
Open Carrier Interface: An Open Source Edge Computing
Framework

Marc Körner∗
ICSI

koerner@icsi.berkeley.edu

Torsten M. Runge∗
ICSI

runge@icsi.berkeley.edu

Aurojit Panda
NYU and ICSI

apanda@cs.nyu.edu

Sylvia Ratnasamy
UC Berkeley

sylvia@cs.berkeley.edu

Scott Shenker
UC Berkeley and ICSI

shenker@icsi.berkeley.edu

ABSTRACT
Edge computing is an emerging technology, which offers manifold
performance improvements for applications with low-latency and
high-bandwidth requirements. In order to lower the burden for the
Network Service Provider to support edge computing, we intro-
duce a generic and platform-agnostic open source edge computing
framework implementation called Open Carrier Interface. The im-
plemented prototype provides Application Service Providers with
the opportunity to deploy software components directly at the edge
of the network and without any operator intervention. We will
elaborate and demonstrate that the developed framework and its
interfaces (i) are easy to use for all involved parties, (ii) present a
unifying abstraction layer for edge-based resource management
systems and edge service architectures, (iii) and can deliver a signif-
icant performance impact on applications implementing the edge
service paradigm.

CCS CONCEPTS
• Networks → In-network processing;

KEYWORDS
edge computing, computation offloading
ACM Reference Format:
Marc Körner, Torsten M. Runge, Aurojit Panda, Sylvia Ratnasamy, and Scott
Shenker. 2018. Open Carrier Interface: An Open Source Edge Computing
Framework. In NEAT’18: ACM SIGCOMM 2018 Workshop on Networking for
Emerging Applications and Technologies , August 20, 2018, Budapest, Hungary.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3229574.3229579

1 INTRODUCTION
The last decade has witnessed a massive growth in Internet traffic.
A large fraction of this growth can be attributed to the increasing
popularity of video streaming services such as YouTube and Netflix,
∗These authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NEAT’18, August 20, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5907-8/18/08. . . $15.00
https://doi.org/10.1145/3229574.3229579

and due to growing adoption of networked Internet of Things (IoT)
devices. Industry forecasts [1] predict that Internet traffic will con-
tinue to grow rapidly. Handling this increasing traffic volume re-
quires upgrades to the network backbone, which ultimately adds to
the cost of network services such as Netflix and Youtube. Further-
more, traditional client-server deployments, where clients connect
to servers running within a remote datacenter, limits application
latency and responsiveness, thus limiting the types of applications
that can be supported by a network. In response to these challenges,
application developers such as Netflix, Google, etc. have deployed
services including cache appliances [9], search appliances [7], etc. at
the edge of the network. These appliances are commonly deployed
in a variety of facilities including Central Offices. We observe that
the number of such appliances has been increasing steadily, and
we believe network operators need to adopt a cloud provider like
model to enable rapid deployment and reconfiguration of such edge
services.

Thus, we propose a framework that enables network operators
with the ability to open up their edge facilities to Application Service
Providers, by offering edge computing. As an example, consider
a third-party Application Service Provider selling an IoT device
(say, a home thermostat or security camera). Whenever that device
shows up at the edge of the network, the Open Carrier Interface
framework starts the Application Service Provider implemented
edge software at the network operator’s Central Offices, which sup-
ports the IoT device with edge processing. Thus, even an early-stage
Application Service Provider, who has few financial or physical re-
sources, can offer the same level of edge support as giant companies,
and therefore can compete with them on an even footing.

Two key principles dominate the proposed system: On-demand
and without operator intervention. By offering edge support on-
demand, the edge software component is started and executed at
a particular network edge location when, and only when, one of
the associated devices is deployed there. This means third parties
Application Service Providers incur costs proportional to their re-
source usage, which offers a fair pay-on-use business model and
lowers market barriers. By accomplishing this without operator
intervention, the edge software component is distributed and in-
voked automatically, so no human assistance is required. We believe
that this approach will change the application paradigm, turning
client-server applications into Client-Edge-Server applications, and
making the provision of these services much more competitive,
while leveraging the one resource where carriers have a dominant
position; their ubiquitous presence at the edge of the network.

27

https://doi.org/10.1145/3229574.3229579
https://doi.org/10.1145/3229574.3229579
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3229574.3229579&domain=pdf&date_stamp=2018-08-07

NEAT’18, August 20, 2018, Budapest, Hungary Körner et al.

2 BACKGROUND AND RELATEDWORK
This section outlines the edge computing background and provides
an overview of related frameworks.

2.1 NFV as Edge Computing Enabler
The Open Carrier Interface (OCI) concept refers to the edge com-
puting paradigm and leverages recent developments at the car-
rier’s Central Offices (COs). A CO is the first Network Service
Provider (NSP) facility, where cables and connections from house-
holds and mobile base stations end up. COs are typically connected
and served by a Broadband Access Server (BRAS), which provides
the subscribers with access to the Wide Area Network (WAN).
These facilities are typically dominated by proprietary signal pro-
cessing and network equipment. However, recent developments in
Software Defined Networking (SDN) and Network Function Virtu-
alization (NFV) alter the hardware and software deployment and
turn them into small data centers operated with general purpose
server equipment. This development offers a larger flexibility and
allows the carriers to use Virtualized Network Functions (VNFs)
and scale them out on demand. Moreover, VNF updates can be eas-
ily deployed and stateful fail-over mechanisms enable application
service operation without service disruption. AT&T [13] admitted
that this process is ongoing and they have already equipped sev-
eral COs with additional equipment. Their plan is to operate 75%
of the COs with cloud like equipment and NFV by the year 2020.
This trend is also supported by open source implementation efforts
like the Central Office Re-architected as a Datacenter (CORD) [11]
project. The CORD developers try to build an NFV platform for
COs based on general purpose hardware.

2.2 Edge Computing Performance Analysis
Edge computing promises to increase the performance of several
applications by using data locality. Moreover, it is also able to re-
lieve the core network by addressing the increasing bandwidth
demands caused by the increase of services, data volume, and IoT
devices. Recent publications clearly indicate that there is a good
chance of a reasonable performance gain regarding latency and
bandwidth intense applications. In the area of virtual reality gam-
ing for mobile devices, the EC+ [17] proposal verified a 10x higher
frame rate with edge computing. Another Pokemon Go-like gaming
application, using a framework called ENORM [15], demonstrates
20-80 % latency improvement and a data transfer reduction to the
cloud by up to 95 %. In IoT sensor data aggregation some developers
achieved a 2x processing time reduction on a weak embedded hard-
ware platform and up to 10x improvement on commodity compute
hardware with a framework called FADES [3]. For video analytics,
the LAVEA [16] edge computing approach demonstrated an 1.2x
till 4x faster processing based on the edge computing compared
to the traditional client-cloud approach. The presented application
examples demonstrate, that edge computing clearly improves the
data processing for certain applications by utilizing data locality.

2.3 Edge Computing Frameworks
The standardization organizations IEEE and ETSI currently discuss
approaches for edge computing architectures in their 5G initiatives
and try to identify standardization opportunities and gaps. The IEEE

established a 5G Working Group [8], which describes their vision
and goals in a white paper [2]. The ETSI [5] proposes an architec-
tural framework called Multi-access Edge Computing (MEC) [4],
which offers third party Application Service Providers (ASPs) cloud
computing capabilities at the network edge. These efforts are fo-
cused on mobile scenarios and the regarding support of mobile user
equipment with mobile edge applications.

The Linux Foundation recently started the EdgeX Foundry [12]
project for IoT edge computing. The project’s mission is to de-
velop an edge computing platform designed to facilitate hardware
interoperability for IoT ecosystems. The edge platform itself is a
microservice-based framework with focus on facilitating device ser-
vices by standardized Application Interfaces (APIs) for IoT devices
around core services. The approach is limited to microservices and
has a strong focus on industrial IoT device domains. The project’s
execution environment is mainly focused on embedded devices
like gateways or routers. Another IoT edge computing platform
for embedded devices is the Everyware Software Framework [6]
by Eurotech. The platform supports edge applications developed
on the modular Open Service Gateway initiative (OSGi) for IoT
devices. Both solutions are supposed to be deployed on site.

An approach to generalize the Content Delivery Network (CDN)
concept for edge computing was introduced by Panda et al. [10],
which is the basis for the OCI framework described in this paper. It
introduces carrier networks as service delivery platforms for edge
services. It further elaborates on the design for a client interface
as well as a tenant (here referred to as ASP) interface for the de-
ployment of third party applications. Moreover, it also provides an
initial NFV-like description how edge services could look like and
discusses some use cases which benefit from this approach.

The approach introduced within this paper extends the architec-
ture by a further segreation and specification of the management en-
tities. Furthermore, it provides an open source implementation. The
presented OCI framework is designed to provide a generic solution
for arbitrary Edge Service (ES) designs and underlying NSP resource
management system. It can invoke dynamically application-context
based ESs and presents a simple and straight forward multi-domain
approach. We further advocate that the OCI is deployed in COs,
since COs provide the opportunity and ability to host data center
server equipment and do not come with the limitations of embed-
ded devices. Thus, edge computing applications are not completely
resource constraint and have to exist on embedded systems, like a
typical home router. This provides an opportunity for a sophisti-
cated processing beyond sensor data aggregation like the Netflix
Open Connect appliances.

In a nutshell, the OCI is a platform-agnostic open source edge
computing framework, which provides ASP with almost any possi-
ble freedom regarding the application architecture.

2.4 Edge vs Cloud Latency Study
Amazon Web Services (AWS) is clearly dominating the cloud mar-
ket with 44.2% of total revenue [14]. For that reason, we inves-
tigated AWS as a common representative for cloud computing
and conducted some latency and bandwidth performance mea-
surements. The latency measurements are based on Round Trip
Time (RTT) samples gathered on a conventional Digital Subscriber

28

Open Carrier Interface: An Open Source Edge Computing Framework NEAT’18, August 20, 2018, Budapest, Hungary

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Round Trip Time [ms]

CO
AWS N. California

AWS Oregon
AWS Virginia

AWS Ohio

Figure 1: CDF of the RTT between a device using a typical
home DSL Internet connection to different AWS locations
in the USA

Line (DSL) home Internet access point providing a data rate of up to
30 Mbit/s. The samples were performed between a laptop connected
to the access point in Berkeley Downtown and different Virtual
Machines (VMs) in several AWS locations in the USA. The RTT was
measured using the Internet Control Message Protocol (ICMP) and
the corresponding throughput results were measured with iperf
(v2.0.9). According to this samples, the throughput in general is
limited by the bandwidth of the DSL connection, while the latency
has a relation to the physical distance of the VM. Figure 1 depicts
the collected latency measurements.

Based on the amount and distribution of AWS data centers within
the USA, it is almost possible to reproduce an edge computing
like behavior in Berkeley using the closest AWS cloud in the San
Francisco Bay Area. The latency difference between this reference
point and the local CO is only 3.5ms on average. This might be
sufficient to satisfy some low-latency application requirements, but
could already jeopardize the reliable execution of some ultra-low
latency applications. However, typically the latency to the next
cloud is around 10x till 20x higher compared to the latency to
the CO, as indicated by the results gathered with the Oregon and
Virginia AWS data center.

3 ARCHITECTURE
The OCI is an open source edge computing framework solution
under BSD license, which supplies ASPs with the ability to deploy
edge applications at the NSP’s COs. The approach aims an easy
and automated deployment and lifecycle management procedure
without direct interaction or negotiationwith the NSP. It is designed
to coexist with the NSP’s NFV management system and can utilize
the same compute, storage and networking resources. Thus, the OCI
provides an opportunity to better utilize the existing NFV infrastruc-
ture while improving QoS. Hence, also the QoE for applications
with OCI support is improved. The edge software component in
this approach is further referred to as ES.

The OCI framework is composed of the following components,
which are further described in detail in the next subsections:

• Global Open Carrier Interface Coordinator (GOCIC)
• Local Open Carrier Interface Coordinator (LOCIC)
• Resource and Orchestration Manager Adapter (RnOMA)
• Open Carrier Interface library (OCIlib)

As depicted in Figure 2 and already mentioned, the OCI is de-
ployed on top of the NSP’s NFV infrastructure in the CO. The
architecture contains a centralized GOCIC. This component dis-
tributes all ESs which were uploaded to the LOCICs. The LOCIC
is the edge wide OCI management entity and coordinates the ES
instantiation. Therefore, it communicates with the RnOMA in order
to request resources and to provide instructions and binaries to the
NSP’s Resource and Orchestration Manager (RnOM). The RnOMA
also registers and de-registers ES at the LOCIC, depending on their
lifecycle (e.g started, stopped) information. For the communication
between the RnOMA and the RnOM the NSP needs to provide an
implementation of the RnOMA’s generic interface, which wraps
the RnOM API and translates the commands given by the RnOMA.
The RnOM is the NSP’s edge resource management component. It
is in charge of the NSP’s VNF as well as the OCI managed ES. The
RnOM is supposed to be controlled with high priority by the NSP’s
internal NFV management system, which has the overall control
of the resource allocation and distribution. Spare resources can be
used by the OCI to provide edge computing support for third-party
ESs. In order to roll out and deploy an ES, the ASP uploads the
Edge Service Application Package (ESAP) (see also Section 3.6) to
the NSP, e.g., a portal or store, where it will been forwarded to the
GOCIC. As soon as the GOCIC receives the new ESAP, it starts to
distributes the ESAP to the edges.

A client application trying to connect to an ES must use the
OCIlib’s lookup method. This method sends an OCI name query to
the LOCIC in order to resolve the corresponding ES Internet Pro-
tocol (IP) address. If the ES is already running, the LOCIC directly
answers the client request with the IP address of the requested
ES. Otherwise, the LOCIC starts to communicate with the RnOMA,
asking for the opportunity to instantiate the ES. The RnOMA trans-
lates this query into the appropriate control messages for a specific
RnOM, which eventually starts the ES if possible (ES and resources
available). If a new ES was successfully started by the RnOM, the
RnOMA registers the ES at the LOCIC. Thus, the LOCIC eventually
answers the client query (if not timed out) with the IP address of
newly instantiated ES.

Figure 2: Open Carrier Interface Architecture Overview

29

NEAT’18, August 20, 2018, Budapest, Hungary Körner et al.

3.1 Global OCI Coordinator
The GOCIC is the NSP’s domain-wide OCI orchestration entity. Its
main task is to distribute the ASPs’s third-party ESwithout operator
intervention or network knowledge across multiple network edges
and domains. Thus, the GOCIC provides several interfaces.

The NSP interface is used by the NSP to manage the GOCIC and
to provide all necessary configuration information. The NSP can
specify and deploy a JavaScript Object Notation (JSON) configu-
ration file, which provides the GOCIC with the IP addresses of all
LOCICs within the same domain, as well as their metadata infor-
mation like the geographical coded location. Optionally, this file
can also specify information about peering OCI domains and their
GOCICs IP addresses and metadata. The LOCIC interface is used
to distribute the ASP’s ESAPs to the LOCICs equipped COs. It is
currently using secure copy to transfer these files. Future versions
will provide the opportunity for the LOCICs to report status infor-
mation. Thus, the GOCIC will be able to gather detailed knowledge
about the current OCI utilization conditions and could also make
management decisions in order to support resilience, fault toler-
ance, and scalability of ESs. The ASP interface is a REST interface,
which is used to distribute the ESs. It allows to upload an ESAP to
the GOCIC. Based on the included metadata, the GOCIC will after-
wards distribute the ESAPs across the LOCIC equipped edges, as
well as other peering OCI domains. The inter-domain interface syn-
chronizes OCI domains and ESAPs exchange with other GOCICs,
as further described in Section 3.7.

3.2 Local OCI Coordinator
The LOCIC is the OCI edge-wide management entity. It communi-
cates with the GOCIC, the RnOMA and the clients. It maintains a
list of all ESs, their names, IP addresses, lifecycle status, registration
keys, and in future versions also potential fail-over information.
The registration key is an integer value, which is generated by the
LOCIC when a new ES is registered. The key serves as an access
control mechanism to de-register an ES or manipulate its infor-
mation. It is a simple security mechanism, which ensures that the
de-registration can only be processed by the registering entity,
which is in possession of the key. This prevents other RnOMAs or
an intentionally manipulated component, to interact with other
ESs. If the LOCIC receives an ES request from a client application,
it checks its internal service list. A query for a running service is
directly answered with the corresponding IP address of the ES. If
the requested ES is not already executed, the LOCIC sends a request
to the RnOMA to check the availability, required resources, and
eventually to start the ES.

3.3 Resource & Orchestration Manager Adapter
The RnOMA serves as a driver for the underlying actual resource
and orchestration manager, used by the NSP to manage the edge
compute, storage and network resources. The RnOMA provides a
generic interface to adapt an arbitrary resource management API.
This API provides methods to check resources and sends inquiries
to the RnOM to start or stop ES, or just obtain their status and net-
work address. Future versions will also handle the ES orchestration
information, e.g., for microservice-based edge services and their

scalability. The interface must be implemented by the NSP in order
to adapt the OCI to the RnOM’s API.

3.4 OCI library
The OCIlib contains methods and templates for application devel-
opers to build Client-Edge-Server (CES) applications utilizing the
CES paradigm and the OCI framework. It provides methods for the
client application to obtain the ES IP addresses via LOCIC lookups.
It also provides additional edge service templates, to simplify the
development of OCI based CES applications and to support the
integration within the OCI ecosystem, like the dynamic lifecycle
management and component based stitching.

3.5 Edge Service Architecture
An OCI ES can be part of an application architecture. Depending
on the ASP application design, the OCI ES is a mandatory or an
optional software component, which is located between client and
server components. It is executed by the OCI at the edge, in order
to leverage the benefits of data locality. If an application uses an
OCI ES component, it connects 1 till n clients with the centralized
application server. It is a linking entity between client and server
application. In order to satisfy the requirements of modern service-
centric communication networks and microservice-based design
patterns, the ES has its own internal complexity. The ES architec-
ture can be distinguished into different categories. Any application
design has different advantages and can be implemented depending
on the application requirements. A single monolithic ES is easy
to develop and might be sufficient to cache content at the edge. It
can be scaled by replication of the application itself. In contrast,
a microservice-based application can have scalability advantages,
because every single microservice can be scaled individually. More-
over, a discovery service-based edge application is the right solution
if several ES versions must be operated in parallel. Thus, a discov-
ery service is able to connect the client with the appropriate ES
version. Moreover, it could also implement an application-level load
balancer. Eventually, the ES can also be a combination of all of these
patterns. For instance, it can consist of a distributed structure with
several microservices, which uses a discovery service.

3.6 Edge Service Application Package
An ESAP is the compiled and bundled form of an ES. It is a zip
compressed file with the file extension esap and the following
internal folder structure: bin, lib, template, and meta. The bin
folder contains all binaries the edge service is composed of. The
meta folder contains a JSON file, which describes the ES metadata
information. This is typically the deployment location, described as
a hierarchical domain name space like Domain Name Service (DNS).
For instance us.ca.berkeley, which can be wild-carded with an
asterisk like us.ca.* in order to deploy the edge service on every
OCI facilitated edge in California. The metadata can further be used
to specify Service-Level Agreement (SLA) information like required
CPU,memory, or disk. At least the meta folder and the bin folder are
mandatory, in order to build executable ESAP. The following folders
are optional and provide the opportunity to build a sophisticated
edge service architecture and deployment. The lib folder contains
libraries, like shared objects, which might be required by the edge

30

Open Carrier Interface: An Open Source Edge Computing Framework NEAT’18, August 20, 2018, Budapest, Hungary

service binary. In case of a microservice-based ES the ESAP must
contain also the template folder, with JSON file describing the
Directed Acyclic Graph (DAG) of the microservices and how they
are connected amongst each other. It is further planned to support
the developer with a tool-chain, in order to lower the hurdle to
build the ESAP and keep the focus on the application business logic.
Due to the possible variety of underlying bare metal platforms and
resource managers we advocate to build the edge service as simple
as possible.

3.7 Multi-Domain Support
The OCI multi-domain support enables inter-domain exchange of
ESAPs between several GOCICs, as depicted in Figure 3. This al-
lows to further distribute and share ESs with, e.g., other NSP. Thus,
a client (application) does not notice a domain change and can pro-
ceed to communicate with its initial configuration and ESwithin the
network of cooperating domains. The inter-domain ESAP exchange
can basically be realized in a proactive or reactive manner.

• The proactive exchange regularly synchronizes the ESAPs be-
tween the GOCICs of different domains. This can for instance
be realized based on a specific time interval or triggered by
an upload of a new ESAP.

• The reactive exchange is triggered by a client ES request.
If the available request refers to an other domain or a not
available service, the LOCIC can notify the GOCIC. Thus,
the request is delegated all the way up to the GOCIC and to
other domains in order to retrieve the corresponding ESAP.

The reactive approach requires additional communication be-
tween the LOCIC-GOCIC and/or GOCIC-GOCIC. The current im-
plementation uses the inbuilt proactive exchange, which is also
currently used for the ESAP distribution to the LOCICs. The con-
nections between multiple GOCICs instances for the exchange of
ESAPs can be organized in many ways. For instance, they might
use an overlay mesh network (e.g. Peer-to-peer (P2P)) or hierarchi-
cal deployment. The within this paper introduced implementation
presents a technical proof of concept and does not yet consider
any billing or SLA enforcement between NSPs. Since this issues are
manifold, this approach deals only with general technical feasibility
and the P2P mechanism used to also distribute an ESAP to a LOCIC.

Figure 3: OCI Multi-Domain Architecture

4 EVALUATION
This section verifies the OCI implementation and demonstrates its
performance capabilities.

4.1 Testbed
The OCI performance evaluation was conducted with two server
nodes. Each node is equipped with 2x 4 Core Intel Xeon CPU E5-
2640 v3 operating at 2.60 GHz maximum clock frequency, 128 GB
DDR4 RAM, and an Intel 10 Gigabit NIC 82599ES. The nodes use a
Debian Linux operating system with a 4.12.0-1-amd64 kernel. Both
nodes are interconnected via a gigabit switch.

4.2 Edge Service Lookup Time
The ES lookup time is a crucial performance indicator, because in a
worst case scenario, the LOCIC has to be able to serve all clients,
which are subscribed to the CO. Thus, we measure the lookup time
for client requests to obtain a random ES entry under different
conditions.

4.2.1 Single Query Lookup Time. At first, we measured the idle
system lookup time for a single ES resolution query. Figure 4 de-
picts the CDF lookup time for a random ES in relation to differ-
ent amounts of ES entries. Each curve is composed of 1k samples,
collected successively with a random pause between 1.5 and 2.5
seconds. The pause was added to force the system to an idle state,
so that optimization mechanisms like caching cannot influence
the measurement results. It can be observed that the average idle
lookup time for up to 1k ES entries has a mean value of 0.9 ms,
which is negligible compared to the sample with 100 entries. Fur-
ther observations for 10k, 20k, and 50k entries indicate that the
lookup time for a single query increases only minimal compared
to the amount of entries. However, we assume that the support for
1k till 2k ES entries per edge might be sufficient for today’s given
applications with edge computing support.

4.2.2 Load Based Lookup Time. For the load based evaluation,
we conducted measurements of the OCI lookup time under various
load conditions. Therefore, the LOCIC and the developed bench-
marking tool were located on a dedicated testbed node. This intro-
duces an additional network delay of 0.33 ms on average. Neverthe-
less, this configuration is required since the LOCIC and the bench-
marking tool produce almost full CPU utilization during high load
conditions. The load generator of the benchmarking tool sends up
to 3k lookup requests/s, simulating multiple parallel client queries.
The generated requests follow a Poisson distribution, which implies
that the overall amount of lookup requests might arrive in bursts.
The requests are generated by multiple parallel executed threads
and each thread sends an average request of one request/s. Fig. 5
shows the required time for an ES lookup in milliseconds, in rela-
tion to the offered load in requests/s (logarithmic scale). Each curve
reflects a different number of ES entries. Since the mean values
are influenced by outliers, the figure denotes the lookup time of
the 90th percentile. For up to 1k entries, the lookup time is almost
constant with approx. 1.8ms. This means that the load in this area is
independent of the amount of ES entries. Thus, each lookup request
experiences the same mean waiting time before it is processed by
the LOCIC. The lookup time increases at offered loads higher than

31

NEAT’18, August 20, 2018, Budapest, Hungary Körner et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

C
D

F

OCI Edge Service Lookup Time [ms]

100 entries
1K entries

10K entries
20K entries
50K entries

Figure 4: OCI single query edge service lookup time

 0

 2

 4

 6

 8

 10

 10 100 1000

O
C

I
E

d
g

e
S

er
v

ic
e

N
am

e
L

o
o

k
u

p
 T

im
e

[m
s]

Load [Request/s]

100 entries
1K entries

10K entries
20K entries
50K entries

Figure 5: OCI load based edge service lookup time

1k request/s, since bursts cause backlogs and increase the waiting
time for lookups. The samples for 10k, 20k, and 50k entries show an
similar behaviour. They have almost constant lookup times of 2.2,
2.7 and 4.2ms for low offered loads. With an increasing amount of
lookup queries/s the load reaches a critical point at 300, 100, and 50
request/s when an increasing delay of the lookup can be observed.

Consequently, the OCI prototype performance is sufficient to
cope with the usual amount of CO subscribers, which is tradition-
ally around 10k. Let’s imagine that we got 50k subscribers in a
dense populated area and 90% of them try at 9 p.m. +/- 5 minutes to
request the same video on-demand ES. This adds up to a total of 45k
requests within 10 minutes, which is 75 requests/s. This is a chal-
lenge, which can even be addressed with 50k ES entries. Although
the investigation covered a worst case scenario, the LOCIC’s lookup
time plus the CO network latency, as investigated in Section 2.4,
comes to around 12 ms for the total ES lookup time.

5 CONCLUSION
We have implemented an open source edge computing framework.
The prototype implementation contains a generic resource man-
agement interface, which allows NSPs to easily adapt and deploy
the framework on their NFV enabled CO infrastructure. Thus, the
framework presents an unified abstraction for edge computing by
supporting several underlying resource management systems and
ES architectures. It further supports third-party ASP with the abil-
ity to deploy ESs without network knowledge and in an automated
manner, while simultaneously take the on-demand lifecycle man-
agement into account. The preliminary evaluation results indicate
that the performance would even be sufficient to address today’s
amount of CO subscribers and deliver reasonable performance gains
for numerous latency or bandwidth critical applications.

ACKNOWLEDGMENT
We would like to thank the anonymous reviewers for their work
and valuable feedback. We would also like to thank Zafar Qazi, Xi-
aohe Hu, Henrik Klessig, Murphy McCauley, Amin Tootoonchian,
and Peter Gao for their comments and suggestions on the imple-
mentation and evaluation. This work was supported by a fellowship

within the FITweltweit program of the German Academic Exchange
Service (DAAD).

REFERENCES
[1] Cisco Visual Networking Index. 2016. Cisco Visual Networking Index: Forecast

and Methodology, 2016–2021. Technical Report. Cisco, Inc.
[2] IEEE 5G Technical Community. 2017. IEEE 5G and Beyond Technology Roadmap

White Paper. Technical Report. IEEE.
[3] Vittorio Cozzolino, Aaron Yi Ding, and Jörg Ott. 2017. FADES: Fine-Grained

Edge Offloading with Unikernels. In Proceedings of the Workshop on Hot Topics in
Container Networking and Networked Systems (HotConNet ’17). ACM, New York,
NY, USA, 36–41. https://doi.org/10.1145/3094405.3094412

[4] MECISG ETSI. 2016. Mobile Edge Computing (MEC); Framework and Reference
Architecture. ETSI, DGS MEC 3, 18 (2016), 1–18.

[5] ETSI MEC Initiative. 2017. Multi-access Edge Computing. http://www.etsi.org/
mec.

[6] Eurotech. 2018. Edge Computing Platform. https://esf.eurotech.com/docs/
edge-computing-platform.

[7] Google. 2018. Google Search Appliance. https://enterprise.google.com/search/.
[8] IEEE 5G Initiative. 2017. IEEE 5G Technology Roadmap. http://5g.ieee.org/

roadmap.
[9] Netflix, Inc. 2018. Open Connect Overview. https://openconnect.netflix.com/

Open-Connect-Overview.pdf.
[10] Aurojit Panda, James Murphy McCauley, Amin Tootoonchian, Justine Sherry,

Teemu Koponen, Syliva Ratnasamy, and Scott Shenker. 2016. Open Network
Interfaces for Carrier Networks. ACM SIGCOMM Computer Communication
Review 46, 1 (2016), 5–11.

[11] Larry Peterson, Ali Al-Shabibi, Tom Anshutz, Scott Baker, Andy Bavier, Saurav
Das, Jonathan Hart, Guru Palukar, and William Snow. 2016. Central Office Re-
architected as a Data Center. IEEE Communications Magazine 54, 10 (2016),
96–101.

[12] The Linux Foundation Projects. 2018. EdgeX Foundry. https://www.edgexfoundry.
org/.

[13] Yevgeniy Sverdlik. 2016. Telco Central Offices Get Second Life as Cloud
Data Centers. http://www.datacenterknowledge.com/archives/2016/02/03/
telco-central-offices-get-second-life-cloud-data-centers.

[14] Rob van der Meulen. 2017. Gartner Says Worldwide IaaS Public Cloud Ser-
vices Market Grew 31 Percent in 2016. https://www.gartner.com/newsroom/id/
3808563.

[15] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos. 2017. ENORM: A
Framework For Edge NOde Resource Management. IEEE Transactions on Services
Computing PP, 99 (2017), 1–1.

[16] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi, and Qun Li.
2017. LAVEA: Latency-aware Video Analytics on Edge Computing Platform. In
ACM/IEEE Symposium on Edge Computing (SEC’17). ACM, New York, NY, USA,
Article 15, 13 pages.

[17] Wuyang Zhang, Jiachen Chen, Yanyong Zhang, and Dipankar Raychaudhuri.
2017. Towards Efficient Edge Cloud Augmentation for Virtual Reality MMOGs.
In ACM/IEEE Symposium on Edge Computing (SEC’17). ACM, New York, NY, USA,
Article 8, 14 pages.

32

https://doi.org/10.1145/3094405.3094412
http://www.etsi.org/mec
http://www.etsi.org/mec
https://esf.eurotech.com/docs/edge-computing-platform
https://esf.eurotech.com/docs/edge-computing-platform
https://enterprise.google.com/search/
http://5g.ieee.org/roadmap
http://5g.ieee.org/roadmap
https://openconnect.netflix.com/Open-Connect-Overview.pdf
https://openconnect.netflix.com/Open-Connect-Overview.pdf
https://www.edgexfoundry.org/
https://www.edgexfoundry.org/
http://www.datacenterknowledge.com/archives/2016/02/03/telco-central-offices-get-second-life-cloud-data-centers
http://www.datacenterknowledge.com/archives/2016/02/03/telco-central-offices-get-second-life-cloud-data-centers
https://www.gartner.com/newsroom/id/3808563
https://www.gartner.com/newsroom/id/3808563

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 NFV as Edge Computing Enabler
	2.2 Edge Computing Performance Analysis
	2.3 Edge Computing Frameworks
	2.4 Edge vs Cloud Latency Study

	3 Architecture
	3.1 Global OCI Coordinator
	3.2 Local OCI Coordinator
	3.3 Resource & Orchestration Manager Adapter
	3.4 OCI library
	3.5 Edge Service Architecture
	3.6 Edge Service Application Package
	3.7 Multi-Domain Support

	4 Evaluation
	4.1 Testbed
	4.2 Edge Service Lookup Time

	5 Conclusion
	References

