinates of the triangle vertices;M ′
a ,M ′

b denote
the 3D coordinates of the intersection points; V1, V2, V3 denote the
uv coordinates of the triangle vertices; andMa ,Mb denote the uv
coordinates of the intersection points. Ma and Mb can be easily
obtained by linear interpolation:

Ma = V2 + (V1 −V2)

����M ′
a −V ′

2
V ′
1 −V ′

2

����
Mb = V2 + (V3 −V2)

�����M ′
b −V ′

2
V ′
3 −V ′

2

����� (4)

After finding the uv coordinates of Ma and Mb , the color at ev-
ery position along the intersection line segment can be directly
retrieved from texture pixels alongMa andMb . When the process
is applied to every line segment, a colored contour in 3D space will
be produced as shown in Figure 6.

Figure 5: Texture mapping of intersection line segment.

Figure 6: Computational light painting of textured model.

3.4 Computational Kinetic Photography
We extend our computational light painting framework to com-
putational kinetic photography in which the camera is mounted
to and moved by the robot while the display remains stationary.

One advantage is that a large display or projection can be used
because the camera, not the display, is set in motion. In conven-
tional kinetic photography, the light patterns in the resultant long
exposure is abstract while the background is blurry. The goal of
our computational kinetic photography framework, as shown in
the long exposures of Mermaid and Humpback Whale in Figure 1,
is to produce clear and representational 3D light patterns by tightly
synchronizing the display content with the camera motion at every
time instant when the camera shutter opens.

All our methodologies developed for computational light paint-
ing can be applied to computational kinetic photography. However,
additional steps are needed. The major difference between the two
modes is that, in computational light painting, the camera position
is arbitrary and can be changed any time as long as the display
is within the field of view of the camera; while in computational
kinetic photography, the relative position and orientation between
the camera and the display must be pre-determined in order to
define the camera motion. We swap the positions of camera and dis-
play, and use the same calibration method described in Section 3.1
to obtain the transformation between the camera and end effector .
After calibration, the display pose with respect to the robot arm is
also determined. Thus, we can use the information to produce the
camera path.

4 EXPERIMENTS
We implement the proposed methods and conduct a set of experi-
ments to verify our approach. The model-based robotic path gener-
ation algorithm is implemented in C++. We use a 6-axis industrial
robot arm UR10 by Universal Robots to mount a flat-panel display
(iPad Pro) for light painting or a camera for kinetic photography.
A Canon Mark II 5D camera is used for taking long exposures. A
PC with NVIDIA GeForce GTX 780 GPU and 2.6GHz CPU is used
as for all computation including real-time rendering. The robot
script (UR script) for controlling the robot is generated by Rhino
plugin by HAL [Schwartz 2011]. The data transmission between
the computer and the robot controller is established via local area
network (LAN). When the robot is moving, the controller streams
the robot pose to the PC through LAN at 60 frames per second.
Another C++ program running on PC is developed for real-time
control, which receives robot pose and implement the real-time
slicing algorithm to render the light contours.

Figure 7: Computational light painting system.
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4.1 Computational Light Painting Results
Figure 7 shows the set-up of our computational light painting sys-
tem. A 12.9-inch iPad pro of resolution 2732-by-2048 is used as
the display. The rendering is computed by the PC. The display is
mounted on the robot and their relative transformation is obtained
by calibration. As the display is moved by the robot, it creates a
stack of contours in the space representing the 3D shape of object
model. Figure 8 shows the resultant photograph by our compu-
tational light painting technique of a Horse model. The physical
dimension of the light painted Horse was 95× 158× 207mm and the
shutter time was 43 seconds. Computational light painting allows
different camera angles as shown in Figure 9. The physical size of
the light painted Tyrannosaurus was 502 × 99 × 177mm and the
exposure time of both photos was 52 seconds.

Figure 8: Rendered image vs computational light painting
photograph of a Horse model.

Figure 9: Rendered images vs computational light painting
photographs of a Tyrannosaurus model captured from dif-
ferent viewing angles.

4.2 Computational Kinetic Photography
Results

Figure 10 shows the set-up of our computational light painting
system. We mount the camera on the robot and fixed a 50-inch
TV of resolution 1920-by-1080. The pose of the TV as well as the
transformation from the robot end effector to the camera are ob-
tained by calibration. By setting the virtual camera in the dual

light painting scene at different positions during the path conver-
sion process, it is also possible to shoot the model from different
viewing angles. Figure 11 shows the kinetic photography results
of the same Tyrannosaurus model of 1254 × 247 × 444mm physical
dimension from various perspectives. The camera exposure time
was 27 seconds and 30 seconds respectively. The light sculptures of
Mermaid and Humpback Whale in Figure 1 were also created by
our computational kinetic photography system.

Figure 10: Computational kinetic photography system.

Figure 11: Rendered images vs computational kinetic pho-
tographs of the Tyrannosaurus model at different viewing
angles.

5 CONCLUSIONS AND DISCUSSION
This work presented a novel approach to realize computational
light painting and kinetic photography. To ensure shape fidelity,
we used robot to precisely control and acquire the real-time pose
of the display. In addition, we extended hand-eye calibration to
acquire the geometric relationship among the system components,
including display, robot and camera. The proposed method further
automatically generated a curved motion path for the robot to
accommodate the model shape and optimize the efficiency. We
developed a Octree-based slicing algorithm to generate the display
content in real-time under the challenging condition of arbitrary
slicing direction. Most importantly, we provided a framework to
realize computational, swept volume kinetic photography based on
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the developed methodologies. To the best of our knowledge, this is
the first work using kinetic photography to capture representational
3D imagery.

Our future work includes improving the automatic path gener-
ation method by taking more factors, such as the camera’s field
of view, models with complex topology and the robot’s kinematic
constraints, into consideration. The rendering method will also
be enhanced to produce more realistic 3D imageries by removing
the occluded parts of the models. We will also use the proposed
methods for other applications, including animation, visible light
communication, and augmented reality.
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