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ABSTRACT
Visual attention is highly fragmented during mobile interac-
tions, but the erratic nature of attention shifts currently limits
attentive user interfaces to adapting after the fact, i.e. after
shifts have already happened. We instead study attention
forecasting – the challenging task of predicting users’ gaze be-
haviour (overt visual attention) in the near future. We present
a novel long-term dataset of everyday mobile phone interac-
tions, continuously recorded from 20 participants engaged in
common activities on a university campus over 4.5 hours each
(more than 90 hours in total). We propose a proof-of-concept
method that uses device-integrated sensors and body-worn
cameras to encode rich information on device usage and users’
visual scene. We demonstrate that our method can forecast
bidirectional attention shifts and predict whether the primary
attentional focus is on the handheld mobile device. We study
the impact of different feature sets on performance and dis-
cuss the significant potential but also remaining challenges of
forecasting user attention during mobile interactions.
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H.5.m. Information Interfaces and Presentation (e.g. HCI):
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INTRODUCTION
Sustained visual attention – the ability to focus on a specific
piece of information for a continuous amount of time with-
out getting distracted – has constantly diminished over the
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Figure 1: We propose a method to forecast temporal allocation
of overt visual attention (gaze) during everyday interactions
with a handheld mobile device. Our method uses informa-
tion on users’ visual scene as well as device usage to predict
attention shifts between mobile device and environment and
primary attentional focus on the mobile device.

years [38]. This trend is particularly prevalent for mobile in-
teractions, during which user attention was shown to be highly
fragmented [32]. Active management of user attention has
consequently emerged as a key research challenge in human-
computer interaction [3]. However, the capabilities of current
mobile attentive user interfaces are still severely limited. Prior
work mainly focused on estimating the point of gaze on the
device screen using the integrated front-facing camera [15, 52]
or on using inertial sensors or application usage logs [7, 10] to
predict user engagement [26, 47] or boredom [35]. In contrast,
allocation of user attention across the device and environment
has rarely been studied, and only using simulated sensors [27].
Most importantly, existing attentive user interfaces are only
capable to adapt after the fact, i.e. after an attention shift has
taken place [13, 21, 25].

We envision a new generation of mobile attentive user in-
terfaces that pro-actively adapt to imminent shifts of user
attention, i.e. before these shifts actually occur. Pro-active
adaptation promises exciting new applications. For example,
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future attentive user interfaces could alert users in case of a
(potentially dangerous) external event that they might miss due
to predicted sustained attention to the mobile device. Further,
a predicted attention shift to the mobile device could trigger
unlocking the device or loading the previous screen content
to reduce interaction delays. Finally, pro-active adaptations
could also have significant impact in interruptibility research.
A future attentive user interface could show important infor-
mation if user attention is predicted to continue to stay on
the device or, inversely, alert users if an attention shift to the
environment is predicted such that a mobile task cannot be
finished in time, such as submitting a form or replying to a
chat message.

The core requirement to realise such pro-active attentive user
interfaces is their ability to predict users’ future allocation of
overt visual attention during interactions with a mobile device.
We call this challenging new task attention forecasting. To
facilitate algorithm development and evaluation for attention
forecasting, we collected a multimodal dataset of 20 partici-
pants freely roaming a local university campus over several
hours while interacting with a mobile phone. Three anno-
tators annotated the full dataset post-hoc with participants’
current environment, indoor or outdoor location, their mode
of locomotion, and whenever their attention shifted from the
handheld device to the environment or back. We then devel-
oped a computational method to forecast overt visual attention
during everyday mobile interactions. Our method uses device-
integrated and head-worn IMU as well as computer vision
algorithms for object class detection, face detection, semantic
scene segmentation, and depth reconstruction. We evaluate our
method on the new dataset and demonstrate its effectiveness
in predicting attention shifts between the mobile device and
the environment as well as whether the primary attentional
focus is on the device.

The specific contributions of this work are three-fold. First,
we propose attention forecasting as the challenging new task
of predicting future allocation of users’ overt visual attention
during everyday mobile interactions. We propose a set of fore-
casting tasks that will facilitate pro-active adaptations to users’
erratic attentive behaviour in future user interfaces. Second,
we present a novel 20-participant dataset of everyday mobile
phone interactions. The dataset including annotations will be
made publicly available upon acceptance. Third, we propose
the first method to predict core characteristics of mobile atten-
tive behaviour from device-integrated and wearable sensors.
We report a detailed evaluation of our method on the new
dataset, and demonstrate the feasibility of predicting attention
shifts between handheld mobile device and environment and
the primary attentional focus on the device.

RELATED WORK
Our work is related to prior work on (1) user behaviour mod-
elling and (2) gaze estimation on mobile devices as well as (3)
computational modelling of egocentric attention.

User Behaviour Modelling on Mobile Devices
With the prevalence of sensor-rich mobile devices, modelling
user behaviour, including gaze and attention, has gained signif-

icant popularity. A large body of work investigated the use of
device-integrated sensors to predict users’ interruptibility [7,
10, 12, 45, 46]. In particular, Obuchi et al. detected breaks in
a user’s physical activities using inertial sensors on the phone
to push mobile notifications during these breaks [30]. Din-
gler et al. used rapid serial visual presentation (RSVP) on a
smartwatch in combination with eye tracking and detected
when the reading flow was briefly interrupted, so that text
presentation automatically paused or backtracked [9]. Pielot
et al. proposed a method to predict whether a participant will
click on a notification and subsequently engage with the of-
fered content [34]. Others aimed to predict closely related
concepts, such as user engagement [26, 47], boredom [35] or
alertness [1]. Oulasvirta et al. investigated how different envi-
ronments affected attention while users waited for a web page
to load on a mobile phone [32]. In a follow-up work, the same
authors used a Wizard-of-Oz paradigm with simulated sensors
to assess the feasibility of predicting time-sharing of attention,
including prediction of the number of glances, the duration of
the longest glance, and the total and average durations of the
glances to the mobile phone [27].

Our work is the first to propose a method to predict atten-
tive behaviour during everyday mobile interactions from real
phone-integrated and body-worn sensors. Another distinction
from prior work is that our data collection constrained partic-
ipants as little as possible, and specifically did not impose a
scripted sequence of activities or environments.

Gaze Estimation on Mobile Devices
Estimating gaze on mobile devices has only recently started
to receive increasing interest, driven by technical advances in
gaze estimation and mobile eye tracking. In an early work,
Holland and Komogortsev proposed a learning-based method
for gaze estimation on an unmodified tablet computer using
the integrated front-facing camera [15]. More recently, Huang
et al. presented a large-scale dataset and method for gaze es-
timation on tablets and conducted extensive evaluations on
the impact of various factors on gaze estimation performance,
such as ethnic background, glasses, or posture while holding
the device [16]. Wood and Bulling used a model-based gaze
estimation approach on an off-the-shelf tablet and achieved
an average gaze estimation accuracy of 6.88° at 12 frames per
second [52] while Vaitukaitis and Bulling combined methods
from image processing, computer vision and pattern recog-
nition to detect eye gestures using the built-in front-facing
camera [48]. Jiang et al. proposed a method to estimate vi-
sual attention on objects of interest in the user’s environment
by jointly exploiting the phone’s front- and rear-facing cam-
eras [19] while Paletta et al. investigated accurate gaze esti-
mation on mobile phones using a computer vision method to
detect the phone in an eye tracker’s scene video [33]. While
all of these works focused on estimating gaze spatially on the
device screen, we are the first to predict attention allocation
temporally.

Computational Modelling of Egocentric Attention
While bottom-up attention modelling, i.e. solely using image
features, has been extensively studied in controlled labora-
tory settings, egocentric settings are characterised by a mix
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Figure 2: Overview of the different prediction tasks explored
in this work: Prediction of attention shifts to the environment
and (back) to the mobile device, and the primary attentional
focus, i.e. whether attention is primarily on or off the device.

of bottom-up and top-down influences and are therefore less
well explored. Yamada et al. were among the first to predict
egocentric attention using bottom-up image and egomotion
information [53]. Zhong et al. used a novel optical flow model
to build a uniform spatio-temporal attention model for egocen-
tric videos [58]. Saliency models, which aim to predict which
image regions most attract viewers’ attention are an important
type of computational model of visual attention [18]. However,
none of these works aimed to predict attention during mobile
interactions. In addition, while we also use features extracted
from egocentric video, we do not predict spatial attention dis-
tributions for the current video frame but use a short sequence
of past frames (one second) to predict shifts of visual attention
in the near future.

FORECASTING MOBILE USER ATTENTION
To be able to pro-actively adapt before users shift their atten-
tion, attentive interfaces have to predict users’ future attentive
behaviour. We call this new prediction task attention forecast-
ing. Attention forecasting is similar in spirit to the tasks of
user intention prediction as investigated, for example, in web
search [6] or human-robot interaction [36], as well as player
goal or plan recognition, studied in digital games [28]. In
contrast to these lines of work, however, it specifically focuses
on predicting fine-grained attentive behaviour and predictions
at a moment-to-moment time scale. Attention forecasting is
already highly challenging in stationary desktop interaction
settings given the significant variability and strong task de-
pendence of users’ attentive behaviour. Forecasting users’
attention is even more challenging during mobile interactions
given the additional, as well as the large number of, potential
visual attractors in the real-world environment.

In the following, we first propose a set of concrete prediction
tasks within the attention forecasting paradigm and outline
their potential use in future mobile attentive user interfaces.
A more extensive consideration of how attention forecasting
could be used in the future can be found in the discussion sec-
tion. Afterwards, we propose a first proof-of-concept method
that demonstrates the feasibility of predicting temporal atten-
tion allocation during everyday mobile interactions from real
device-integrated and body-worn sensors.

Prediction Tasks
To guide future development of computational methods for
attention forecasting during mobile interactions, we propose
the following prediction tasks: prediction of Attention Shifts
to the environment and to the handheld mobile device, and
Primary Attentional Focus on the device. Figure 2 illustrates
these three prediction tasks for a sample attention allocation
of a user. During the segments marked in black the user’s at-
tention is on the mobile device, while during segments marked
in purple the user’s attention is in the environment. In the
following, we detail each of these prediction tasks.

Prediction of Attention Shifts
The first prediction task deals with attention shifts from the
mobile device to the environment, and from the environment
back to the device (see Figure 2A). Attention shifts are a key
characteristic of attentive behaviour and thus an important
source of information for attentive user interfaces. The task
involves taking a certain time window for feature extraction,
training a prediction model with this data, and using that
model to predict whether an attention shift will happen during
a subsequent target time window. This task assumes the user
interface to already have knowledge about whether a user’s
attention is currently on the handheld device or not. Such
knowledge can be obtained, for example, by using a method
for mobile gaze estimation [52]. Prediction of attention shifts
could be used in different ways by an attentive user interface.
Attention shift prediction could be used to pro-actively support
users to reorient themselves on a mobile device to smoothly
get back to their previous task. Similar to Obuchi et al., who
used phone data, predicted attention shifts could also be used
as breakpoints for push notifications [30]. These could, for
example, be shown shortly before or after an attention shift
is predicted to take place. Finally, attention shift prediction
could be used to automatically turn the screen on again if a
shift to the handheld device is predicted to occur in the near
future.

Prediction of the Primary Attentional Focus
The last task focuses on predicting whether users’ attention
will be primarily on the mobile device or off the device for a
particular time window in the future (see Figure 2B). Knowl-
edge of the primary attentional focus for an upcoming time
window can be useful for different applications. For example,
it could be used to highlight messages or to manage user atten-
tion in such a way that the interface needs to change content
or style of presentation to keep users’ attention beyond the
considered time window to finish a task.

Proposed Method
To explore the feasibility of these prediction tasks, and to
establish a baseline performance on each of them, we devel-
oped a first method for attention forecasting. Previous work
demonstrated that information available on a mobile device
itself, such as inertial data, GPS location, or application us-
age, can be used to predict engagement or interruptibility. It
is therefore conceivable that such information may also be
useful to predict attention shifts to the handheld mobile de-
vice. In contrast, detecting shifts to the environment requires
information on the user’s current environment. This suggests
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Figure 3: Overview of our method for attention forecasting during mobile interactions. Taking information on users’ visual scene,
mobile device (phone) and head inertial data, as well as on mobile app usage as input (A), our method extracts rich semantic
information about the user’s visual scene using state-of-the-art computer vision methods for object and face detection, semantic
scene segmentation, and depth reconstruction (B). The method then extracts and temporally aggregates phone and visual features
and takes eye tracking data into account to predict bidirectional attention shifts and the primary attentional focus on the phone (C).

combining the mobile device with wearable sensors, in partic-
ular egocentric cameras worn on the user’s head. Egocentric
cameras represent a rich source of visual information on the
user’s environment as demonstrated by the rapidly growing
literature on egocentric vision [2]. Combined with the fact
that an ever-increasing number of egocentric cameras are used
in daily life (e.g. sports cameras, cameras readily integrated in
HMDs, life-logging cameras, etc.), this makes them a not only
promising but also practical sensing modality for attention
forecasting.

Figure 3 provides an overview of our method. Inputs to our
method are egocentric, mobile device (phone), and gaze data.
Our method extracts information from the egocentric scene
and depth videos using computer vision algorithms for object
and face detection, semantic scene segmentation labels, scene
category, and reconstructed depth data as well as head motion.
In addition, our method extracts features from a mobile phone,
including the history of application usage and accelerometer,
gyroscope, and magnetometer measurements as well as past
gaze. Our method finally uses these features in a machine
learning framework for attention forecasting, specifically at-
tention shifts between the mobile phone and the environment
as well as the primary attentional focus on the phone.

Feature Extraction
We extract features from the head-mounted egocentric RGB
and depth cameras, head IMU, mobile device (phone), and
past gaze data recorded using a head-mounted eye tracker (see
Table 1 for a complete list of features used in this work). These
features include numerical features, such as pixel counts of se-
mantic segmentations, entropy of objectness maps, and mean
depth map values, as well as binary encodings like occurrence
of a touch event or whether an application on the handheld
device is active. We aggregate features over a window by com-
puting the mean, maximum, minimum, standard deviation and
slope for numerical features, and the mean and the slope for
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Sensor Features
RGB
camera

number of detected faces and pixel counts of
object classes like person, car, and monitor
from the semantic segmentation, and binary
occurrence indicator, numbers of detected in-
stances of each object class from object de-
tection, 1-hot encoded scene classes, mean,
min, max, standard deviation and entropy of
saliency and objectness of the scene images

Depth
camera

mean, min, max, standard deviation and en-
tropy of the depth map from the stereo camera

Head
IMU

mean, min, max, standard deviation, norm
and slope of accelerometer and gyroscope

Phone mean, min, max, standard deviation, norm
and slope of accelerometer, gyroscope and
orientation sensor values; 1/0 features indicat-
ing touch events, screen on/off, and activity
of each of the installed applications

Gaze fixation positions (x, y); objectness, saliency
and depth values at gaze position

Table 1: Overview of the different sensors and corresponding
features explored in this work.

binary features. Prior works on eye-based activity recognition
demonstrated that gaze behaviour is characteristic for differ-
ent activities [4, 5, 41]. It is therefore conceivable that gaze
features may help to improve the performance of our method
for attention forecasting. Specifically, we calculate mean, min,
max, standard deviation, norm and slope of the gaze positions
(x, y) as well as objectness, saliency and depth values at that
position. For evaluation purposes, and with potential future
applications in mind, we group these features into four fea-
ture groups (cf. Figure 3 and Table 1): Egocentric (including
RGB, depth, and head inertial features), Phone (including
only phone features), Proposed (all features from Egocentric
and Phone), as well as Proposed + Gaze (including fixation
characteristics).



Egocentric
This feature group covers the egocentric RGB and depth cam-
era, as well as a head inertial sensor. The depth and inertial
sensors we used just for the sake of reliable feature extrac-
tion, although they can also be estimated from the egocentric
camera itself [23]. As described above, we extract the most
information from the egocentric scene video because scene
information can include triggers which lead to changes of
attentive behaviour. We obtain a coarse description of the
scene by applying the scene recognition method of Wang et al.
[50] to the video frames. This method utilises a convolutional
neural network to extract scene descriptions like “office” or
“library”. As objects are potential targets for capturing atten-
tion, we obtain a more fine-grained description of the scene by
applying the semantic scene segmentation approach of Zheng
et al. [57]. Semantic scene segmentation labels each pixel
in a scene image as belonging to a certain object class or to
background. To this end, their method combines a deep neural
network with a probabilistic graphical model, trained to obtain
pixel-wise segmentations of 20 different object classes includ-
ing persons, monitors and cars. By encoding the occurrence
of objects and also counting the number of pixels belonging to
each object class, we obtain information about which objects
take up the largest portion of the camera’s field of view. An-
other important aspect of objects in a scene is the count of their
instantiations. For example, gazing upon a dining hall can lead
to a large number of “person” pixels, as does standing directly
in front of another person. By simply counting the number
of “person” pixels, these two cases cannot be distinguished.
Thus, we employ the object class detection method by Ren et
al. [40] to obtain an estimate of the count of instances for each
object class. In addition to people detection, we hypothesised
that faces can help in predicting attention shifts, as they are
well known to strongly draw the attention of an observer [39]
and their presence is also indicative of social situations [14],
constituting a highly distracting factor in the scene. To this
end, we apply a face detection approach [22] and count the
number of detected faces in the scene image. Moreover, we
extracted depth information to obtain physical structure of
the scene and mapped the depth map to the scene video via
camera calibration. With the calculation of saliency and ob-
jectness maps, we collect ancillary knowledge about the scene
complexity. As head poses can serve as a useful prior for gaze
estimation [49], we additionally extract inertial features from
the head-mounted camera.

Phone
This feature group covers inertial data, which consists of ac-
celerometer, gyroscope and orientation information, as well as
phone usage data, which consists of single app usage informa-
tion, and whether touch events took place or the screen is on
or off. For that purpose we installed additional applications
on the phone which were running in the background to log the
movement of the phone and the user’s phone usage.

DATA COLLECTION
Given the lack of a suitable dataset for algorithm development
and evaluation, we conducted our own data collection. Our
goal was to record natural attentive behaviour during every-
day interactions with a mobile phone. The authors of [32]

leveraged the – at the time – long page loading times during
mobile web search to analyse shifts of attention. We followed
a similar approach but adapted the recording procedure in sev-
eral important ways to increase the naturalness of participants’
behaviour and, in turn, the realism of the prediction task. First,
as page loading times have significantly decreased over the
last 10 years, we instead opted to engage participants in chat
sessions during which they had to perform web search tasks
as in [32] and then had to wait for the next chat message.

To counter side effects due to learning and anticipation, we
varied the waiting time between chat messages and search
tasks. Second, we did not perform a fully scripted recording,
i.e. participants were not asked to follow a fixed route or per-
form particular activities in certain locations in the city, they
were not accompanied by an experimenter, and the recording
was not limited to about one hour. Instead, we observed partic-
ipants passively over several hours while they interacted with
the mobile phone during their normal activities on a university
campus. For our study we recruited twenty participants (six
females), aged between 22 and 31 years, using university mail-
ing lists and study board postings. Participants were students
with different backgrounds and subjects. All had normal or
corrected-to-normal vision.

Apparatus
The recording system consisted of a PUPIL head-mounted
eye tracker [20] with an additional stereo camera, a mobile
phone, and a recording laptop carried in a backpack (see Fig-
ure 3 left). The eye tracker featured one eye camera with a
resolution of 640×480 pixels recording a video of the right
eye from close proximity with 30 frames per second, and a
scene camera with a resolution of 1280×720 pixels record-
ing at 24 frames per second. The original lens of the scene
camera was replaced with a fisheye lens with a 175◦ field of
view. The eye tracker was connected to the laptop via USB. In
addition, we mounted a DUO3D MLX stereo camera to the
eye tracker headset. The stereo camera recorded a depth video
with a resolution of 752×480 pixels at 30 frames per second
as well as head movements using its integrated accelerometer
and gyroscope. Intrinsic parameters of the scene camera were
calibrated beforehand using the fisheye distortion model from
OpenCV. The extrinsic parameters between the scene camera
and the stereo camera were also calibrated. The laptop ran
the recording software and stored the timestamped egocentric,
stereo, and eye videos.

Given the necessity to root the phone to record touch events
and application usage, similar to [32] we opted to provide a
mobile phone on which all necessary data collection software
was pre-installed and validated to run robustly. For partici-
pants to “feel at home” on the phone, we encouraged them to
install any additional software they desired and to fully cus-
tomise the phone to their needs prior to the recording. Usage
logs confirmed that participants indeed used a wide variety
of applications, ranging from chat software, to the browser,
mobile games, and maps. To robustly detect the phone in the
egocentric video and thus help with the ground-truth anno-
tation, we attached visual markers to all four corners of the
phone (see Figure 3 left). We used WhatsApp to converse



with the participants and to log accurate timestamps for these
conversations [8]. Participants were free to save additional
numbers from important contacts, but no one transferred their
whole WhatsApp account to the study phone. We used the
Log Everything logging software to log phone inertial data
and touch events [51], and the Trust Event Logger to log the
current active application as well as whether the mobile phone
screen was turned on or off.

Procedure
After arriving in the lab, participants were first informed about
the purpose of the study and asked to sign a consent form. We
did not reveal which parts of the recording would be analysed
later so as not to influence their behaviour. Participants could
then familiarise themselves with the recording system and
customise the mobile phone, e.g. install their favourite apps,
log in to social media platforms, etc. Afterwards, we calibrated
the eye tracker using the calibration procedure implemented in
the PUPIL software [20]. The calibration involved participants
standing still and following a physical marker that was moved
in front of them to cover their whole field of view.

To obtain some data from similar places on the university
campus, we asked participants to visit three places at least
once (a canteen, a library, and a café) and to not stay in any
self-chosen place for more than 30 minutes. Participants were
further asked to stop the recording after about one and a half
hours so we could change the laptop’s battery pack and re-
calibrate the eye tracker. Otherwise, participants were free to
roam the campus, meet people, eat, or work as they normally
would during a day at the university. We encouraged them
to log in to Facebook, check emails, play games, and use all
pre-installed applications on the phone or install new ones.
Participants were also encouraged to use their own laptop,
desktop computer, or music player if desired.

As illustrated in Figure 4, 12 chat blocks (CB) were distributed
randomly over the whole recording. Each block consisted of
a conversation via WhatsApp during which the experimental
assistant asked the participant six random questions (Q1–Q6)
out of a pool of 72 questions. Some questions could be an-
swered with a quick online search, such as “How many states
are members of the European Union?” or “How long is the
Golden Gate Bridge?”. Similar to Oulasvirta et al. [32] we
also asked simple demographic questions like “What is the
colour of your eyes?” or “What is your profession?” that
could be answered without an online search. After each an-
swer (A1–A6), participants had to wait for the next question.
This waiting time was varied randomly between 10, 15, 20,
30, and 45 seconds by the experimental assistant. This was
to avoid learning effects and to create a similar situation as
in [32]. This question-answering procedure was repeated until
the sixth answer had been received, thus splitting each chat
block into six working time segments (yellow) and five waiting
time segments (red) (cf. Figure 4). At the end of the recording,
participants returned to the lab and completed a questionnaire
about demographics and their mobile phone usage behaviour.
In total, we recorded 1440 working and 1200 waiting segments
over all participants. Statistics about our dataset are listed in
Table 2.

CB 1 CB 2

Q1 Q2A1 A2 Q3 Q4 Q5 Q6A3 A4 A5 A6

{ {

working time waiting time 

CB 12

Café Library Canteen Office

Figure 4: Participants were engaged in 12 chat blocks (CB)
in different environments that were randomly distributed over
their recording, which lasted in total about 4.5 hours. In
each block, participants had to answer six questions, some of
which required a short online search (Q1–Q6, working time),
followed by waiting for the next question (waiting time).

mean std total

Working segments per question (sec)
Working time 40.29 11.27 –:–
Time on mobile device 29.96 7.31 –:–

Waiting segments per question (sec)
Waiting time 25.28 7.45 –:–
Time on mobile device 11.02 4.26 –:–

Attention shifts (quantity)
Shifts to environment 248.85 107.22 4,957
Shifts to mobile device 259.90 106.88 5,178

Fixation time on/off screen (hh:mm)
On 00:46 00:12 15:24
Off 00:13 00:05 04:36

Environments (hh:mm)
Café 00:11 00:06 03:55
Corridor 00:12 00:12 04:08
Library 00:11 00:07 03:51
Canteen 00:08 00:06 02:50
Office 00:23 00:12 07:37
Street 00:04 00:06 01:20

Indoor/Outdoor (hh:mm)
Indoor 01:06 00:17 22:08
Outdoor 00:06 00:08 01:56

Modes of locomotion (hh:mm)
Sit 01:02 00:14 20:49
Stand 00:05 00:05 01:44
Walk 00:04 00:04 01:31

Table 2: Statistics of the ground truth annotated chat block
sequences with mean, standard deviation (std) and total time.



Data Preprocessing
Fixations were detected from the raw gaze data using a
dispersion-based algorithm with a duration threshold of 150ms
and an angular threshold of 1° [20]. The 3D position of the
mobile phone in the scene camera was estimated using visual
markers (see Figure 3 left). The position of the mobile phone
surface was logged if at least two markers were visible in
the scene camera. However, we only used the mobile phone
detection as an aid for the ground truth annotation.

Data Annotation
Classifier training requires precise annotations of when an
attention shift takes place and how long an attention span
lasts. Findlay and Gilchrist showed that in real-world settings,
covert attention rarely deviates from the gaze location [11].
Thus, we leveraged gaze as a reliable indicator of the user’s
current attentional focus. Annotations were performed using
videos extracted from the monocular egocentric video for
the working/waiting time segments overlaid with gaze data
provided by the eye tracker. Three annotators were asked to
annotate each chat block with information on participants’
current environment (office, corridor, library, street, canteen,
café), whether they were indoors or outdoors, their mode of
locomotion (sitting, standing or walking), as well as when their
attention shifted from the mobile device to the environment or
back.

EXPERIMENTS
We conducted several experiments to evaluate the performance
of our method for the different prediction tasks described be-
fore: attention shifts between the handheld mobile device
and the environment and primary attentional focus on the de-
vice. We evaluated our method for different time segments, i.e.
while answering questions (working) and while waiting for the
next question, as well as for the aforementioned four different
feature groups. For all experiments, we extracted features from
a one-second window (feature window) and aimed to predict
for a subsequent target window. The choice of the one-second
feature window was informed by preliminary experiments in
which it showed superior performance compared to longer
time windows. For the target window size we investigated
one, five, and ten seconds, reflecting that different applications
might benefit from different time horizons when forecasting
user attention. Performance was calculated using the weighted
F1 score. The F1 score = 2 ∗ precision∗recall

precision+recall is the harmonic
mean of precision T P

T P+FP and recall T P
T P+FN , where TP, FP,

and FN represent frame-based true positive, false positive, and
false negative counts, respectively.

We trained a random forest using the different features using a
leave-one-person-out evaluation scheme, i.e., the data of n-1
participants was used for training, and of the last participant,
for testing. This procedure was repeated for all participants
and the resulting F1 scores averaged over all iterations. All
hyperparameters (number of features, maximum depth and
minimum samples at leaf nodes) were optimised via cross-
validation on the training set. We used a random subset of
samples with a 50/50 distribution of positive and negative
samples to avoid class imbalance.

1s 5s 10s 1s 5s 10s 1s 5s 10s
Shifts to Shifts to Primary Attentional

Environment

0.0

0.2

0.4

0.6

0.8

1.0

F
1 

S
co

re

Working

Waiting

Mobile Device Focus

Figure 5: Performance analysis for shifts to environment,
shifts to mobile device, and primary attentional focus for dif-
ferent target sizes (1s, 5s, 10s).

Performance for Different Prediction Tasks
Figure 5 summarises the performance of our proposed method
for different target window sizes and the different prediction
tasks. As can be seen from the figure, the performance for
predicting shifts to the environment decreases with increasing
target window size, while for attention shifts to the mobile
device an increase can be observed. A possible interpretation
for this is that these shifts are often caused by distractors
in the environment which result in a immediate reaction by
the user. When trying to predict shifts to the environment
over a longer time interval in the future, such environmental
distractors might not yet be present in the feature window. To
pro-actively pause interactions on a currently used device, a
one-second target window for the prediction of shifts to the
environment is sufficient, and it is not meaningful to choose a
larger target window because the corresponding features do
not contain the features necessary for a correct prediction.

On the other hand, a shift of attention back to the mobile
device often lasts longer than just one second, as it might
involve turning the head and picking up the mobile device,
resulting in higher performance for longer target time intervals.
For the reduction of interaction delay when the attention shifts
back to the device, a larger target window is needed anyway
to restart the system or to load the previous screen content.
Moreover, predicted shifts to the mobile device can be used
to avoid potential dangerous situations when the user shifts
his/her attention to the device, e.g. when driving a car, an alert
could warn the user to keep their attention on the street. In
such situations, predicting a shift to the device sufficiently
early to still be able to intervene is required. We therefore
chose a target window size of ten seconds for shifts to the
mobile device.

The primary attentional focus prediction is robust across target
window size. Thus, longer target windows can be used to
show notifications, or break long attention span prediction
during dangerous situations. We opted for a five-second target
window for predicting the primary attentional focus.
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Figure 6: Performance for predicting shifts to the environment
during working and waiting time segments for the different
feature sets for a one-second target window, and confusion
matrices for our proposed feature set.

Prediction of Attention Shifts
We first compared the performance of different feature sets
for both attention shift prediction tasks. Figure 6 shows the
prediction performance of our method depending on feature
sets used for both working and waiting time segments. As
can be seen from the figure, performance for predicting shifts
to the environment is above chance level (F1 score 0.5) for
all feature sets. This shows the effectiveness of our method
for this challenging task. However, we can see differences in
the prediction performance between the working and waiting
time segments and feature sets. As expected, the Egocentric
sensor modality (F1 0.80) performs competitively against the
Proposed feature combination (F1 0.76) during working but
also during waiting time segments. During working segments
performance is generally higher than during waiting segments
except for the phone feature combination. A possible expla-
nation for this is that during working time, the task defines a
certain phone interaction pattern (e.g. app usage, phone move-
ment) with minor variability, whereas during waiting time
the phone interaction can be chosen more freely (e.g. surfing
the internet, using Facebook, playing games, chatting, etc.)
and can induce different tendencies to switch one’s attention
to the environment. A detailed feature analysis showed that
especially during working time, detected faces from the scene
camera are a helpful feature for the prediction of attention
shifts to the environment. The egocentric features, which are
part of our proposed feature set, are the dominant ones for this
task because shifts to the environment are mainly driven by
attractors in our field of view. However, having access to the
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Figure 7: Performance for predicting shifts to the environment
for different real-world environments of our proposed feature
set during working and waiting time segments.

smartphone state can also help the classifier. The confusion
matrices for predicting shifts to the environment show that the
classifier achieves a good performance mainly on the negative
training examples (i.e. no shift happening).

To further analyse the performance of our method for different
environments, we evaluated our feature set in six environments
each (see Figure 7) during working and waiting time segments
for the one-second target window. For the corridor and library
environments our proposed feature set even exceeds an F1
score of 0.70, while the performance over all environments
during working is higher than during waiting segments except
for office environments. For the street environment, it is below
0.6 for working, and during waiting time segments even below
0.4, where participants are mainly focusing on the street and
do not check their mobile devices as often as in the other
environments.

For shifts to the mobile device the results are different from
those for predicting shifts to the environment (see Figure 8).
With our proposed feature set we reach F1 scores of 0.66
during waiting and F1 scores of 0.83 during working time
segments for the ten-second target window, respectively. The
competitive performance of phone features for the attention
shift forecasting is caused by participants’ natural device usage
behaviour, which is characterised by picking up and moving
the device or turning on its screen. Participants often held
their phones in their hands out of the view of the camera, so
there was a movement of the device followed by the shift
to the device and a touch sequence to unlock the phone. A
detailed feature analysis confirmed that both actions were
registered by the phone sensors and logging apps with F1
scores higher than 0.8 (phone IMU and application usage).
Features from the egocentric camera only resulted in chance-
level performance, which indicates that the visual environment
of the participant does not play a role in determining whether
the attention will go back to the screen. This is in line with
our reasoning given above, indicating that poorly observable
top-down factors influence shifts to the phone, as compared
to better observable properties of the visual environment that
might capture attention in a way that is more influenced by
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Figure 8: Performance for predicting shifts to the mobile de-
vice during working and waiting time segments for the differ-
ent feature sets for a ten-second target window, and confusion
matrices for our proposed feature set.

bottom-up processes. In contrast to the prediction of shifts
to the environment, the most errors occur for the negative
examples, as indicated by the confusion matrices.

Prediction of the Primary Attentional Focus
Finally, we analysed the performance of our method for pre-
dicting the primary attentional focus on the mobile device. As
can be seen from Figure 9, for this prediction task, our method
reaches an F1 score of more than 0.7 for both working and
waiting time segments. It can also be seen that combining
features is helpful in all cases. A detailed feature analysis
shows that head IMU, depth, and face features from the ego-
centric feature subsets, as well as the phone IMU, and app
usage features, contribute especially to the good performance
of our method. Phone features show performance competitive
to our proposed features during working but a lower perfor-
mance during waiting time segments. From a detailed feature
analysis it can be seen that users’ app usage patterns on the
mobile device contributed especially to the performance. The
proposed feature combination can even be improved when
taking gaze information into account, reaching an F1 perfor-
mance larger than 0.8 during working and 0.75 during waiting
time segments. Thus, for this kind of prediction task, a full
eye tracking system is a meaningful setup. The increasing
availability of mobile eye tracking as well as gaze estimation
using the cameras readily integrated into laptop, tablets, and
public displays [42, 52, 55, 56] makes gaze another interest-
ing source of information on users’ future attentive behaviour.
The corresponding confusion matrices show that our approach
performs clearly above chance on all ground truth classes.
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Figure 9: Performance for primary attentional focus on mobile
device during working and waiting time segments for the
different feature sets for a five-second target window, and
confusion matrices for our proposed feature set.

DISCUSSION
The experiments demonstrated that our method can predict
several key aspects of attentive behaviour during everyday
mobile interactions using a combination of egocentric and
device-integrated sensors. Specifically, we showed that we
can predict shifts between the handheld mobile device and
environment, as well as the primary attentional focus, above
chance level. These results are promising for future mobile
attentive user interfaces, particularly given the large variability
in natural user behaviour and the large number of possible
visual attractors in users’ environments, and thus the difficulty
of these prediction tasks.

Importance of Different Features
For predicting shifts to the environment, egocentric features
contributed most to the performance (see Figure 6). A detailed
feature analysis showed that face features especially, but also
head IMU, semantic scene and depth features, contributed
positively. In contrast, phone features showed the best perfor-
mance for predicting attention shifts back to the mobile device
(see Figure 8). The chance-level performance for the egocen-
tric features suggested that shifts to the mobile device were
less influenced by the environment, especially during waiting
time segments. This was to be expected given that such shifts
are typically triggered by events on the mobile device, such as
an incoming chat message or notification.

Our method performed robustly for predicting attention shifts
in different environments, with performance peaking for work-
ing and waiting time segments in the corridor (see Figure 7).



Results for predicting the primary attentional focus (a binary
classification task) suggested that information readily avail-
able on the handheld device is most informative for predicting
on-device focus, and that performance could be improved fur-
ther by contextualising attentive behaviour using information
on the visual scene (see Figure 9). A particularly interesting
direction for future work is attention span prediction, i.e. the
regression task of predicting the actual duration of attention
on the mobile device and in the environment. Preliminary
experiments on our dataset (not shown here) suggested that
this task is currently too challenging – at least with the sensors
and features used in this work. It will be interesting to study
this task in more detail in the future and to see which sensors
and features will help to increase performance on this task
above chance level.

Potential Applications
Automatic forecasting of user attention opens up a range of
exciting new applications that could have paradigm-changing
impacts on our everyday interactions with mobile devices.
Predicted attention shifts to a mobile device could, for exam-
ple, be used to reduce interaction delays. The device could
turn back on pro-actively and load the previous screen content
for a smooth transition, or help users to reorient themselves
on the device screen. However, attentive user interfaces are
also faced with situations where predicted attention shifts to
a mobile device should be prevented. Especially within face-
to-face conversations in the real world, user interfaces could
help us to keep our focus by giving an alert to avoid unkind
behaviour when there is a predicted shift to one’s own mobile
phone. While driving, crossing a road, or walking down a
busy street, it is also desirable for mobile device users to avoid
attention shifts to the mobile device, to prevent potentially
hazardous situations. Attention shift prediction, for example
combined with a detection of dangerous situations using an
body-worn egocentric camera, could suppress on-device alerts
or notifications to avoid such attention shifts.

For attention shifts to the environment, attention forecasting
could be used to pro-actively support the users and automati-
cally pause a video even before the attention drifts away, so
that the user does not miss a second. Similar to face-to-face
conversations, predicted shifts to the environment could be
prevented by attentive user interfaces during Skype meetings,
so as to keep eye contact. Alternatively, if a user really wants
to finish a task, the attentive user interface could help the user
to keep their attention on the device by changing the content
or style of content presentation.

If the primary attentional focus is predicted to be on the mobile
device, previously missed messages or notifications could be
shown to the user. Moreover, the user interface could suggest
the next task to be performed by the user. Similar to avoiding
attention shifts in dangerous situations, future user interfaces
could break longer attentional focus spans when potential
threats are detected via a scene camera. The aforementioned
prediction of attention span would further extend application
opportunities by allowing for temporally more fine-grained
and targeted adaptations.

Limitations and Future Work
Despite these promising results, our work also has several
limitations. First, while we only considered visual triggers,
attention shifts to the environment can also be triggered by
auditory stimuli. An interesting direction for future work is
to analyse both visual and auditory information for predicting
mobile attention allocation. Second, we only considered pre-
diction of temporal attention characteristics, namely timing
of attention shifts and primary attentional focus. Future mo-
bile attentive user interfaces could also predict “where” user
attention will shift [54]. Third, while all our predictions were
clearly above chance level, performance has to further increase
to make attention forecasting practically useful. To improve
performance, additional sensors for heart rate, galvanic skin re-
sponse (GSR) or brain activity could be used. Given the rapid
development in sensor technology, some of the wearables used
may no longer be needed in the future, or they may be replaced
by more sophisticated ones, providing even better features for
attention forecasting. Also, the method itself could be im-
proved, for example, by using spatio-temporal CNN features
extracted from each frame [44] that demonstrated superior
performance in a variety of computer vision tasks. Particularly
interesting are features extracted from intermediate layers, as
for example used for vision-based [17, 24] or wearable sensor-
based [31] activity recognition. Fourth, the current hardware
setup is rather bulky (head-mounted mobile eye tracker, mul-
tiple cameras, mobile phone, laptop backpack), which might
have influenced participants’ attentive behaviour. Therefore,
investigating in-the-wild studies with participants’ awareness
about the recording will be an interesting future project [29,
37] Fully integrating the required cameras is an important
direction for future work, but likely to be feasible given recent
advances in fully embedded head-mounted eye tracking [43].

CONCLUSION
In this work we explored attention forecasting – the task of pre-
dicting future allocation of users’ overt visual attention during
interactions with a handheld mobile device. We proposed three
prediction tasks with direct relevance for future mobile atten-
tive user interfaces, as well as a first computational method to
predict key characteristics of attentive behaviour from device-
integrated and wearable sensors. We evaluated our method on
a novel 20-participant dataset and demonstrated its effective-
ness in predicting attention shifts between the mobile device
and the environment, as well as the primary attentional fo-
cus on the mobile device. Our results demonstrate not only
the feasibility but also the significant challenge of attention
forecasting, and point towards a new class of user interfaces
that pro-actively support, guide or even optimise for users’
ever-changing attentive behaviour.
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