
Clear as MUD: Generating, Validating
and Applying IoT Behavioral Profiles

Ayyoob Hamza

UNSW Sydney

ayyoobhamza@student.unsw.edu.au

Dinesha Ranathunga

ACEMS, University of Adelaide

dinesha.ranathunga@adelaide.edu.au

Hassan Habibi Gharakheili

UNSW Sydney

h.habibi@unsw.edu.au

Matthew Roughan

ACEMS, University of Adelaide

matthew.roughan@adelaide.edu.au

Vijay Sivaraman

UNSW Sydney

vijay@unsw.edu.au

ABSTRACT
IoT devices are increasingly being implicated in cyber-attacks, rais-

ing community concern about the risks they pose to critical infras-

tructure, corporations, and citizens. In order to reduce this risk, the

IETF is pushing IoT vendors to develop formal specifications of the

intended purpose of their IoT devices, in the form of a Manufacturer

Usage Description (MUD), so that their network behavior in any

operating environment can be locked down and verified rigorously.

This paper aims to assist IoT manufacturers in developing and

verifying MUD profiles, while also helping adopters of these devices

to ensure they are compatible with their organizational policies.

Our first contribution is to develop a tool that takes the traffic trace

of an arbitrary IoT device as input and automatically generates the

MUD profile for it. We contribute our tool as open source, apply it

to 28 consumer IoT devices, and highlight insights and challenges

encountered in the process. Our second contribution is to apply a

formal semantic framework that not only validates a given MUD

profile for consistency, but also checks its compatibility with a

given organizational policy. Finally, we apply our framework to

representative organizations and selected devices, to demonstrate

how MUD can reduce the effort needed for IoT acceptance testing.

CCS CONCEPTS
• Security and privacy→ Formal methods and theory of security;

KEYWORDS
IoT, MUD, Policy Verification

ACM Reference Format:
Ayyoob Hamza, Dinesha Ranathunga, Hassan Habibi Gharakheili, Matthew

Roughan, and Vijay Sivaraman. 2018. Clear as MUD: Generating, Validating

and Applying IoT Behavioral Profiles. In IoT S&P’18: ACM SIGCOMM 2018
Workshop on IoT Security and Privacy , August 20, 2018, Budapest, Hungary.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3229565.3229566

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IoT S&P’18, August 20, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5905-4/18/08. . . $15.00

https://doi.org/10.1145/3229565.3229566

1 INTRODUCTION
Many connected IoT devices can be found on search engines such

as Shodan [13], and their vulnerabilities exploited at scale. For

example, Dyn, a major DNS provider, was subjected to a DDoS

attack originating from a large IoT botnet comprising thousands

of compromised IP-cameras [9]. IoT devices, exposing TCP/UDP

ports to arbitrary local endpoints within a home or enterprise, and

to remote entities on the wider Internet, can be used by inside

and outside attackers to reflect/amplify attacks and to infiltrate

otherwise secure networks.

These security concerns have prompted standards bodies to

provide guidelines for the Internet community to build secure IoT

devices and services [15–17], and for regulatory bodies (such as

the US FCC) to control their use [6]. The focus of our work is an

IETF proposal called Manufacturer Usage Description (MUD) [11]

which provides the first formal framework for IoT behavior that can

be rigorously enforced. This framework requires manufacturers of

IoTs to publish a behavioral profile of their device, as they are the

ones with best knowledge of how their device will behave when

installed in a network; for example, an IP camera may need to use

DNS and DHCP on the local network, and communicate with NTP

servers and a specific cloud-based controller in the Internet, but

nothing else. Such requirements vary across IoTs from different

manufacturers. Knowing each device’s requirements will allow

network operators to impose a tight set of access control list (ACL)

restrictions for each IoT device in operation, so as to reduce the

potential attack surface on their network.

The MUD proposal therefore provides a light-weight model of

achieving very effective baseline security for IoT devices by allow-

ing a network to automatically configure the required network

access for IoT devices, so that they can perform their intended func-

tions without having unrestricted network privileges. This open

and standards-based approach that leverages the expertise of device

manufacturers allows enterprises to scale their IoT deployments by

automating much of the effort needed to achieve baseline security

in their network.

MUD is a new and emerging paradigm, and there is little collec-

tive wisdom today on how manufacturers should develop behav-

ioral profiles of their IoT devices, or how organizations should use

these profiles to secure their network. This paper
1
is our attempt

to address both these shortcomings. Our first contribution helps

1
This project was supported by theAustralian Research Council (ARC) through Linkage

Grant LP150100666, Centre of Excellence for Mathematical and Statistical Frontiers

(ACEMS) and Google Faculty Research Awards.

8

https://doi.org/10.1145/3229565.3229566
https://doi.org/10.1145/3229565.3229566
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3229565.3229566&domain=pdf&date_stamp=2018-08-07

IoT S&P’18, August 20, 2018, Budapest, Hungary A. Hamza, D. Ranathunga, H. Habibi Gharakheili, M. Roughan, and V. Sivaraman

IoT manufacturers generate and verify MUD profiles: we develop a

tool that takes as input the packet trace containing the operational

behavior of an IoT device, and generate as ouput a MUD profile for

it. We contribute our tool as open source, apply it to 28 consumer

IoT devices, and highlight insights and challenges encountered in

the process. Our second contribution applies a formal semantic

framework that not only validates a given MUD profile for com-

pliance and consistency, but also checks its compatibility with a

given organizational policy. We apply our semantic framework to

representative organizations and selected devices, and demonstrate

how MUD can greatly simplify the process of IoT acceptance into

the organization.

The rest of the paper is organized as follows: §2 describes rele-

vant background work on IoT security and formal policy modeling

using metagraphs. §3 describes our open-source tool for automatic

MUD profile generation, and provides insights and challenges en-

countered in applying it to 28 real IoT devices. Our verification

framework for MUD policies is described in §4, followed by evalua-

tion results in §5. We discuss some potential enhancements to the

MUD specifications in §6, and conclude the paper in §7.

2 BACKGROUND AND RELATEDWORK
Securing the IoT has been secondary to innovating new devices

and services, creating substantial safety and economic risks for the

Internet [14]. Today, many IoT manufacturers do not incorporate

even basic security measures into their devices [12], while network

operators have poor visibility into the network activity of their

connected devices and are unsure of what access control policies

to apply to them [27]. As IoT botnets grow in size and increase in

sophistication, attackers are using them to launch large-scale DDoS

attacks [3]; devices such as baby monitors, refrigerators and smart

plugs have been hacked and controlled remotely [25]; and many

organizational assets such as cameras are being accessed publicly

[1, 29].

Existing IoT security guidelines and recommendations [6, 15–17]

are largely qualitative and subject to human interpretation, and

therefore unsuitable for automated and rigorous application. The

IETF MUD specification [11] on the other hand defines a formal

framework to capture device run-time behavior, and is therefore

amenable to rigorous evaluation. When coupled with the observa-

tion that most IoT devices have a small and recognizable pattern

of communication (as demonstrated in our previous work [24]),

MUD allows IoT device behavior to be captured succintly, verified

formally for compliance with organizational policy, and assessed

at run-time for anomalous behavior that could indicate an ongoing

cyber-attack.

A valid MUD profile contains a root object called “access-lists”

container [11] that comprises several access control entries (ACE),

serialized in JSON format. Access-lists are explicit in describing the

direction of communication, i.e., from-device and to-device. Each
ACEwouldmatch on source/destination port numbers for TCP/UDP,

and type and code for ICMP. The MUD specifications also distin-

guish local-networks traffic from Internet communications.

We provide here a brief background on the formal modeling

and verification framework used in this paper. We begin by not-

ing that the lack of formal policy modeling in current network

Figure 1: A metagraph consisting of six variables, five sets
and three edges.

systems contribute to frequent misconfigurations [22, 23, 28]. We

use the concept of a metagraph, which is a generalized graph theo-

retic structure that offers rigorous formal foundations for modeling

and analyzing communication-network policies in general. A meta-

graph is a directed graph between a collection of sets of “atomic”

elements [2]. Each set is a node in the graph and each directed

edge represents the relationship between the sets. Fig. 1 shows an

example where a set of users (U1) are related to sets of network

resources (R1, R2, R3) by the edges e1, e2 and e3 describing which
user ui is allowed to access resource r j .

Metagraphs can also have attributes associated with their edges.

An example is a conditional metagraph which includes propositions

– statements that may be true or false – assigned to their edges as

qualitative attributes [2]. The generating sets of these metagraphs

are partitioned into a variable set and a proposition set. A condi-

tional metagraph is formally defined as follows:

Definition 1 (Conditional Metagraph). A conditional meta-
graph is a metagraph S=⟨Xp ∪Xv ,E⟩ in which Xp is a set of proposi-
tions and Xv is a set of variables, and:

1. at least one vertex is not null, i.e., ∀e ′ ∈ E,Ve ′ ∪We ′ , ϕ
2. the invertex and outvertex of each edge must be disjoint, i.e.,

X = Xv ∪ Xp with Xv ∩ Xp = ϕ
3. an outvertex containing propositions cannot contain other ele-

ments, i.e., ∀p ∈ Xp ,∀e ′ ∈ E, if p ∈We ′ , thenWe ′ = p.

Conditionalmetagraphs enable the specification of stateful network-

policies and have several useful operators. These operators readily

allow one to analyze MUD policy properties like consistency. To

the best of our knowledge, this is the first attempt to automati-

cally generate MUD profiles, formally check their consistency and

compatibility with an organizational policy, prior to deployment.

3 MUD PROFILE GENERATION
The IETF MUD specification is still evolving as a draft. Hence,

IoT device manufacturers have not yet provided MUD profiles for

their devices. We, therefore, developed a tool – MUDgee – which

automatically generates a MUD profile for an IoT device from its

traffic trace in order to make this process faster, cheaper and more

accurate. In this section, we describe the structure of our open

source tool [7], apply it to traces of 28 consumer IoT devices, and

highlight insights.

We captured traffic flows for each IoT device during a six month

observation period, to generate our MUD rules. The rules reflect an

application whitelisting model (i.e., only ‘allow’ rules with default

‘drop’). Having a combination of ‘accept’ and ‘drop’ rules requires a

9

Clear as MUD: Generating, Validating and Applying IoT Behavioral Profiles IoT S&P’18, August 20, 2018, Budapest, Hungary

Table 1: Flows observed for Blipcare BPmonitor (*: wildcard,
proto: Protocol, sPort: source port number, dPort: destina-
tion port number).

Source Destination proto sPort dPort
* 192.168.1.1 17 * 53

192.168.1.1 * 17 53 *

* tech.carematix.com 6 * 8777

tech.carematix.com * 6 8777 *

notion of rule priority (i.e., order) and is not supported by the current
IETF MUD draft. For example, Table 1 shows traffic flows observed

for a Blipcare blood pressure monitor. The device only generates

traffic whenever it is used. It first resolves its intended server at

tech.carematrix.com by exchanging a DNS query/response with
the default gateway (i.e., the top two flows). It then uploads the

measurement to its server operating on TCP port 8777 (described

by the bottom two rules).

3.1 MUDgee Architecture
MUDgee implements a programmable virtual switch (vSwitch) with

a header inspection engine attached and plays an input PCAP trace

(of an arbitrary IoT device) into the switch. MUDgee has two sepa-

rate modules; (a) captures and tracks all TCP/UDP flows to/from

device, and (b) composes a MUD profile from the flow rules.

Capture intended flows: Consumer IoT devices use services pro-

vided by remote servers on the cloud and also expose services to

local hosts (e.g., a mobile App). As required by MUD specifications,

we track (intended) device activities for both remote and local com-

munications using separate flow rules.

It is challenging to capture services (i.e., especially those op-

erating on non-standard TCP/UDP ports) that a device is either

accessing or exposing. This is because local/remote services operate

on static port numbers whereas source port numbers are dynamic

(and chosen randomly) for different flows of the same service. We

note that it is trivial to deduce the service for TCP flows by in-

specting the SYN flag, but not so easy for UDP flows. We, therefore,

developed an algorithm (Fig. 2) to capture bidirectional flows for

an IoT device.

We first configure the vSwitch with a set of proactive rules, each

with a specific action (i.e., “forward” or “mirror”) and a priority

(detailed rules can be found in our technical report [8]). Proactive

rules with a ‘mirror’ action will feed the header inspection engine

with a copy of the matched packets. Our inspection algorithm,

shown in Fig. 2, will insert a corresponding reactive rule into the

vSwitch.

Giving insights into our algorithm, for example, a DNS reply

packet is matched to a top priority flow and our algorithm extracts

and stores the domain name and its associated IP address into a

DNS cache table. This cache is dynamically updated upon arrival

of a DNS reply matching an existing request.

Looking into the priority of rules in our vSwitch, the MUD spec-

ification requires the segregation of traffic to and from a device for

both local and Internet communications. Our algorithm achieves

this by assigning a unique priority to the reactive rules associated

with each of the groups: from-local, to-local, from-Internet and

to-Internet. We use a specific priority for flows that contain a TCP

install bidirectional flow rule with

forward action

Yes

NoNoDNS

reply

DNS cache: store

domain-name and

its IP addr.

Yes

Pkt.

remove flow rule ! corresponding to same

domain-name if "#$! > &

Yes

NTP/

ICMP/ DNS

request

IP exists

in DNS cache
No

Label the Pkt as

unicast, multicast, or broadcast

Checks TCP SYN

Read PCAP

Loop till EOF

• identify direction (from/to device)

• identify type (local/Internet)
Remove the flow
rule ! if there is

no record in
DNS cache and

the flow volume
is less than a
threshold '

Figure 2: Algorithm for capturing device flows and inserting
reactive rules.

SYN to identify if the device or the remote entity initiated the

communication.

Flow translation toMUD:MUDgee uses the captured traffic flows

to generate the MUD profiles for the devices. We, primarily convert

each flow to a MUD ACE by considering the following:

Consideration 1: We use the DNS cache to reverse lookup the

IP address of the remote endpoint to a domain name, if any.

Consideration 2: Some consumer IoTs, especially IP cameras,

typically use the Session Traversal Utilities for NAT (STUN) proto-

col to verify that the user’s mobile app can stream video directly

from the camera over the Internet. If a device uses the STUN pro-

tocol over UDP, we must allow all UDP traffic to/from Internet

servers because the STUN servers often require the client device to

connect to different IP addresses or port numbers.

Consideration 3: We observed that several smart IP cameras

communicate with many remote servers operating on the same

port (e.g., Belkin Wemo switch). However, no DNS responses were

found corresponding to the server IP addresses. So, the device must

obtain the IP address of its servers via a non-standard channel (e.g.,
the current server may instruct the device with the IP address of the

subsequent server). If a device communicates with several remote

IP addresses (i.e., more than our threshold value 5) all operating

on the same port, we allow remote traffic to/from any IP addresses

(i.e., *) on that specific port number.

Consideration 4: Some devices (e.g., TPLink plug) use the de-

fault gateway as the DNS resolver, and others (e.g., Belkin WeMo

motion) continuously ping the default gateway. The existing MUD

draft maps local communication to fixed IP addresses through the

controller construct.We consider the local gateway to act as the con-

troller, and use the name-space urn:ietf:params:mud: gateway
for the gateway.

The generated MUD profiles of the 28 consumer IoT devices

we analyzed are listed in Table 2 and are publicly available at:

http://iotanalytics.unsw.edu.au/mud/.

3.2 Insights and challenges
The Blipcare BP monitor is an example device with static function-

alities. It exchanges DNS queries/responses with the local gateway

and communicates with a single domain name over TCP port 8777.

So its behavior can be locked down to a limited set of static flow

rules. The majority of IoT devices that we tested (i.e., 22 out of 28)
fall into this category (marked in green in Table 2).

10

IoT S&P’18, August 20, 2018, Budapest, Hungary A. Hamza, D. Ranathunga, H. Habibi Gharakheili, M. Roughan, and V. Sivaraman
吀
倀
䰀
䤀一
䬀
 䌀
䄀
䴀
䔀
刀
䄀

(a) TP-Link camera.

䄀
䴀
䄀
娀
伀
一
 䔀
䌀
䠀
伀

(b) Amazon Echo (Listing 1 for description of domain_set1-3).

Figure 3: Sankey diagrams of MUD profiles for: (a) TP-Link camera, and (b) Amazon Echo.

Listing 1: Example list of domains accessed byAmazon Echo
corresponding to Figure 2(b).

domain_set1:
0.north−america.pool.ntp.org ,
1.north−america.pool.ntp.org ,
3.north−america.pool.ntp.org
domain_set2:
det−ta−g7g.amazon.com ,
dcape−na.amazon.com ,
softwareupdates.amazon.com ,
domain_set3:
kindle−time.amazon.com ,
spectrum.s3.amazonaws.com ,
d28julafmv4ekl.cloudfront.net ,
live−radio01.mediahubaustralia.com ,
amzdigitaldownloads.edgesuite.net ,
www.example.com

In Fig. 3, we use Sankey diagrams to represent the MUD profiles

in a human-friendly way. Fig. 3(a) exemplifies the second category

of our generated MUD profiles. The TP-Link camera accesses/ex-

poses limited ports on the local network. It gets its DNS queries

resolved, discovers local network using mDNS service over UDP

5353, probes members of certain multicast groups using IGMP, and

exposes two TCP ports 80 (management console) and 8080 (uni-

cast video streaming) to local devices. All these activities can be

defined by a tight set of ACLs. But, over the Internet, the camera

communicates to its STUN server (accessing an arbitrary range

of IP addresses and port numbers shown by the top flow), to port

numbers on specific endpoints including time synchronization with

pool.ntp.org. Such IoT devices with static functionalities that are

loosely defined, due to use of STUN protocol fall in to this second

category (marked in blue in Table 2). This category device manu-

facturers can configure their STUN servers to use a specific set of

endpoints and port numbers, instead of a wide and arbitrary range.

Amazon Echo, represents devices with complex and dynamic

functionalities augmentable using custom recipes or skills. Such

devices (marked in red in Table 2), are able to communicate with

a growing range of endpoints on the Internet, which the original

manufacturer cannot define in advance. For example, our Amazon

Echo communicates with meethue.com over TCP 443, to interact

with the Hue lightbulb in the test bed. It can also contact the news

Table 2: List of IoT devices for which we have generated
MUD profiles. Devices with purely static functionality are
marked in green. Devices with static functionality that
is loosely defined (e.g., due to use of STUN protocol) are
marked in blue. Devices with complex and dynamic func-
tionality are marked in red.

Type IoT device

Camera

Netatmo Welcome, Dropcam, Withings Smart Baby

Monitor, Canary camera, TP-Link Day Night Cloud

camera, August doorbell camera, Samsung

SmartCam, Ring doorbell, Belkin NetCam

Air quality

sensors

Awair air quality monitor, Nest smoke sensor,

Netatmo weather station

Healthcare

devices

Withings Smart scale, Blipcare Blood Pressure meter,

Withings Aura smart sleep sensor

Switches and

Triggers

iHome power plug, WeMo power switch, TPLink

plug, Wemo Motion Sensor

Lightbulbs Philips Hue lightbulb, LiFX bulb

Hub Amazon Echo, SmartThings

Multimedia Chromecast, Triby Speaker

Other HP printer, Pixstar Photoframe, Hello Barbie

website abc.net.au when prompted by the user. For these type of

devices, the biggest challenge is how manufacturers can dynami-

cally update their MUD profiles to match the device capabilities.

It is important to note that even the initial MUD profile would be

useful for a minimum network communication permission set that

can be amended over time.

4 MUD PROFILE VERIFICATION
Network operators should not allow a device to be installed with-

out first checking its compatibility with organizational security

policy. We develop a tool called MUDdy that uses the concept of

Metagraphs to check a MUD profile for internal consistency, and

its compliance with the organizational policies.

4.1 Syntactic correctness
A MUD profile consists of a YANG model which describes device-

specific network behavior. In the initial version of MUD, this model

is serialized using JSON [11]. A MUD profile is limited to the serial-

ization of only a few YANG modules (e.g., ietf-access-control-list)
[11]. MUDdy will throw an invalid syntax exception when parsing

11

Clear as MUD: Generating, Validating and Applying IoT Behavioral Profiles IoT S&P’18, August 20, 2018, Budapest, Hungary

Figure 4: Metagraph model of a Lifx bulb’s MUD policy. The
policy describes permitted traffic flow behavior. Each edge
label has attached a set of propositions of the metagraph.
For example e4={protocol = 17,UDP .dport = 53,UDP .sport =
0 − 65535,action = accept }.

a MUD profile if it encounters any schema beyond these permitted

YANG modules.

In addition, MUDdy also rejects MUD profiles containing IP ad-

dresses (in particular those with local significance). As per the IETF

specification, publishers of MUD profiles are advised to use the ab-

stractions provided in the specification and avoid using hardcoded

IP addresses. MUDdy will also reject a MUD profile if it contains

actions other than ‘accept’ or ‘drop’.

4.2 Semantic correctness
Checking a MUD policy’s syntax partly verifies its correctness. A

syntactically correct policy must also be semantically correct; so we

must check the policy, for instance, for inconsistencies. These can

stem from two sources; (a) overlapping rules with different access-

control actions (i.e., intent-ambiguous rules); and/or (b) overlapping

rules with identical actions (i.e., redundancies). Our whitelisting
model prevents the former by design. Redundancies are still possible

and need to be checked.

We use metagraphs to model MUD policies in MUDdy. Meta-

graph algebras [2] can then be used to check the consistency of

these policy models. Below is a summary of this process.

4.2.1 Policy modeling. Access-control policies are often repre-

sented using the five-tuple: source/destination address, protocol,

source/destination ports [5, 10, 18]. We construct MUD policy meta-

graph models leveraging this idea. An example is shown in Fig. 4 for

a Lifx bulb. Here, the source/destination addresses are represented

by the labels device, local-network, local-gateway and a domain-

name (e.g., pool.ntp.org). Protocol and ports are propositions of the

conditional metagraph.

4.2.2 Policy definition and verification. WewroteMGtoolkit [20]
– a package for implementing metagraphs – to define our policy

models. MGtoolkit is implemented in Python 2.7. The API allows

users to instantiate metagraphs, apply metagraph operations and

evaluate results.

Mgtoolkit offers a ConditionalMetagraph class which extends

a Metagraph and supports proposition attributes. The class inherits

the base properties and methods of a Metagraph and additionally

supports members to check consistency. We use this class to instan-

tiate our MUD policy models and check their consistency.

4.2.3 Compatibility with best practices. Policy consistency checks
partly verify if a MUD policy is semantically correct. It may also

be necessary to check MUD policy semantics against local security

policy or industry recommended practices: e.g., ANSI/ISA- 62443-
1-1, for compliance. Doing so, is critical when installing an IoT

device in a critical network such as a SCADA network, where more

restrictive practices are required to prevent serious injury of people,

or even death!

SCADA best practices offer a wide spectrum of security policies,

representative of various organizations that we check our MUD

policies against them. For instance, they include policies for the

highly protected SCADA zone (which, for instance, might run a

power plant) as well as the more moderately restrictive ‘Enterprise’

zone.

We define a MUD rule to be SCADA (or Enterprise) zone com-

patible if its corresponding traffic flow complies with SCADA (or

Enterprise) best practice policy. For instance, a MUD rule which

permits a device to communicate with the local network using

DNS is compatible with the Enterprise zone policy. However, a

rule which allows a device to communicate with an Internet server

using HTTP will violate the SCADA zone policy.

We have investigated the problem of policy comparison using

formal semantics, in the SCADA domain for firewall access-control

policies [21]. We adapt the methods and algebras developed there,

to also check MUD policies against SCADA best practices. Key steps

enabling these formal comparisons are summarized below.

Policies are mapped into a unique canonical decomposition.

Policy canonicalisation can be represented through a mapping

c : Φ → Θ, where Φ is the policy space and Θ is the canonical

space of policies. All equivalent policies of Φ map to a singleton.

For pX ,pY ∈ Φ, we note the following (the proof follows the defi-
nition)

Lemma 2. Policies pX ≡ pY iff c (pX) = c (pY).

MUD policy compliance can be checked by comparing canonical

policy components. For instance

Is c (pdevice→controller) = c (pSCADA→Enterpr ise) ?

A notation also useful in policy comparison is that policy PA

includes policy PB . In SCADA networks, the notation helps evaluate

whether a MUD policy is compliant with industry-recommended

practices in [4, 26]. A violation increases the vulnerability of a

SCADA zone to cyber attacks.

We indicate that a policy complies with another if it is more

restrictive or included in and define the following

Definition 3 (Inclusion). A policy pX is included in pY on A
iff pX (s) ∈ {pY (s),ϕ}, i.e., X either has the same effect as Y on s , or
denies s , for all s ∈ A. We denote inclusion by pX ⊂ pY .

A MUD policy (MP) can be checked against a SCADA best prac-

tice policy (RP) for compliance using inclusion

Is pMP ⊂ pRP ?

The approach can also be used to check if a MUD policy complies

with an organization’s local security policy, to ensure that IoT

devices are plug and play enabled, only in the compatible zones of

the network.

12

IoT S&P’18, August 20, 2018, Budapest, Hungary A. Hamza, D. Ranathunga, H. Habibi Gharakheili, M. Roughan, and V. Sivaraman

Table 3: MUD policy analysis summary for our test bed IoT
devices (Safe to install? indicates where in a network (e.g.,
Enterprise Zone, SCADA Zone, DMZ) the device can be in-
stalledwithout violating best practices, DMZ -Demilitarized
Zone, Corp Zone - Enteprise Zone).

Device name #MUD

profile

rules

#Redundant

rules

Safe to

install ?

% Rules

violating

SCADA

Zone

% Rules

violating

Corp Zone

Blipcare bp 6 0 DMZ, Corp Zone 50 0

Netatmo weather 6 0 DMZ, Corp Zone 50 0

SmartThings hub 10 0 DMZ, Corp Zone 60 0

Hello barbie doll 12 0 DMZ, Corp Zone 33 0

Withings scale 15 4 DMZ, Corp Zone 33 0

Lifx bulb 15 0 DMZ, Corp Zone 60 0

Ring door bell 16 0 DMZ, Corp Zone 38 0

Awair air monitor 16 0 DMZ, Corp Zone 50 0

Withings baby 18 0 DMZ, Corp Zone 28 0

iHome power plug 17 0 DMZ 41 6

TPlink camera 22 0 DMZ 50 4

TPlink plug 25 0 DMZ 24 4

Canary camera 26 0 DMZ 27 4

Withings sleep 28 0 DMZ 29 4

Drop camera 28 0 DMZ 43 11

Net smoke sensor 32 0 DMZ 25 3

Hue bulb 33 0 DMZ 27 3

Wemo motion 35 0 DMZ 54 8

Triby speaker 38 0 DMZ 29 3

Netatmo camera 40 1 DMZ 28 2

Belkin camera 46 3 DMZ 52 11

Pixstar photo frame 46 0 DMZ 48 28

August door camera 55 9 DMZ 42 13

Samsung camera 62 0 DMZ 39 19

Amazon echo 66 4 DMZ 29 2

HP printer 67 10 DMZ 25 9

Wemo switch 98 3 DMZ 24 6

Chrome cast 150 24 DMZ 11 2

5 EVALUATION OF RESULTS
We usedMUDgee to generate the MUD profiles for 28 IoT devices in

our test bed. MUDdy then models each MUD policy automatically

using a conditional metagraph. A high-level summary of these

MUD profiles and their metagraphs are given in Table 3.

We identified MUD policy inconsistencies using MUDdy. Our
adoption of an application whitelisting model detects inconsisten-

cies and redundancies. There were, for instance, three redundant

rules present in the Belkin camera’s MUD policy (Table 3). These

rules enabled ICMP traffic to the device from the local network as

well as the local controller, making the policy inefficient.

Table 3 also shows the results of our best practice compliance

checks of the MUD policies. For instance, a Blipcare blood pressure

monitor can be safely installed in the Demilitarized zone (DMZ)

or the Enterprise zone but not in a SCADA zone: 50% of its MUD

rules violate the best practices, exposing the zone to potential cyber-

attacks. Policy rules enabling the device to communicate with the

Internet directly, trigger these violations.

In comparison, an Amazon echo speaker can only be safely

installed in a DMZ. Table 3 shows that 29% of the device’s MUD

rules violate the best practices if it’s installed in the SCADA zone.

Only 2% of the rules violate if it’s installed in the Enterprise zone.

The former violation stems from rules which for instance, enable

HTTP to the device. The latter originates from rules which enable

ICMP to the device from the Internet.

MUDdy’s ability to pinpoint to MUD rules which fail compliance,

allows us to identify possible workarounds to overcome the failures.

For instance, in the Belkin camera, local DNS servers and Web

servers can be employed to localize the device’s DNS and Web

communications and achieve best practice compliance.

6 DISCUSSION
There are no existing tools which help IoT device manufacturers

to automatically generate MUD profiles of their devices. Our tool –

MUDgee – achieves this using a device’s traffic trace as input.

A MUD profile generated from a device’s traffic trace can be

incorrect if the device is compromised, as the trace might include

malicious flows. We use workarounds to reduce the impact of pos-

sible malicious flows by observing traffic flows for each device over

a period of six months and extracting the most common flows. In

addition, the generated MUD profile is limited to the input trace.

Our tool can be extended by an API that allows manufacturers to

add rules that are not captured in the PCAP trace.

Zigbee, Z-wave and bluetooth technologies are increasingly be-

ing used for IoT devices. Thus, these IoT devices come with a hub

device capable of communicating with the Internet. In such cases,

a MUD profile can be generated only for the hub.

At present, the MUD specification allows both accept and drop

rules but does not specify priority, allowing ambiguity. This am-

biguity is removed if only accept rules (i.e., whitelisting) is used.
Whitelisting means metagraph edges describe enabled traffic flows.

So, the absence of an edge implies two metagraph nodes don’t com-

municate with one another. But when drop rules are introduced,

an edge also describes prohibited traffic flows, hindering easy vi-

sualization and understanding of the policy. We recommend the

MUD proposal be revised to only support explicit ‘accept’ rules.

The MUD proposal also does not support private IP addresses,

instead profiles are made readily transferrable between networks

via support for high-level abstractions. For instance, to communi-

cate with other IoT devices in the network, abstractions such as

same-manufacturer is provided.
The MUD proposal however, permits the use of public IP ad-

dresses. This relaxation of the rule allows close coupling of policy

with network implementation, increasing its sensitivity to network

changes. A MUD policy describes IoT device behavior and should

only change when its actual behavior alters and not when network

implementation changes! Hardcoded public IP addresses can also

lead to accidental DoS of target hosts. A good example is the DoS

of NTP servers at the University of Wisconsin due to hardcoded IP

addresses in Netgear routers [19]. We recommend that support for

explicit public IP addresses be dropped from the MUD proposal.

The tools we propose allow to check if a MUD policy complies

with an organizational policy, prior to deployment. This capability

reduces the IoT acceptance testing effort required as we need not

test the device in network segments where its MUD policy fails

compliance.

7 CONCLUSION
In this paper, we have proposed a suite of tools that allow to au-

tomatically generate and formally verify IoT device MUD profiles,

to ensure the MUD policies are consistent and compatible with

organizational policies. We have used these tools to demonstrate

how MUD can reduce the effort needed to secure IoT devices.

13

Clear as MUD: Generating, Validating and Applying IoT Behavioral Profiles IoT S&P’18, August 20, 2018, Budapest, Hungary

REFERENCES
[1] 2018. MUD maker. http://www.insecam.org/en/bycountry/US/. (2018).

[2] Amit Basu and Robert Blanning. 2007. Metagraphs and their applications. Vol. 15.
Springer Science & Business Media.

[3] Sara Boddy and Justin Shattuck. 2017. The Hunt for IoT: The Rise of Thingbots.
Technical Report. F5 Labs.

[4] Eric Byres, John Karsch, and Joel Carter. 2005. NISCC good practice guide on

firewall deployment for SCADA and process control networks. NISCC (2005).

[5] Cisco Systems. 2013. Cisco ASA Series CLI Configuration Guide, 9.0. Cisco Systems,

Inc.

[6] FCC. 2016. Federal Communications Comssion Response 12-05-2016. https:

//goo.gl/JdLofa. (2016).

[7] Ayyoob Hamza. 2018. MUDgee. https://github.com/ayyoob/mudgee. (2018).

[8] A. Hamza, D. Ranathunga, H. Habibi Gharakheili, M. Roughan, and V. Sivaraman.

2018. Clear as MUD: Generating, Validating and Applying IoT Behaviorial Profiles

(Technical Report). ArXiv e-prints (April 2018). arXiv:cs.CR/1804.04358
[9] Scott Hilton. 2016. Dyn Analysis Summary Of Friday October 21 Attack. https:

//goo.gl/mCdQUF. (2016).

[10] Juniper Networks, Inc. 2016. Getting Started Guide for the Branch SRX Series. 1133
Innovation Way, Sunnyvale, CA 94089, USA.

[11] Eliot Lear, Ralph Droms, and Dan Romascanu. 2018. Manufacturer Usage Descrip-
tion Specification (work in progress). Internet-Draft draft-ietf-opsawg-mud-18.

IETF Secretariat. http://www.ietf.org/internet-drafts/draft-ietf-opsawg-mud-18.

txt

[12] Franco Loi, Arunan Sivanathan, Hassan Habibi Gharakheili, Adam Radford,

and Vijay Sivaraman. 2017. Systematically Evaluating Security and Privacy for

Consumer IoT Devices. In Proc. ACM IoT S&P. Dallas, Texas, USA.
[13] JohnMatherly. 2018. Shodan. [Online]. Available: https://www.shodan.io/. (2018).

[14] Diego M Mendez, Ioannis Papapanagiotou, and Baijian Yang. 2017. Inter-

net of Things: Survey on Security and Privacy. CoRR abs/1707.01879 (2017).

arXiv:1707.01879

[15] European Union Agency For Network and Information Security. 2017. Com-

munication network dependencies for ICS/SCADA Systems. https://www.enisa.

europa.eu/publications/ics-scada-dependencies. (2017).

[16] NIST. 2016. Systems Security Engineering. https://goo.gl/Qo9GfD. (2016).

[17] U.S. Department of Homeland Security. 2016. Strategic Principles For Securing

the Internet of Things (IoT). https://goo.gl/PaXbc4. (2016).

[18] Palo Alto Networks, Inc. 2017. PAN-OS Administrator’s Guide, 8.0. 4401 Great
America Parkway, Santa Clara, CA 95054, USA.

[19] Dave Plonka. 2013. Flawed Routers Flood University of Wisconsin Internet Time

Server. www.pages.cs.wisc.edu/~plonka/netgear-sntp/. (2013).

[20] Dinesha Ranathunga, Hung Nguyen, and Matthew Roughan. 2017. MGtoolkit: A

python package for implementing metagraphs. SoftwareX 6 (2017), 91–93.

[21] Dinesha Ranathunga, Matthew Roughan, Phil Kernick, and Nick Falkner. 2016.

Malachite: Firewall policy comparison. In IEEE Symposium on Computers and
Communication (ISCC). 310–317.

[22] Dinesha Ranathunga, Matthew Roughan, Phil Kernick, Nick Falkner, Hung

Nguyen, Marian Mihailescu, and Michelle McClintock. 2016. Verifiable Policy-

defined Networking for Security Management.. In SECRYPT. 344–351.
[23] Dinesha Ranathunga, Matthew Roughan, Hung Nguyen, Phil Kernick, and Nick-

olas Falkner. 2016. Case studies of scada firewall configurations and the implica-

tions for best practices. IEEE Transactions on Network and Service Management
13 (2016), 871–884.

[24] Arunan Sivanathan, Daniel Sherratt, Hassan Habibi Gharakheili, Adam Radford,

Chamith Wijenayake, Arun Vishwanath, and Vijay Sivaraman. 2017. Charac-

terizing and classifying IoT traffic in smart cities and campuses. In Proc. IEEE
INFOCOM workshop on SmartCity. Atlanta, Georgia, USA.

[25] Vijay Sivaraman, Dominic Chan, Dylan Earl, and Roksana Boreli. 2016. Smart-

phones attacking smart-homes. In Proceedings of the 9th ACM Conference on
Security & Privacy in Wireless and Mobile Networks. ACM, 195–200.

[26] Keith Stouffer, Joe Falco, and Karen Scarfone. 2008. Guide to Industrial Control

Systems (ICS) security. NIST Special Publication 800, 82 (2008), 16–16.

[27] Cisco Systems. 2018. Cisco 2018 Annual Cybersecurity Report. Technical Report.
[28] Avishai Wool. 2010. Trends in firewall configuration errors: Measuring the holes

in Swiss cheese. IEEE Internet Computing 14, 4 (2010), 58–65.

[29] PC World. 2018. Backdoor accounts found in 80 Sony IP security camera models.

https://goo.gl/UUvc2x. (2018).

14

http://www.insecam.org/en/bycountry/US/
https://goo.gl/JdLofa
https://goo.gl/JdLofa
https://github.com/ayyoob/mudgee
http://arxiv.org/abs/cs.CR/1804.04358
https://goo.gl/mCdQUF
https://goo.gl/mCdQUF
http://www.ietf.org/internet-drafts/draft-ietf-opsawg-mud-18.txt
http://www.ietf.org/internet-drafts/draft-ietf-opsawg-mud-18.txt
https://www.shodan.io/
http://arxiv.org/abs/1707.01879
https://www.enisa.europa.eu/publications/ics-scada-dependencies
https://www.enisa.europa.eu/publications/ics-scada-dependencies
https://goo.gl/Qo9GfD
https://goo.gl/PaXbc4
www.pages.cs.wisc.edu/~plonka/netgear-sntp/
https://goo.gl/UUvc2x

	Abstract
	1 Introduction
	2 Background and Related Work
	3 MUD Profile Generation
	3.1 MUDgee Architecture
	3.2 Insights and challenges

	4 MUD profile verification
	4.1 Syntactic correctness
	4.2 Semantic correctness

	5 Evaluation of Results
	6 Discussion
	7 Conclusion
	References
	List of Acronyms

