
Data-driven Approaches to Edge Caching

Guangyu Li, Qiang Shen, Yong Liu
New York University

Brooklyn, New York, USA

Houwei Cao
New York Institute of Technology

New York, New York, USA

Zifa Han, Feng Li, Jin Li
Huawei Technologies,

Nanjing, China

ABSTRACT

Content caching at network edge is a promising solution for serving

emerging high-throughput low-delay applications, such as virtual

reality, augmented reality and Internet-of-Things. The traditional

caching algorithms need to adapt to the edge networking environ-

ment since old traffic assumptions may no longer hold. Meanwhile,

user/group content interest as a new important element should be

considered to improve the caching performance. In this work, we

propose two novel caching strategies that mine user/group interests

to improve caching performance at network edge. The static user-

group interest patterns are handled by the Matrix Factorization

method and the temporal content request patterns are handled by

the Least-Recently-Used or Nearest-Neighbor algorithms. Through

empirical experiments with a large-scale real IPTV user traces, we

demonstrate that the proposed caching algorithms outperform the

existing caching algorithms and approach the caching performance

upper bound in the large cache size regime. Leveraging on offline

computation, we can limit the online computation cost and achieve

good caching performance in realtime.

CCS CONCEPTS

• Networks → Network experimentation;

KEYWORDS

Edge Caching, Data-driven

1 INTRODUCTION

The Internet traffic patterns have changed dramatically due to the

constantly evolving network applications. The storage and network

throughput requirements of today’s 4K videos and Virtual Reality

games have increased several thousand times over videos streamed

over the Internet ten years ago. The network architecture and

operation schemes that support these applications should also adapt

to the new traffic patterns. In particular, Content Delivery Networks

(CDN) face unprecedented challenges to reduce the backbone traffic

and deliver high Quality-of-Experience (QoE) to users. As a simple

solution to deal with the increasing traffic demand, more and more

CDN servers are pushed towards the network edge. Compared with

the servers deployed deep inside the core network, distributed CDN

servers at network edge are equipped with much lower capacities

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

NEAT ’18, August 20, 2018, Budapest, Hungary

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5907-8/18/08. . . $15.00
https://doi.org/10.1145/3229574.3229582

to handle much smaller user populations. One immediate challenge

is that the legacy caching algorithms built in CDN servers may not

perform well when the cache capacity and user population scale

down at the same time.

More specifically, a core CDN server operates according to the

aggregated behaviors of all users served by it. Since such a server

normally serves a large number of users, the aggregate content pop-

ularity distribution and temporal request patterns are stable. Simple

caching algorithms, such as the Least-Recently-Used (LRU) and

Least-Frequently-Used (LFU), can exploit such stability to achieve

good caching performance. However an edge CDN server only

serves a small user population, and operates according to the con-

tent popularity distribution and temporal request patterns gener-

ated by the local users. Caching on edge server is much more chal-

lenging than caching on core server due to the following reasons: 1)

local distribution is highly fluctuating and unreliable because of the

lower degree of multiplexing; 2) the temporal content request pat-

terns are more sensitive to individual users’ content consumption

behaviors; 3) edge servers have much less caching and computa-

tion resources. For the above reasons, we know that the traditional

caching algorithms, such as LRU and LFU, which require reliable

content distribution, will not perform well.

For centralized caching, most of the studies assume certain ar-

rival process of the contents, such as the shot noise model [10]

and Zipf’s distribution [1]. However, in the edge caching problem,

the real content distribution may not follow the assumed distribu-

tions based on many users. The content distribution for a small

group of users is more dependent on the users’ personal interests.

This motivates us to propose a user/group interest based caching

algorithm. To adapt to the new network traffic environment, more

and more researchers are focusing on edge caching from various

angles, such as network architecture design, caching algorithms

design, and evaluation of edge caching of algorithms, e.g., [5, 11, 16].

Although various caching algorithm customizations have been pro-

posed, one important new element—user interest—has not been

considered. In the traditional cache architecture, no personal user

interest is identified and exploited to improve caching performance.

For caching at network edge, the traditional algorithms cannot cope

with unreliable content popularity distribution and the highly fluc-

tuating request arrival patterns. This gives rise of our data-driven

approach of edge caching algorithms. In our proposed method,

we focus on single-stage edge caching, with the "edge" defined at

various sizes and hit ratio as objective measurement, while there

are works focusing on multi-level caching optimization [6, 13] and

other measurement metrics [4].

Our proposed caching algorithms rely on personalized user inter-

est modeling methods. In the research line of user interest modeling

and recommendation, lots of methods have been proposed. Some

methods, such as matrix factorization [7] and collaborative filter-

ing [15, 17], rely on user-content rating information. Other methods

8

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3229574.3229582&domain=pdf&date_stamp=2018-08-07

NEAT ’18, August 20, 2018, Budapest, Hungary Guangyu Li, Qiang Shen, Yong Liu, Houwei Cao, and Zifa Han, Feng Li, Jin Li

employ content analysis and Natural Language Processing (NLP)

techniques to solve the problem [8, 12, 14]. However, the existing

recommendation algorithms cannot be directly adopted to solve the

edge caching problems. Recommendation algorithms only predict

a user’s interest to a content, and do not predict when the user will

likely to consume the content, which is very important for caching

decision. Additionally, the traditional recommendation algorithms

focus on modeling user interest profiling, while in caching problem

each cache server serves a group of IP addresses and there may be

multiple users behind each IP address (for IPv4 with NAT), so we

need to profile group interest in practice.

The rest of this paper is structured as following. In section 2, our

proposed MFLRU and KnnDyn caching strategies are presented. In

Section 3, we conduct empirical experiments using content request

trace of real video streaming users and introduce the baseline al-

gorithms for comparison. In Section 4, we show the performance

comparison between our proposed algorithms and the baselines.

Results for different settings are also presented. Finally Section 5

concludes the paper.

2 DATA-DRIVEN EDGE CACHING
ALGORITHMS

2.1 Distributed CDN Architecture

As illustrated in Figure 1, in a distributed CDN, edge CDN nodes

download content from a central content distributor and serve users

in local regions. Each edge cache node runs data-driven caching

algorithms which exploit not only the statistics of the content

popularity and request patterns of its local users, but also such

statistics of users from other regions. As will be shown later, richer

data from other regions can help better mine user/group content

interests to improve caching performance. To facilitate that, the

CDN content distributor acts as the information hub. It collects

content request statistics of users/groups from all edge CDN servers,

and processes the collected information to estimate the potential

user/group content interests. Based on the interest estimation, the

CDN content distributor sends out the recommended cache list

for each edge cache node. In order to reduce the communication

and computation overheads, the information collection and interest

estimation are only performed at scheduled time instants when the

network traffic is light (e.g. midnight). An example for distributed

CDN structure is shown in Figure 1.

Formally, the optimal caching problem is to find the best pol-

icy controlling the selection of cached contents in each time slot

that maximizes the overall hit ratio in a given period. From this

perspective, the traditional algorithms such as LRU and LFU are

no more than a set of predetermined “rules" such as “always cache

the most recently accessed contents” or “always cache the content

accessed the most in a period”. When the user population handled

by a cache server is large, such simple policies can achieve good

performance because of the stable content popularity distributions.

In edge caching, the user population under each cache server is

small, these rules become oversimplified, thus less effective. In real-

world network traffic, the request arrival process of a content may

be affected by various factors such as user interest and watching

behavior, as well as content features such as genre and topic. To

EDGE
SERVER

1

EDGE
SERVER

2

EDGE
SERVER

3
EDGE

SERVER
4

EDGE
SERVER

5 CENTRAL
CONTENT

DISTRIBUTOR

REQUEST STAT
in Day 1-Day 6

RECOMMENDED
CACHE LIST

Figure 1: Example of information collection and processing

in distributed CDN: the central CDN distributor collects con-

tent request statistics in the past 6 days from edge servers,

and then generates the recommended cache lists for all edge

servers in Day 7.

introduce our data-driven caching algorithms, we formulate a pre-

diction problem that provides valuable input to caching decision:

Definition 1. Given all the information obtained globally or locally

in all the previous time slots, estimate the probability of request of

certain content by a certain user/group in the next time slot.

In practice, due to user data privacy issue, to what extent we can

exploit the network traffic data is a question, and the answer varies

under different privacy settings. In our discussion, we assume that

as a CDN network operator has access to the necessary information

to make predictions, such as user IP address, user id, content id and

time stamp of a request, etc.

2.2 MF Enhanced LRU Caching Strategy
(MFLRU)

LRU is a popular caching strategy for traditional caching problem

because of its fast reaction to new request dynamics with low com-

putational cost. One major shortcoming of using pure LRU method

is that it fails to consider request patterns such as user/group sim-

ilarity within data, while some recommender algorithms [3] can

handle this part with medium cost.

In this paper, we adopt thewidely used recommender algorithm—

Matrix Factorization (MF) [7] and customize it for the edge caching

problem. Given a sparse rating matrix Rm×n = [r (i, j)]m×n that a

set ofm users generated over n contents, the goal is to estimate the

missing rating (entry) in Rm×n . The MF model assumes that each

user has an unknown latent vector ui ∈ Rd and each content has

an unknown latent vector vj ∈ Rd (d �min(m,n)). The predicted
rating of user i for content j is:

r (i, j) = ui1vj1 + ui2vj2 + ... + uidvjd = ui
T vj. (1)

vj can be interpreted as the latent features of content j, such as

genre and topic; ui can be interpreted as user i’s preference on

different features. The problem then can be formulated as finding

matrices U and V such that UVT approximates R with the least

9

Data-driven Approaches to Edge Caching NEAT ’18, August 20, 2018, Budapest, Hungary

approximation error:

minimize
U,V

‖R − UVT‖
subject to U,V ≥ 0.

(2)

In our caching problem, it’s hard to find who are the users be-

hind each IP address, so instead of treating each IP address as a

user, we treat a group of IP as a superuser and estimate the supe-

ruser’s preference to predict the accessing probability of the con-

tents. Formally, given a set of IP addresses: I = {IP1, IP2, ...IP |I | },
some video contents: C = {c1, c2, ...c |C | }, we group I into small

groups: G = {д1,д2, ...,д |G | }, where for certain group i , дi =
{IPi1 , IPi2 , ..., IPi |дi | }. All users behind IP addresses in group i are

served by the same edge content server. In a predetermined time

windowT , we define S(IPix , c j) as the frequency at which any IP ad-
dress in group i accesses content j in the time window. To calculate

the preference of group i over content j, we use:

r ′(i, j) =
∑ |дi |
x=1 S(IPix , c j)∑ |C |

j=1

∑ |дi |
x=1 S(IPix , c j)

, (3)

where r ′(i, j) is the observed the ratings. We then use r ′(i, j) as the
entries in our “group-content rating matrix" R. Notice that we use a

normalized score (r ′(i, j) ∈ [0, 1]) instead of the absolute frequency

to measure the preference to avoid any large groups or popular

contents dominating the rating matrix.

By recording the access log of the group to all the contents, we

can use MF to estimate the future preference for those contents

that have not been accessed by this group. In practice, we choose

the Root Mean Squared Error (RMSE) as our objective function in

the training phase of MF:

RMSE =

√√
1

N

∑
(i, j)

(r (i, j) − r ′(i, j))2, (4)

where N is the number of data points.

Assuming that we assign a cache server to each group with cache

size of L contents, at any time t , we can use MF to get the estimated

access probability (r ′(i, j)) of any group to any content, then we

generate a cache list for time t by selecting the top |L| contents
with the highest probability.

The running time of matrix factorization over a 103 × 105 rating

matrix is on the order of minutes. In practice, it is not scalable to

generate rating matrix and MF results in real time. So we choose

to update each group’s cache list at scheduled time instants when

the network traffic is light (e.g.every midnight), and keep all the

cache lists unchanged before the next update. The details about

this strategy are shown in Algorithm 1.

MF alone cannot adapt to content request pattern changes be-

tween two updates. On the other hand, LRU updates cache list upon

each new request. To leverage the advantages of MF and LRU, we

merge the cache lists produced by the two strategies by setting a

weight α , which controls the proportion that MF-generated cache

list takes in the final cache list. For example, α set to 0.4 means 40%

of the contents in final cache list come from MF recommender and

the rest come from LRU. If there is overlap between MF and LRU

results, the system will go down the LRU list to fill in the cache.

Algorithm 1:Matrix Factorization Caching Strategy

Input : sliding time window T , fixed updating schedule

τ = {t1, t2, ...}, request record Q = {req1, req2, ...},
new request reqr =(time stamp,IP,content)

Initialize :cache list for each group Li = ∅,∀i = 1, 2, .., |G |,
R = (r (i, j)) |G |× |C | = 0 |G |× |C |

1 Function MF (R)

Input : sparse rating matrix R = (r (i, j))m×n
Output : latent vectors ui, vj

2 while True do

3 Collect new request reqr ;

4 t = reqr .timestamp;

5 if t ∈ τ then

6 for i = 1, .., |G |, j = 1, .., |C | and r (i, j) is observed do

7 r (i, j) = ∑ |дi |
x=1 S(IPix , c j)/

∑ |C |
j=1

∑ |дi |
x=1 S(IPix , c j) ;

8 end

9 ui, vj=MF(R),∀i = 1, .., |G |,∀j = 1, .., |C |;
10 for i = 1, .., |G |, j = 1, .., |C | and r (i, j) is not observed

do

11 r (i, j) = ui
T vj ;

12 end

13 Li = contents with top-|Li | rating,∀i = 1, .., |G |;
14 else

15 Q = Q + {reqr } ;
16 Q = Q − {reqi |∀reqi ∈ Q that has timestamp ≤ t −T }
17 end

2.3 KNN-based Dynamic Caching Strategy
(KnnDyn)

Due to the high computation cost of MF, MFLRU can only update

user/group interest estimation at large time scales, e.g. hours, while

the user/group interest and similarity between them can change at

smaller time scales. Failure to capture the changes in user/group

interests in a timely fashion may undermine the performance of the

data-driven caching algorithms. We now resort to a low-cost col-

laborative filtering approach, namely K-Nearest-Neighor (KNN), to

keep track of the fast changes in user/group interest. In this section,

we propose KNN-based Dynamic Caching Strategy (KnnDyn).

In this approach, we use the real-time content request infor-

mation of groups that are similar to the target group to guide the

caching operation. There are two parts in this approach. First part is

generating group similarity. This part requires the central server to

collect the content request history from every edge server. Then we

calculate the similarity matrix offline by using the Jaccard similarity

based on history data, and the similarity between group i and group
j is Simi j . The second part is computing the access score for each

content currently in the cache. This part requires each edge server

keeps a log of recently requested contents to be sent to other edge

servers upon request. When an edge server serving group i needs
to update the scores of contents currently in its cache, the server

will collect the latest request logs from edge servers serving the K
groups that are the most “similar" to group i (i.e., the K-Nearest-
Neighbors of group i in terms of content interest) to obtain a recent

10

NEAT ’18, August 20, 2018, Budapest, Hungary Guangyu Li, Qiang Shen, Yong Liu, Houwei Cao, and Zifa Han, Feng Li, Jin Li

request matrix. Given the recent request matrix RM×K , whereM is

the number of latest requests for a group, and K is the number of

similar groups, the score for a content c in group i is:

Score(i, c) =
K∑
j=1

A(c, j)Simi j (5)

where A(c, i) is the occurrence of content c in the latestM requests

for group i . After we calculate the scores of all contents in the cache,
we sort them in the decreasing order of the score. Whenever there

is a cache miss, the algorithm will evict the content with the lowest

score. In practice, due to the overhead of computing the score and

updating cache, we can not afford updating the whole cache for

each new request. So we choose to update the cache whenever

the agent receive a batch of requests. We name this part of the

algorithm “KNN-based Dynamic Caching Strategy", as shown in

Algorithm 2.

Algorithm 2: KNN-based Caching Strategy

Initialize :cache list for each group Li = ∅,∀i = 1, 2, .., |G |
1 , request counter cnt = 0, batch size B, cache size CS .

2 while True do

3 Collect the new request reqr ;

4 cnt = cnt + 1;

5 if reqr � Li then
6 Li .append(reqr) ;
7 cmin = arдminc (Score(c, i));
8 Li .pop(cmin);
9 if cnt == B then

10 get the new recent request matrix RM×K ;
11 Score(i, c) = ∑K

j=1A(c, j)Simi j , ∀c ∈ Li ;

12 end

3 EXPERIMENTAL SETTINGS

3.1 Content Requests Trace

We use a real world content request trace collected by a major

company providing video-on-demand service over the Interent in

China. The provided contents range from TV shows and movies to

live news and sports programs. The trace includes the sequence of

requests generated from June 2014 to Septemer 2014 and from IPs

located in several provinces in China. Each request also includes

rich information (shown in table 1). In table 2 we show the basic

Meta Information Example

IP Address 192.168.1.1

Request Time 2014.1.1.1.111111

Content Name “Gone with the Wind.mp4”

Valid Watch Time 10000000ms

Watch Time 20000000ms

Location Shanghai

Table 1: Information for Each Request in the Trace

statistics of the trace. From the trace we know in real world video-

on-demand system, requests can be very sparse and there can be

more than one user behind every IP address.

Statistics Value

Avg. requests 1,335,488.0/day

Avg. # of Unique IP addresses 215,908.6/day

Avg. # of Unique Contents 83,859.4/day

of groups under prefix 16 544

of groups under prefix 18 1,307

of groups under prefix 20 4,068

Table 2: Basic Statistics of the Trace

For Matrix Factorization algorithm to work in caching problem,

we first need to construct a rating matrix that represents users’

preferences on each content. However in practice, due to NAT

and multiple users sharing the same device, it may be hard to

identify who are users behind each IP address. For this reason, we

aggregate all requests of a group of IPs sharing a common prefix

at certain length, treat the group as one super user, and use the

number of accesses of one content by this group in a time window

as the rating. By defining the prefix length k , we can group IP

addresses into small groups such that IPs sharing the same first k
bits are grouped together. Since we don’t have access to each IP’s

geographic location, for simplicity, we further assume that the IPs

sharing with the same prefix are served by the same CDN edge

server1 For this reason, we can assign a cache list to each of the IP

groups. The longer the IP prefix length, the fewer the IPs falling

into each group. As a result, the requested content distribution

fluctuates more, and is more sensitive to individual users’ personal

interests. When determining the network location of a CDN server,

we set a long prefix for each group if we want to push the CDN

server close to edge, and a short prefix if we want to place the CDN

deep in network core.

Based on prefix-based grouping, we now compare how the con-

tent popularity distribution generated by users in the same group is

different from the global content popularity distribution generated

by all users. To calculate the distance between global and local

content popularity distribution, we select the top-50 most popular

contents globally. We then calcuate the access frequency vector

for those contents in the whole network (prefix=0), as well as for

each local network (prefix length =1∼20). At each prefix length, we

calculate the distance as the average Euclidean distance between

global and local access frequency vectors. Figure 2 shows that the

distance increases significantly as prefix length increases (group

size decreases).

3.2 Baselines

To demonstrate that our proposed methods can truly improve the

caching hit ratio, we compare the performance against two widely-

used methods:

• Least-Recently-Uses (LRU) [9]: Based on this strategy, the

cache always discards the least recently used items first. If

1In reality, IP grouping method can be complex, but our algorithm works with any
grouping method.

11

Data-driven Approaches to Edge Caching NEAT ’18, August 20, 2018, Budapest, Hungary

Table 3: Hit Ratios (%) at Different Prefix Lengths and Different Cache Sizes

Cache Sizes
(Content #)

Prefix Length=16 Prefix Length=18 Prefix Length=20

LRU MFLRU KnnDyn FiF LRU MFLRU KnnDyn FiF LRU MFLRU KnnDyn FiF

50 10.12 11.49 11.61 23.99 12.05 13.05 13.48 20.43 14.71 15.41 15.48 23.99

100 12.80 14.95 16.46 28.92 15.2 16.77 17.78 25.09 17.58 19.19 18.74 26.25

200 16.67 20.55 21.73 34.24 19.13 22.43 22.19 28.61 20.93 24.52 22.24 28.82

500 24.01 30.00 29.68 41.25 25.70 32.03 29.76 31.96 27.22 33.29 28.95 33.67

1000 31.34 38.39 36.91 46.22 32.72 39.94 36.70 41.30 33.57 41.00 35.86 38.70

Figure 2: Upper: Difference between local content distribu-

tion generated by edge users and the global content distri-

bution generated by all users when IP address prefix length

increases. Lower: LRU hit ratios for groups with increasing

request numbers

the content is popular at this moment, users have higher

probability to request it. Thus the more popular the content

is, themore likely the content will stay in the cache. Typically,

the popularity of a new content increase dramatically at the

beginning and achieve peak in very short time [10]. LRU is

suitable to handle new and popular contents.

• Farthest-in-Future (FiF) [2]: Given the oracle of arrival time

instants of all future content requests, the Farthest-in-Future

algorithm evicts the item whose next request arrival time is

the farthest among all items in the cache. FiF is the optimal

reactive caching algorithm that minimizes the number of

cache misses. Although the assumption of FiF is not realistic,

it can be used to generate performance upper bound of the

cache algorithms.

To test the performance of LRU, we randomly choose 1, 500

groups with different sizes (measured by daily request count) and

execute LRU algorithm to calculate its hit ratio when the cache

size is set to be proportional to group size. As illustrated in the

lower figure of Figure 2, LRU works very well for large groups,

but its performance for smaller groups with few requests is much

worse. This demonstrates the need for novel caching algorithms at

network edge.

4 PERFORMANCE RESULTS

In this section, we present the perfomance comparison between

our data-driven caching algorithms and the two baselines.

4.1 Optimal MFLRU Combining Weight

For MFLRUwe need to choose the proportion α that MF results take

in the final cache list. In order to choose the optimal α , we separate
our data into three sets: training set, validation set and testing

set. Then we get the user/group interest based on the training

set, choose the proportion that achieves best performance in the

validation set and get the final results in testing set. Figure 3 shows

the effect of different proportion α on hit ratio. From the figure

we can see that the best MF proportion increases as the cache size

increases. For cache size=50, 100, the best MF proportion is around

0.2, while for cache size=500, 1000, the proportion is around 0.8.

From this point on, we use α = 0.6 for all MFLRU experiments.

Figure 3: Impact of MFLRU combining weight on hit ratios.

4.2 Impact of Network Location of Cache
Server

In our presumed setting, the network depth of a cache server is

determined by the prefix length of the subnet it serves. In Table 3 we

show the hit ratios generated by LRU, MFLRU, KnnDyn and FiF at

the prefix length =16,18,20 for different cache sizes that range from

50 contents to 1, 000 contents. We can make several observations

from this table:

12

NEAT ’18, August 20, 2018, Budapest, Hungary Guangyu Li, Qiang Shen, Yong Liu, Houwei Cao, and Zifa Han, Feng Li, Jin Li

Table 4: Hit Ratios (%) at Different Group Sizes and Different Cache Sizes

Cache Sizes
(Content #)

Small Groups Medium Groups Large Groups

LRU MFLRU FiF LRU MFLRU FiF LRU MFLRU FiF

50 24.8 26.77 25.83 17.73 18.52 25.57 12.05 13.04 20.43

100 27 30.93 27.61 21.87 22.85 27.2 15.2 16.69 25.09

200 31.03 34.78 31.52 24.76 28.45 29.52 19.13 22.44 28.61

500 — — — 31.56 37.11 34.22 25.71 32.04 31.96

1000 — — — 37.43 44.12 39.01 32.72 39.95 41.3

• Our data-driven approaches (MFLRU, KnnDyn) outperform

LRU at all prefix lengths and cache sizes, and when the

cache size is small (e.g., cache size = 50), KnnDyn slightly

outperforms MFLRU. The reason is that KnnDyn is good

at capturing the smaller timescale changes in user/group

interests, thus performs better in predicting the most popu-

lar contents. MFLRU tends to estimate the long-term stable

interests of users/groups and tries to cover all contents in-

cluding those less accessed contents, thus MFLRU benefits

from the increased cache size to accommodate less popular

contents.

• MFLRU can approximate the optimal caching strategy (FiF)

at all prefix lengths when the cache size increases to 1, 000,

while there are big gaps between LRU and FiF. When prefix

legnth = 20, the group sizes (the number of requests from

a group) become so small that FiF performance begins to

drop, interestingly, MFLRU (41.00%) can even outperform

FiF (38.70%). This is because MFLRU is not a pure reactive

caching scheme, it proactively loads content at midnight.

Content preloading does not consume traffic during day

time, but can help increase hit ratio during day time.

• When the prefix length is fixed, MFLRU gains more improve-

ment at larger cache sizes. This is because MF exploits more

content request data to better predict content access proba-

bility than LRU. Consequently, the ranking list generated by

MF better reflects the relative importance to keep contents

in the cache, which in turn leads to higher caching hit ratio.

The performance improvement is more pronounced when

the cache size is large, because the accuracies for contents

farther down the ranking list also matter.

4.3 Impact of Group Sizes

As mentioned previously, we measure the group sizes with the

average number of requests per day by each group. When group

size is small, LRU method may find it more difficult to follow the

highly fluctuating arrival patterns of the content requests, while the

MF method may be advantageous to exploit group interest patterns.

To identify groups with different group sizes, we first draw the CDF

of the group sizes and label the groups whose sizes are ranked in

the bottom 33% as “small”, the groups whose sizes are ranked in

33%-67% as “medium” and the groups whose sizes are ranked in the

top 33% as “large”. We then compare the hit ratios of these three

types of groups. From Table 4, we can see that MFLRU makes more

improvement when the group size is small. For example, when

cache size=100, the relative gain of MFLRU over LRU for “small

group” is around 15% ((30.93-27)/27), while the gain for “medium

group” is around 4.5% ((22.85-21.87)/21.87).

5 CONCLUSION

In this paper, we first identified the new challenges of edging

caching, then we proposed two novel data-driven caching algo-

rithms that mine user/group interests to improve caching hit ratio.

In our algorithms, the static user-group interest patterns are han-

dled by the Matrix Factorization method and the temporal content

request patterns are handled by the Least-Recently-Used or Nearest-

Neighbor algorithms. Through empirical experiments with a large-

scale real IPTV user traces, we demonstrated that the proposed

caching algorithms outperform the widely used LRU algorithm and

approach the caching performance upper bound in the large cache

size regime. Our algorithms have controlled communication and

computation overheads, can be adopted by edge caching nodes in

distributed CDN.

REFERENCES
[1] Lada A Adamic and Bernardo A Huberman. 2002. Zipf’s law and the Internet.

Glottometrics 3, 1 (2002), 143–150.
[2] Laszlo A. Belady. 1966. A study of replacement algorithms for a virtual-storage

computer. IBM Systems journal 5, 2 (1966), 78–101.
[3] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez.

2013. Recommender systems survey. Knowledge-based systems 46 (2013), 109–
132.

[4] Giovanna Carofiglio, Leonce Mekinda, and Luca Muscariello. 2016. Analysis of
latency-aware caching strategies in information-centric networking. In Proceed-
ings of the 1st Workshop on Content Caching and Delivery in Wireless Networks.
ACM, 5.

[5] Ali Dabirmoghaddam, Maziar Mirzazad Barijough, and JJ Garcia-Luna-Aceves.
2014. Understanding optimal caching and opportunistic caching at the edge
of information-centric networks. In Proceedings of the 1st ACM conference on
information-centric networking. ACM, 47–56.

[6] Stratis Ioannidis and Edmund Yeh. 2017. Jointly optimal routing and caching for
arbitrary network topologies. arXiv preprint arXiv:1708.05999 (2017).

[7] Mohsen Jamali and Martin Ester. 2010. A matrix factorization technique with
trust propagation for recommendation in social networks. In Proceedings of the
fourth ACM conference on Recommender systems. ACM, 135–142.

[8] Ahmad A Kardan and Mahnaz Ebrahimi. 2013. A novel approach to hybrid
recommendation systems based on association rules mining for content recom-
mendation in asynchronous discussion groups. Information Sciences 219 (2013),
93–110.

[9] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H Noh, Sang Lyul Min, Yookun
Cho, and Chong Sang Kim. 2001. LRFU: A spectrum of policies that subsumes
the least recently used and least frequently used policies. IEEE transactions on
Computers 50, 12 (2001), 1352–1361.

[10] Emilio Leonardi and Giovanni Luca Torrisi. 2015. Least recently used caches
under the shot noise model. In Computer Communications (INFOCOM), 2015 IEEE
Conference on. IEEE, 2281–2289.

[11] Dong Liu, Binqiang Chen, Chenyang Yang, and Andreas F Molisch. 2016. Caching
at the wireless edge: design aspects, challenges, and future directions. IEEE
Communications Magazine 54, 9 (2016), 22–28.

[12] Zhongqi Lu, Zhicheng Dou, Jianxun Lian, Xing Xie, and Qiang Yang. 2015.
Content-Based Collaborative Filtering for News Topic Recommendation.. In

13

Data-driven Approaches to Edge Caching NEAT ’18, August 20, 2018, Budapest, Hungary

AAAI. 217–223.
[13] Konstantinos Poularakis and Leandros Tassiulas. 2016. On the complexity of

optimal content placement in hierarchical caching networks. IEEE Transactions
on Communications 64, 5 (2016), 2092–2103.

[14] Nirmala Pudota, Antonina Dattolo, Andrea Baruzzo, Felice Ferrara, and Carlo
Tasso. 2010. Automatic keyphrase extraction and ontology mining for content-
based tag recommendation. International Journal of Intelligent Systems 25, 12
(2010), 1158–1186.

[15] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web. ACM, 285–295.

[16] Chun Yuan, Yu Chen, and Zheng Zhang. 2004. Evaluation of edge caching/off
loading for dynamic content delivery. IEEE Transactions on Knowledge and Data
Engineering 16, 11 (2004), 1411–1423.

[17] Zhi-Dan Zhao and Ming-Sheng Shang. 2010. User-based collaborative-filtering
recommendation algorithms on hadoop. In Knowledge Discovery and Data Mining,
2010. WKDD’10. Third International Conference on. IEEE, 478–481.

14

