
Towards a Resilient Smart Home
Tam Thanh Doan, Reihaneh Safavi-Naini, Shuai Li, Sepideh Avizheh,

Muni Venkateswarlu K., Philip W. L. Fong
University of Calgary, Canada

ABSTRACT
Today’s Smart Home platforms such as Samsung SmartThings and
Amazon AWS IoT are primarily cloud based: devices in the home
sense the environment and send the collected data, directly or
through a hub, to the cloud. Cloud runs various applications and
analytics on the collected data, and generates commands according
to the users’ specifications that are sent to the actuators to control
the environment. The role of the hub in this setup is effectively
message passing between the devices and the cloud, while the
required analytics, computation, and control are all performed by
the cloud. We ask the following question: what if the cloud is not
available? This can happen not only by accident or natural causes,
but also due to targeted attacks. We discuss possible effects of such
unavailability on the functionalities that are commonly available in
smart homes, including security and safety related services as well
as support for health and well-being of home users, and propose
RES-Hub, a hub that can provide the required functionalities when
the cloud is unavailable. During the normal functioning of the
system, RES-Hubwill receive regular status updates from cloud, and
will use this information to continue to provide the user specified
services when it detects the cloud is down. We describe an IoTivity-
based software architecture that is used to implement RES-Hub in
a flexible and expendable way and discuss our implementation.

KEYWORDS
IoT Security, Smart home resiliency, Smart home security
ACM Reference Format:
Tam Thanh Doan, Reihaneh Safavi-Naini, Shuai Li, Sepideh Avizheh, Muni
Venkateswarlu K., Philip W. L. Fong . 2018. Towards a Resilient Smart Home
. In IoT S&P’18: ACM SIGCOMM 2018 Workshop on IoT Security and Privacy
, August 20, 2018, Budapest, Hungary. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3229565.3229570

1 INTRODUCTION
A smart home is equipped with hundreds of sensors that perform
measurements, and in combination with other data sources (e.g.
third party data), provides smarts that are used for personalization
and automated services, as well as improving efficiency and conve-
nience of its residents. Sensors carried by home users (residents and
visitors) can also be integrated into the home network to enhance
their service offerings. A smart home can be seen as a full-fledged

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IoT S&P’18, August 20, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5905-4/18/08. . . $15.00
https://doi.org/10.1145/3229565.3229570

integrated computing system that senses the environment (inside
and outside the home), performs computation, and generates the
commands that are used to control the environment, or provides
services that are requested by the users [13].
Cloud-based Smart Homes. Today’s smart home platforms are pri-
marily cloud-based: that is the required computation, analytics and
generation of smarts are performed at the cloud provider and ap-
propriate results are sent back. Established smart home solution
providers, including Samsung SmartThings [23], Amazon AWS
(Amazon Web Services) [8], IBM Watson [18] and Microsoft Azure
[20], rely on cloud services. The home sensed data are either di-
rectly sent to the cloud (e.g. Amazon AWS), or sent through an
intermediate hub whose primary role is to provides connectivity
to cloud for the home sensors (e.g. Samsung SmartThings). Pro-
cessing data in cloud allows incorporating data from other sources
(e.g. homes in the same area, or other clouds) be used for powerful
analytics and visualization applications that are available to cloud.

Reliance on cloud however raises many security and privacy,
as well as reliability challenges. Existing smart home platforms
all assume full trust on the cloud provider which has full access
(and control) to fine-grained private information of the home users.
Data on user movements, requested services from devices inside
the home, or providers outside, as well as users’ environmental
preferences can be easily gleaned from the collected data. Although
in some frameworks such as IBM Watson IoT, one can encrypt
the sensed data before sending them to cloud, this will remove
the benefits of using many of the cloud services. This was the
motivation for a host-based architecture [13] where data storage
and processing are performed within the home, with cloud used as
backup.

In this paper we consider the reliability aspect of full reliance on
cloud (and Internet connectivity): we ask the question, "what hap-
pens to a smart home and its users, when it does not have access to
cloud?" This can be the result of the network being down or cloud
services being unavailable, and will become particularly important
when the home is vacant and the disconnection remains un-noticed
for an extended period of time. Disconnection can happen because
of natural causes (e.g. storm or flood) or a malicious attacker discon-
necting the home for malicious reasons (e.g. burglary, or providing
a time window to tamper with the house for future attacks).
Our Contributions. We discuss possible effects of cloud unavail-
ability on the functionalities that are commonly available in smart
homes, including security and safety related services as well as
support for health and well-being of home users. We propose RES-
Hub (Resilient Home-Hub), a hub that can provide the designed
functionalities when the cloud is unavailable. RES-Hub will receive
regular status updates from cloud during the normal functioning
of the system, and will use this information to continue to provide
the user specified (essential) services when it detects cloud is un-
available. We describe an IoTivity-based software architecture that

15

https://doi.org/10.1145/3229565.3229570
https://doi.org/10.1145/3229565.3229570
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3229565.3229570&domain=pdf&date_stamp=2018-08-07

IoT S&P’18, August 20, 2018, Budapest, Hungary T. T. Doan et al.

can be used to implement RES-Hub in a secure and extendable way,
with flexible access. IoTivity [19] is an open source project that is
supported by a large group of manufacturers. By "secure" we mean
RES-Hub will ensure correct functioning and controlled access to
the home resources, albeit with a user specified subset of function-
alities, when the cloud is unavailable. By extendability we mean
the RES-Hub can be used with devices of different manufacturers
and will not depend on a particular manufacturer. Flexible control
means that the hub can be remotely accessed, allowing the user to
control the home from outside. We discuss our proof of concept
implementation of RES-Hub and its secure implementation using
OAuth 2.0 for authentication and authorization.

2 SMART HOME & CLOUD DISCONNECTION
We first briefly look at important existing smart home platforms
and the effect of Internet disconnection on their operation.

Samsung SmartThings [22] platform is for developing IoT ap-
plications for smart homes. SmartThings ecosystem comprises of
a SmartThings cloud, SmartThings hub, SmartThings mobile user
app, and IoT smart devices. The applications implemented using
SmartThings platform allow users to manage and control their
home appliances (smart devices) via smart phones (mobile user
app). The hub [23] acts as a gateway between the home IoT devices
and the cloud services by connecting to the Internet. It supports
several communication protocols including ZigBee, Z-Wave. All
communications to and from hub to the cloud are encrypted using
SSL (Secure Socket Layer)/TLS (Transport Layer Security) proto-
col. To execute cloud-based services, the hub must be connected
to the SmartThings cloud. Without Internet connection, some of
the services that are provided by the devices can continue (e.g. the
light will stay on) but some services may become unavailable (e.g.
sensing data and sending to cloud). Moreover,to change the settings
of the devices (e.g. put them in low energy consumption mode) the
hub needs to be connected to the cloud.

Apple HomeKit [12] is an IoT framework facilitates the process
of managing and controlling connected IoT devices in a user’s home
via iOS device apps (e.g. iPhone - Home smart app). An iOS device
(e.g. iPhone) that is connected to home network (e.g. WiFi) acts
as a hub to communicate with connected devices. iCloud [10] is
a common database for all connected devices and iOS devices. To
provide remote control of the home, either Apple TV or an iOS
device in the home and connected to the home WiFi network, will
be used as a hub [11].When the iCloud is not available, the HomeKit
stops communicating with cloud. The devices may preserve their
latest state before they disconnect with the iCloud and continue till
they are connected again to the iCloud and updated.

Amazon AWS (Amazon Web Services) IoT [8] is a cloud platform
for the Internet of things. AWS IoT enables internet-connected
devices to connect and interact with the AWS cloud and other con-
nected devices using MQTT (Message Queuing Telemetry Trans-
port) protocol [7], using a Device Gateway that acts as an interme-
diary between connected devices and the AWS cloud services. In
AWS IoT, applications communicate with device shadows that are
virtual images of the connected devices. Without Internet connec-
tion, device shadows cannot receive new data from devices, but will
continue communication with applications. Devices can continue

functioning with their current states and will receive the updates
from AWS IoT when the Internet is back on [7].

IBM Watson IoT Platform [18] on the IBM Cloud provides a
framework for easily connecting devices to the IBM Cloud envi-
ronment and manages them. It gives user a versatile toolkit that
includes gateway devices, device management, and powerful appli-
cation access. The platform acts as a hub for an IBM IoT ecosystem.
A user can setup and manage their connected devices, and using
their mobile apps, access the devices realtime or historical data,
and perform analytics on them [17]. To connect devices and ap-
plications, the platform uses MQTT protocol and TLS, to securely
receive data from and send commands to home devices. To access
and change functionalities, devices must be connected to the cloud.
Cloud can become unavailable due to a variety of reasons, in-
cluding:
• Technical problems. Network problems or temporary cloud shut-
down due to technical problems or attacks (e.g. Distributed Denial
of Service).
• Natural Causes such as storm, flood, fire or any extreme condition
can leave the home without power or connection to cloud.
• Scheduled maintenance can make the cloud unavailable.
• Targeted Attacks. Malicious activities of attackers, who can be
insider or outsider to the home, can make the cloud services un-
available.
The effect of cloud disconnection can be varied and includes:
• Break-down of Home Security Systems. Security monitoring sys-
tems (camera, motion detect, etc) and remote-controlled smart locks
may stop correct functioning (e.g. a smart lock may keep the door
open or locked and does not allow user control). These are essential
functions at all times, in particular during emergency situations.
• Providing Attacking Windows. An adversary may use the home
disconnection time for malicious tampering with the home com-
puting system to plan their future attacks: an attacker may inject
malicious code into the system, or tamper with the system configu-
rations to provide future unauthorized access for insiders or people
from outside.
• Un-authorized access. Incidental users of the smart home are those
who are not involved in setup and configuration of smart home
infrastructure. Such users, if malicious, may attempt to disconnect a
smart home to remove the distinction between themselves and the
primary users if the home access control is lost. This could enable
them to have physical access to privileged spaces (private rooms) or
devices (e.g. setup hidden camera or voice recording). A malicious
incidental user may also try to observe a primary user’s activities
closely to gain future access when the security systems are down.
• Safety. A smart home can have a range of "smart" sensors for
automation of smart appliances, or support for home assisted living.
Malfunctioning of these sensors due to cloud disconnection can
jeopardize safety of home residents. Below are important types of
sensors that will be affected.
– Smart Appliances. Cloud-based smart home appliances receive

a range of commands from cloud. Depending on the state of the
device and the timing of the command, cloud disconnection could
result in unsafe or inconvenient environment for home users (e.g.
a thermostat may leave users in cold, or a smart light may stay on
all night).

16

Towards a Resilient Smart Home IoT S&P’18, August 20, 2018, Budapest, Hungary

–Wearables and home-assisted living. There are a wide range of
wearable sensors that are used for daily measurements of activities
and in support of health related services such as reporting falls or
other mishaps. Depending on the type of sensors and the duration
of disconnection, the effect on the well-being of home users can be
enormous.
– Safety Sensors. A range of sensors such as smoke and leak

detectors have direct significance on the environmental safety:
delaying of an auto-call to Fire Department will pose a severe risk
to home safety.

3 RESILIENT SMART HOME
Motivated from the above discussion, our goal is to design an infras-
tructure for smart home that allows home to continues functioning
safely for users when cloud is not available. As noted earlier exist-
ing smart home platforms rely on cloud to various levels. However
in all cases reconfiguring device status (remotely) requires cloud
connectivity. This reconfiguration is essential to save energy and
put devices in emergency mode. As the first step, in the following
section we provide a broad categorization of smart home services.
This categorization can be modified or refined according to the
specific needs of a smart home.
Home Service Classification. Table 1 shows typical essential ser-
vices that a smart home may provide. Non-essential services would
include automation of non-vital appliances such as a washing ma-
chine, or un-necessary functionalities such as different hues of light
bulbs, or functionalities of an entertainment systems. This classifi-
cation may vary depending on the preference of the user and other
provisions such as the specifications of the backup generator and
power supply.

Table 1: Essential services in Smart Homes
Type of Service Function Operation Example
Connectivity
(Internet) Notification Sends notification to user’s mobile

device on home status
Fire alarm is on or Cloud
connection lost

Remote
Access

Allow a user to directly control
home devices remotely

Open the door or view the
live camera

Health Care
Patient

Monitoring

Tracking patient vital signs and
health status indicators using data
collected from smart wearables

Smart device attached to
user for
pain treatment.

Keeping track of heart rate,
breathing, temperature, steps,
detect body position
in case if a person falls

Remote
Doctors

Able to read the victim’s health
information in real time and
give instructions

In case the emergency medical
services need instruction
related to patient’s health

Security
Smart
Lock Auto open or close On smoke alarm, auto open door

Smart
Monitoring Motion detection and Live camera View live camera feed

Smart Alarm Sound alert, notify user,
security patrol or police Send notifications to user

Safety
Smoke
Detector

Sound alert, run emergency
automation, auto calling Auto calling Fire, EMS and police

Leak
Detector

Sound alert, run emergency
automation, auto calling

Alerting user or residents,
calling security and fire

Reliability
Local

Automations Able to execute emergency routines Auto calling authorities
during emergency (e.g. fire)

Storage
Local
Storage Keep track of important data Saving front door camera feed

RES-Hub. It is a stand-alone hub, that is powered by an alternative
power generator if the main power system is unavailable, and has
the role of maintaining the home functionalities. To ensure the
functionalities of the smart home, albeit at a more basic level, RES-
Hub must be able to do the following.

– Detection of cloud unavailability;
– Notification and ability to communicate (e.g. send status and

receive commands) to outside world through alternate channels.
– Service transfer and ability to take-over the basic functionality;
– Transfer control back to the cloud.

In the following we briefly describe each of these functionalities.
• Detecting Cloud Failure. RES-Hub must detect cloud failure. Some
possible methods are below.

− RES-Hub sends regular heartbeat to the cloud and receives the
response. If the response is not received over a period of t seconds,
it declares disconnection.

− There is no heartbeat but there is an expectation that a message
will be received by a device in the house within a certain time
period. This can be done by constructing a profile of the traffic that
is received by the home, and using it to detect cloud disconnection.

− If the home uses a local hub, RES-Hub can interact with the
hub or check the hub status to determine if devices are in nor-
mal communication with the cloud. − Additional methods such as
checking Internet connectivity (for example through a ping com-
mand) or checking power outage can also be used in detection of
cloud unavailability.
• Notification. Once a cloud disconnection is detected, a notification
will be sent to outside world. For simplicity we assume this notifi-
cation is sent to the primary home user. This requires RES-Hub to
have access to an alternative mode of communication, for example
a cell network.
• Service Transfer. When cloud disconnection is detected, RES-Hub
must take over the role of the cloud, and when the cloud is back,
it must transfer back the control. For this to happen, RES-Hub (i)
must be able to communicate with the devices, and the cloud, (ii)
have access to their status and setting before the disconnection, and
(iii) have a description of services that must be offered, and (iv) the
required software to achieve it. This means that the RES-Hub must
be able to run the required applications and communicate with the
devices, as well with the home owner (primary user) mobile device.
It also implies that RES-Hub must obtain device status and setting
at regular intervals. We assume a cooperative architecture where
the cloud provider is willing to provide the required information to
the RES-Hub (One may also consider non-cooperative architectures
where RES-Hub may attempt to infer this information from com-
munications of the devices to and from hub). Finally, the essential
services and the their specifications must be provided to RES-Hub
as part of its configuration. RES-Hub will transfer back services to
cloud (including device status and history), when notified by the
primary user. One may consider an automated transfer back, where
RES-Hub autonomously detects cloud availability and transfer back
the services. This adds to the complexity of the system and will be
a future extension.

An important component of the RES-Hub is secure authenti-
cation, authorization and access control. As noted earlier, cloud
disconnection can provide a window for attackers’ un-authorized
access. Thus RES-Hub must be able to authenticate requests and is-
sue commands that are verifiable by the end devices. This is because
during cloud unavailability a stricter set of security requirements
will be necessary.

17

IoT S&P’18, August 20, 2018, Budapest, Hungary T. T. Doan et al.

Other Requirements. Ideally we would like RES-Hub to be cloud
neutral and support different home platforms. Our design of RES-
Hub is based on IoTivity framework and can work with major cloud
providers’ frameworks including IBM, Apple HomeKit, Amazon
AWS and Samsung SmartThings.

3.1 RES-Hub
Figure 1 depicts a cloud-based smart home equipped with RES-
Hub. RES-Hub has access to a cellular network and a specification
of authorized users and services. This information are stored in
two tables: the Registered user table and appropriate authentication
method, and the Authorization table that specifies accesses of au-
thenticated entities in the system. These tables must be kept up
to date, stored securely at RES-Hub. Once cloud disconnection is
detected, RES-Hub will notify the home owner using a SMS over
cellular network, and takes over the control of the home. RES-Hub
and essential services are connected to a backup power unit (for
e.g., a UPS system).

Figure 1: A Smart home equipped with a RES-Hub

4 RES-HUB DESIGN USING IOTIVITY
IoTivity [19] is an open source project for the Internet of Things
(IoT) that is hosted by the Linux Foundation, and is sponsored by
the Open Connectivity Foundation (OCF). OCF is a group of tech-
nology companies such as Samsung Electronics and Intel with the
aim of developing standard specifications and promoting interop-
erability guidelines. RES-Hub’s software design is based on Iotivity
framework and is shown in figure 2. The framework allows devices
to communicate with cloud regardless of manufacturer, operating
system, chipset or physical transport [15]. Although one of the key
technologies of connectivity is the constrained Application Proto-
col (CoAP) over UDP/IP, in this work, we will use MQTT (Message
Queuing Telemetry Transport [14])over TCP/IP for connectivity
between the devices and the hub.
Following the proposed architecture in [13] RES-Hub consists of
three conceptual layers: 1: Network of Things Layer (NTL), 2: Com-
mon Service Layer (CSL) and 3: Application Layer (AL) with the
following functionalities.
Network of Things Layer. This layer consists of two sub layers:
• Network Connectivity. This layer provides device discovery and
support for secure communication over physical layer that can be

Figure 2: RES-Hub Software Architecture

wired and wireless channels (e.g. Bluetooth, ZigBee, Z-Wave). Ex-
ample device discovery protocol is SSDP (Simple Service Discovery
Protocol) [1] that is used to find devices on the home network,
and serves as the backbone of Universal Plug and Play (UPnP) net-
working protocols. Secure communication module includes cryp-
tographic libraries and support for TLS and establishing secure
channel between two parties.
• Resource Observation. This layer has a Device Handler module.
Device Handler represents a physical device and is the interface
between the actual device and the Common Service Layer (CSL).
By integrating MQTT and Server Builder in the Common Service
Layer, a Device Handler can directly receive data from a device and
send control messages to the devices (e.g., On/Off lights).
Common Service Layer. This layer has two sub layers:
• Resource Management. This layer provides the following modules.

− A Resource Broker that monitors the presence status of the
user specified devices and provides the resource (device) status to
an application.

− Resource Logging collects the data generated by the device
during cloud unavailability period, and stores them in the Resource
Container (database).

− Server Builder handles the simplified creation of resources, set
the resource properties (e.g Resource type: temperature sensor)
and attributes (e.g Temperature value).

− Discovery Manager manages all discovered devices (things)
by the NTL.

− MQTT is a lightweight publish-subscribe based messaging
protocol designed for machine-to-machine communication [14]. It
is designed to work with constrained devices and low-bandwidth,
unreliable networks like IoT and is used by Amazon AWS IoT and
IBM Watson IoT.
• Service & Security. This layer will include the following function-
alities.

− Secure Resource Manager manages Credentials, Authentica-
tion (including device IDs and credentials) and Authorization tables

18

Towards a Resilient Smart Home IoT S&P’18, August 20, 2018, Budapest, Hungary

(including Access Control list and/or capability. It is responsible
for authenticating client and authorization. Submodules such as
Policy Engine and Resource owner work together to provide access
control in RES-hub.

− Resource Container[2], is to provide APIs for integration of
non-OCF protocols into the OCF ecosystem [15].

− Device Management handles network connection setting and
remote monitoring/reset/reboot functions.

− Cloud Interaction and Notification is responsible for interac-
tion with the Cloud and managing notifications to the user and
devices. The Notification module consists of, Presence Detection,
Remote Request Handler, Resource State Synchronization compo-
nents, that are used to monitor Cloud connection state, as well as
receive status information from devices.
Application Layer. Applications access services that are offered
by the Common Service Layer (CSL), through their application pro-
gramming interfaces. Typical applications include health related ap-
plication, home automation services, monitoring and billing. These
applications receive data from the CSL and perform the required
action as specified in its emergency specification.

4.1 Security
RES-Hub must ensure that the home functions as specified, when
cloud is unavailable. Here we focus on the security provisions for
this period, only. As noted earlier cloud unavailability marks an
emergency period and so strict security design is necessary.

RES-Hub will use cryptographic authentication for users and
devices, and OAuth based authorization for ensuring secure access
to, and communication with, devices are maintained during cloud
unavailability. Using cryptographic authentication would restrict
the devices that can stay active during downtime. This is a design
decision to protect against malicious attacks and can be replaced
by other strong authentication mechanisms. Each user and device
that interacts with RES-Hub will have a private key and a certified
public key. Public key certification can be performed by the home
owner who would act as the certificate authority (CA) for the device
registration to RES-Hub . RES-Hub will safely store the public key
of the CA which will be later used for certificate verification.

OAuth 2.0 [21][16] is a framework for distributed authorization.
Entities can take the role of Resource Owner (RO), Client, Resource
Server (RS), and Authorization Server (AS). System resources are
served by the RS. To access a resource, a client, after authenticating
itself, must obtain an access token from the AS. In RES-Hub, MQTT
protocol is used for communication of devices with RES-Hub, as
well as services communicating with the devices. MQTT is run
over secure transport layer, using protocols such as SSL/TLS or
DTLS. MQTT broker must enforce the granted permissions in the
token. A client who needs to access a resource will present the
required access token to the broker. The access token is obtained
by the client after authenticating itself to the authorization server
that works in conjunction with the resource owner to generate the
required access token. Once the token is obtained, it will present
to the broker and the access will be granted. The role of RS will
be given to the MQTT broker. Following the modular structure
of IoTivity framework, the module responsible for authenticating
client and providing access token is the Resource Manager that

includes the submodules Policy Engine (PE) and , in our design,
Resource Owner(RO).

Figure 3 shows the sequence of events when a client wants
to subscribe to a topic (e.g. myhome/temperature) to receive up-
dated messages (e.g. temperature information). The (MQTT) client

Figure 3: Resource access procedure in RES-Hub
presents its credential to the MQTT broker who forwards it to the
Secure Resource Manager.The client will be authenticated by the
RO and PE, and after gaining authorization, the required access
token will be issued to the client. Client will present the token
to the MQTT broker (who will act as the RS), and will allow the
access. The token will be used by the client to access the messages
of the topic that is subscribed (i.e. temperature). Broker may cache a
permission list for validated token to improve overall performance.
Protection. Assuming secure communication and correct imple-
mentation, OAuth authentication and authorization will ensure
access controls are appropriately granted and will be according to
the specified policies. To ensure token authenticity and integrity,
each token will be signed by the issuer and will be bound to the
client identity. RES-Hub must be safe guarded physically (i.e. in
a protected room) and must be implemented using appropriate
security technologies (e.g. Hardware Security Module or trusted
components) for secure implementation of software. The device
must securely store its credentials, other secrets and policy tables.

5 A PROOF OF CONCEPT IMPLEMENTATION
For a concrete implementation of RES-Hub we considered Samsung
SmartThings platform, a hub based architecture that relies on cloud
for all the processing and generation of control commands. Smart-
Things Hub V.2 is planned to allow some local computation with
the goal of service continuity when the cloud is down. The planned
API will allow programming apps for the hub. These functionali-
ties however are not fully implemented. Our implementation has
been focused on two modules: Resource state synchronization, that
gathers resource (device) state information from cloud at regular
intervals. This information will be used by RES-Hub to provide
uninterrupted services specified by user when the cloud is discon-
nected. Notification module, that is responsible for notifying the

19

IoT S&P’18, August 20, 2018, Budapest, Hungary T. T. Doan et al.

user (e.g. by sending a SMS) when the cloud is detected offline. It
can also notify other authorities if needed.

Figure 4: Resource state synchronization and Notification
modules.
Resource state synchronization module. We implemented a
Web Services SmartApp, Web Server and Web-App to synchronize
resource state, which is depicted in figure 4. The Web Services
SmartApp is developed in the SmartThings IDE user account and
exposes the API endpoints that allow the Web-App to control a
device, the device needs to register and pair with this SmartApp.
The Web Server is implemented on a Raspberry PI.hub that simu-
lates the RES-Hub. The Web-App runs on localhost that simulates
the RES-Hub and makes calls to the SmartApp endpoint in the
SmartThings Cloud for specific request such as get device status,
etc. The collected data is stored in a local (home) database that is
implemented as a MySQL database [4].

We use SamSung SmartThings Hub Version 2withMotion Sensor
and two Sengled Smart Connected LED Bulbs. The Web-App was
developed using PHP [5], with Apache HTTP Server 2.4.29 [9]
which is an open-source cross platform Web Server.
• Authentication and authorization . All SmartApps APIs are au-
thenticated using OAuth 2.0 authorization protocol [21] to ensure
that the Web-App has the requested access to the devices. We
create Web Services SmartApp in SmartThings IDE with OAuth
enabled. The SmartApp auto generates the OAuth Client ID and
Secret that will be used when Web-App send HTTP request to
SmartThings login page with OAuth enabled login. When success-
ful logged in, a subsequent page is displayed that allows Web-App
to authorize the devices this Web Services SmartApp can work
with. SmartThings redirects back to our Web-App, it passes a code
parameter on the URL. The Web-App uses this code (along with
the OAuth Client ID and Secret), to get the token using the OAuth2
module, and store it in the session (e.g API Token: "bbffef83-ea4e-
479f-a567-90db62ee83e6"). The Web-App uses this OAuth Token to
make a GET request to the SmartThings API endpoints service at
"https://graph. api.smartthings.com/api/smartapps/endpoints". The
response is JSON [3] that contains the endpoint of ourWeb Services
SmartApp (e.g API Endpoint: "https://graph.api.smartthings.com/api/
smartapps/ installations/ a3310289-17a8-4069-ac7c-a6d94714f40a").
Finally, Web-App uses OAuth Token and specific endpoint to make
API call to Web Services SmartApp to request device status [24]..
• Local database. The SmartApp will respond in JSON format [3].
The Web-App will analyze the data, add time-stamp and store it to

MySQL database, an example status message : "1, GR Mo, Detected
Motion, Living Room, 2018-01-30 15:29:47.410453" (see figure 5).
Notification module. While Web-App sends HTTP request to
SmartThings login page,Web-App also implements a PHP connection-
handling function [6] to keep track of the SmartThings Cloud status.
When the Cloud is unavailable, Web-App will send SMS (Short Mes-
sage Service) through HTTP to user’s mobile phone for notification.

Figure 5: Demo of a SmartThings Mobile App: a) Home
screen of the App; b) GR Classic A19 bulb history event; c)
GR Motion sensor history event.

6 CONCLUDING REMARKS
Existing smart home platforms are primarily cloud-based.We raised
the question of home resiliency when cloud becomes unavailable.
This can happen because of unintentional causes, as well as through
adversarial activities. We showed there are essential services that
must be continued when the cloud becomes unavailable, and noted
the need for providing a secure design that ensures cloud unavail-
ability cannot provide a window of opportunity for attackers to
gain immediate unauthorized access, or plan their future attacks.
A very important aspect of cloud unavailability in existing cloud
based platforms is the loss of control to re-configure devices. This
is necessary to select the services that are essential and maintain
their operation, while turning off un-necessary devices and service.
We proposed RES-Hub to ensure the required functionalities are
provided even when the cloud is unavailable. RES-Hub uses the
most recent state of the devices and services (obtained from the
cloud during normal functioning) to continue their operation ac-
cording to the user specification, when cloud is unavailable. Based
on IoTivity framework, we proposed a software architecture for
RES-Hub that incorporates OAuth 2.0 authentication and autho-
rization framework to guarantee secure access and control of home
devices and services, when the cloud is unavailable. We also present
a proof of concept implementation of SmartThings devices.

Our work is a first step in providing resiliency for smart homes:
a topic which requires further research particularly as more devices
and services are integrated into the home. It also calls for collabo-
ration with smart home providers for refined APIs and access to
their systems.
Acknowledgement. This research is in part supported by Alberta
Innovates in the Province of Alberta, Canada.

20

Towards a Resilient Smart Home IoT S&P’18, August 20, 2018, Budapest, Hungary

REFERENCES
[1] 1999. Simple Service Discovery Protocol. https://tools.ietf.org/html/

draft-cai-ssdp-v1-03. online accessed: March, 2018.
[2] 2018. IoTivity Resource Container. https://wiki.iotivity.org/resource_container.

online accessed: May, 2018.
[3] 2018. JavaScript Object Notation. https://www.json.org/. online accessed: March,

2018.
[4] 2018. MySQL. https://www.mysql.com/. online accessed: March, 2018.
[5] 2018. PHP. http://php.net/. online accessed: March, 2018.
[6] 2018. PHP Connection Handling. http://php.net/manual/en/features.

connection-handling.php/. online accessed: March, 2018.
[7] Amazon. 2018. AWS Developer Guide. https://docs.aws.amazon.com/iot/latest/

developerguide/aws-iot-how-it-works.html. online accessed: March, 2018.
[8] Amazon. 2018. AWS IoT Framework. https://aws.amazon.com/iot. online

accessed: March, 2018.
[9] Apache. 2018. Apache HTTP Server Project. https://httpd.apache.org/. online

accessed: March, 2018.
[10] Apple. 2018. Apple iCloud. http://www.apple.com/lae/icloud/. online accessed:

March, 2018.
[11] Apple. 2018. Homekit developer guide. https://developer.apple.

com/library/content/documentation/NetworkingInternet/Conceptual/
HomeKitDeveloperGuide/Introduction/Introduction.html#//apple_ref/doc/uid/
TP40015050. online accessed: March, 2018.

[12] Apple. 2018. The smart home just got smarter. http://www.apple.com/ios/home/.
online accessed: March, 2018.

[13] Sepideh Avizheh, Tam Thanh Doan, Xi Liu, and Reihaneh Safavi-Naini. 2017.
A Secure Event Logging System for Smart Homes. In IoT S&P@CCS. doi:
10.1145/3139937.3139945. ACM, 37–42.

[14] Andrew Banks and Rahul Gupta. 2014. MQTT Version 3.1. 1. OASIS standard 29
(2014).

[15] Open Connectivity Foundation. 2016. About open connectivity foundation.
https://openconnectivity.org/foundation. online accessed: March, 2018.

[16] Dick Hardt. 2012. The OAuth 2.0 authorization framework. https://tools.ietf.org/
html/rfc6749. online accessed: March, 2018.

[17] IBM. 2018. IBM Watson Internet of Things educator guide. https://developer.ibm.
com/academic/resources/internet-of-things-educator-guide/. online accessed:
March, 2018.

[18] IBM. 2018. IBM Watson IoT Platform. https://internetofthings.ibmcloud.com/#/.
online accessed: March, 2018.

[19] IoTivity. 2018. IoTivity Framework. https://www.iotivity.org/. online accessed:
March, 2018.

[20] Microsoft. 2018. Microsoft Azure Suite. https://azure.microsoft.com/. online
accessed: March, 2018.

[21] Microsoft. 2018. The OAuth 2.0 authorization protocol. https://oauth.net/2/.
online accessed: March, 2018.

[22] Samsung. 2018. SmartThings Documentation. http://docs.smartthings.com/en/
latest/. online accessed: March, 2018.

[23] Samsung. 2018. SmartThings Hub. https://www.samsung.com/us/smart-home/
smartthings/. online accessed: March, 2018.

[24] Samsung. 2018. Web Services SmartApps. http://docs.smartthings.com/en/
latest/smartapp-web-services-developers-guide/overview.html. online accessed:
March, 2018.

21

https://tools.ietf.org/html/draft-cai-ssdp-v1-03
https://tools.ietf.org/html/draft-cai-ssdp-v1-03
https://wiki.iotivity.org/resource_container
https://www.json.org/
https://www.mysql.com/
http://php.net/
http://php.net/manual/en/features.connection-handling.php/
http://php.net/manual/en/features.connection-handling.php/
https://docs.aws.amazon.com/iot/latest/developerguide/aws-iot-how-it-works.html
https://docs.aws.amazon.com/iot/latest/developerguide/aws-iot-how-it-works.html
https://aws.amazon.com/iot
https://httpd.apache.org/
http://www.apple.com/lae/icloud/
https://developer.apple.com/library/content/ documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/ Introduction/Introduction.html#//apple_ref/doc/uid/TP40015050
https://developer.apple.com/library/content/ documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/ Introduction/Introduction.html#//apple_ref/doc/uid/TP40015050
https://developer.apple.com/library/content/ documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/ Introduction/Introduction.html#//apple_ref/doc/uid/TP40015050
https://developer.apple.com/library/content/ documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/ Introduction/Introduction.html#//apple_ref/doc/uid/TP40015050
http://www.apple.com/ios/home/
https://openconnectivity.org/foundation
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://developer.ibm.com/academic/resources/internet-of-things-educator-guide/
https://developer.ibm.com/academic/resources/internet-of-things-educator-guide/
https://internetofthings.ibmcloud.com/#/
https://www.iotivity.org/
https://azure.microsoft.com/
https://oauth.net/2/
http://docs.smartthings.com/en/latest/
http://docs.smartthings.com/en/latest/
https://www.samsung.com/us/smart-home/smartthings/
https://www.samsung.com/us/smart-home/smartthings/
http://docs.smartthings.com/en/latest/ smartapp-web-services-developers-guide/overview.html
http://docs.smartthings.com/en/latest/ smartapp-web-services-developers-guide/overview.html

	Abstract
	1 Introduction
	2 Smart home & cloud disconnection
	3 Resilient smart home
	3.1 RES-Hub

	4 RES-Hub design using IoTivity
	4.1 Security

	5 A Proof of Concept Implementation
	6 Concluding remarks
	References

