
AEGIS: An Automated Permission Generation and Verification
System for SDNs

Heedo Kang
KAIST

kangheedo@kaist.ac.kr

Seungwon Shin
KAIST

claude@kaist.ac.kr

Vinod Yegneswaran
SRI International
vinod@csl.sri.com

Shalini Ghosh
SRI International

shalini@csl.sri.com

Phillip Porras
SRI International
porras@csl.sri.com

ABSTRACT
An important consideration in Software-defined Networks (SDNs),
is that one SDN application, through a bug or API misuse, can
break an entire SDN. While previous works have tried to mitigate
such concerns by implementing access control mechanisms (per-
mission models) for an SDN controller, they commonly require
serious manual efforts in creating a permission model. Moreover,
they do not support flexible permission models, and they are often
tightly coupled with a specific SDN controller. To address such
limitations, we introduce an automated permission generation and
verification system called AEGIS. A distinguishing aspect of AEGIS
is that it automatically generates flexible permission models and yet
is completely separated from an SDN controller implementation.
To demonstrate the feasibility of our approach, we implement a
prototype, evaluate its completeness and soundness, and examine
its usability in the context of popular SDN controllers.

CCS CONCEPTS
• Security and privacy → Network security;

KEYWORDS
SDN security, permission system, automation

ACM Reference Format:
Heedo Kang, Seungwon Shin, Vinod Yegneswaran, Shalini Ghosh,
and Phillip Porras. 2018. AEGIS: An Automated Permission Generation
and Verification System for SDNs. In SecSoN’18: ACM SIGCOMM 2018
Workshop on Security in Softwarized Networks: Prospects and Challenges
, August 24, 2018, Budapest, Hungary. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3229616.3229623

1 INTRODUCTION
Since the advent of Software-Defined Networking (SDN), it has
garnered considerable attention from both industry and academia,
and it is being actively deployed in diverse real-world environments

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SecSoN’18, August 24, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5912-2/18/08. . . $15.00
https://doi.org/10.1145/3229616.3229623

including large-scale data centers [8, 11] and next-generation mo-
bile networks [4, 7]. The growing adoption of SDNs along with
its core tenet, a logically centralized control plane to manage all
underlying network devices, also raises serious concerns about the
pervasive impact of potential abuse. Specifically, attacks against the
SDN control plane (i.e., SDN controller) portend to be significantly
more impactful than prior attacks on any specific component in
traditional network stacks [16, 21, 24, 25].

Indeed, SDN control plane security issues have been discussed
elaborately in prior research studies [16, 21, 22, 26]. For example,
SM-ONOS [26] and SDNShield [22] propose permission models to
protect SDN core services frommalicious operations. Their underly-
ing thesis is that an SDN control plane should provide mechanisms
to restrict unauthorized operations by applications, and this capa-
bility is commonly realized through a permission model.

However, such permission models are imperfect and often fall
short due to the following three gaps between ideals and reali-
ties. First, to generate or update a rigorous permission model for
an SDN controller, security experts should manually analyze its
operational models, accessible resources, and API usages (automa-
tion gap). All those tasks are labor-intensive, time-consuming, and
error-prone. Second, prior permission models for SDN controllers
tend to be immalleable and thus not easily adaptable to diverse SDN
environments (flexibility gap). For example, a network operator
might want to adopt a coarse-grained permission model to aggregate
certain assets and restrict disallowed operations and use a fine-
grained permission model to carefully investigate all used APIs to
check for security violations. However, none of the existing SDN
control plane permission systems support both cases at the same
time. Third, most existing permission systems are tightly coupled
with a specific SDN controller or they design their own secure
controllers (portability gap). For example, SM-ONOS only targets
ONOS [3], SE-Floodlight [16] for Floodlight [1], and Rosemary[21]
creates a new SDN controller. Hence, designing a generic permis-
sion system/model that could be deployed across SDN controllers
is a formidable challenge.

In this paper, we attempt to bridge the gaps posed by the afore-
mentioned challenges by proposing a novel automatic permis-
sion generation and verification system for SDN controllers called
AEGIS. Unlike existing SDN permission systems, AEGIS automati-
cally synthesizes potential permission models for an SDN controller
based on input materials, such as API documents, and it presents
synthesized permission models with tree diagrams. Thus, using
AEGIS, a network operator can easily figure out which permission

20

https://doi.org/10.1145/3229616.3229623
https://doi.org/10.1145/3229616.3229623
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3229616.3229623&domain=pdf&date_stamp=2018-08-07

SecSoN’18, August 24, 2018, Budapest, Hungary Kang.et al.

model is possible in his SDN network and how to assign permissions
for each case. Moreover, all steps toward generating permission
models are automated (a network operator is simply asked to pro-
vide basic system information).

Previous systems for securing SDN controllers are tightly cou-
pled with a specific SDN controller. However, AEGIS is independent
of specific controller implementations, and thus it can be easily
adapted to other controllers. Specifically, it is straightforward to
port generated permission models across SDN controllers. To assess
the viability of our proposed approach, we implement a prototype of
AEGIS to verify its feasibility and practicality, and then we evaluate
it with well-known open-source SDN controllers.

2 PROBLEM STATEMENT
While existing SDN permission systems are clearly useful, they
have some fundamental problems that should be addressed. In this
paper, we focus on some deficiencies of existing SDN permission
systems and propose a new framework named AEGIS to solve
those problems. Specifically, the key design objectives of AEGIS
include the following:

Automation: Most existing SDN permission systems are com-
monly established and updated through manual analysis, which is
time consuming and error-prone. We have discovered some real
evidences of such human-errors in an existing SDN permission
system. Thus, AEGIS should automatically generate a permission
model for an SDN controller to reduce human error and overhead
associated with generating the permission model.

Portability: All of the existing SDN permission systems have
a strong dependency on SDN controller implementation and its
language, so they cannot be ported to other controllers. To automati-
cally generate a permissionmodel and verify permissions regardless
of controller type, AEGIS must be portable to any controller. There-
fore, AEGISmust be independently designed and implemented from
a specific SDN controller to ensure portability.

Flexibility: Existing SDNpermission systems relying onmanual
work cannot support diverse security requirements. The security
requirements of an SDN will be vary across deployments, and thus
each SDN will necessitate a permission model to make it secure.
This implies that an SDN permission model should be adapted on
per-SDN basis. Hence, AEGIS should provide a way to enable a
network operator to flexibly generate permission models by pro-
viding a way to select resources for which access control is desired
according to the security view of each network operator. In addi-
tion, it must provide a function to configure access control depth
of corresponding resources.

3 SYSTEM DESIGN
To address problems discussed in Section 2, in this paper, we pro-
pose AEGIS, which is a novel automated permission generation and
verification framework for SDN. Unlike the existing SDN permis-
sion system, AEGIS automatically analyzes all SDN assets and their
sub-assets and takes into account their semantic relations. Using
this, AEGIS generates an SDN asset map. By taking advantage of
this SDN asset map, the network operator can select the desired
access control assets and depth of access control for each asset
respectively. Based on this, AEGIS automatically generates all the
information necessary for flexible access control. AEGIS uses this

generated information to perform authorization checks whenever
an application calls the API in an environment that is completely
separated from the controller. Therefore, AEGIS allows automatic
control of access from any SDN controller, irrespective of language
and type of SDN controller.

Here, we first introduce how AEGIS works by presenting its
operational scenario. Figure 1 denotes an overall architecture of
AEGIS and its operational scenario, and as shown in this figure,
AEGIS consists of the twomain components, (i) static engine and (ii)
dynamic engine. Each component will be explained in the following
Sections 3.2 and 3.3.

3.1 AEGIS Overview
The operational scenario of AEGIS is as follows (shown in Figure
1): (1) First, a network operator provides an SDN controller API
document into the static engine of AEGIS. Then, the static engine
analyzes the SDN controller API document to discover what critical
assets1 should be protected using various NLP [23] techniques, and
based on this, it generates an SDN asset map2. After that, the static
engine prunes the SDN asset map based on the permission model
policy received from a network operator. (2) Finally, the static en-
gine automatically generates a permission model (API-permission
mappings) that satisfies a security view of a network operator, and it
is passed to the network operator. (3) The network operator delivers
the permission model generated by AEGIS to an SDN application
developer. (4) The SDN application developer will develop an SDN
application and enumerate necessary permission tokens for used
APIs in developed applications based on the received permission
model (used permission tokens will be summarized in the manifest
file for an application). The developed applications will be sent to
the network operator for deployment. (5) When the network oper-
ator is installing delivered SDN applications, the dynamic engine
of AEGIS catches this trial by hooking an installation request. (6)
Then, it enforces a mandatory application reviewing process to the
network operator. Here, he needs to review declared permission
tokens to know if those in an application’s manifest file are accept-
able. (7) After that, the network operator sends his decision to the
dynamic engine. If a decision is an approval for the installation,
the dynamic engine grants the declared permission tokens to the
application and lets it proceed to the application installation. (8)
After the application is installed, the dynamic engine also hooks
an API invocation for the access control whenever the application
invokes an API and verifies if the application has proper permis-
sion tokens to access the invoking API. (9) If the application does
not have proper permission tokens, the dynamic engine raises a
security exception (by using a code injection technique).

3.2 AEGIS Static Engine
The main goal of this engine is to generate API-permission
mappings (i.e., permission model). The detailed design of static
engine modules is as follows.

API Document Parser: This module takes an API document
provided by an SDN controller to the extract descriptions and path

1We define assets as all resources accessed/modified/created by SDN APIs
2SDN asset map is a tree diagram which represents all SDN controller resources
accessed by each API with their relations

21

AEGIS: An Automated Permission Generation and Verification System for SDNs SecSoN’18, August 24, 2018, Budapest, Hungary

Network
Operator

Permission model
(API-Permissions Mappings)

AEGIS

SDN Northbound APIs

SDN App

SDN App
…...

SDN App

SDN Controller

SDN App
Developer

SDN App with
manifest.xml

Decision
(Code injection

technique)

SDN
Resrouces
(Assets)

API invocation

Invoked API information
(Hooking technique)

Dynamic
Engine

Access

SDN App
Installation

(2)
(1)

(3)

(4)

(5)

(7)
(6)

(5), (8)(9)

Controller API
Document

Permission model
(API-Permissions Mappings)Controller API Document,

Permission model policy,

Installation
Decision Manifest.xml

(Declared permissions)

Controller
API Document

API Document
Parser

Preprocessor

Semantic Role
Labeler

Intermediate
processor

API-Permission
Mapping

Constructor
SDN Asset Map

Static
Engine

SDN Asset Map
Generator

Dependency
Analyzer

Permission
model policy

Application granted
permissions

Permission model
(API-Permission mappings)

Permission
Checker

API Hooker

Injector

Permission
Enforcer

Manifest.xml
(Declared permissions)

Figure 1: AEGIS System Overview

information of APIs. In designing this module, we need to consider
formats of the description of APIs, and we mainly assume that they
follow the style of Javadoc [14], because this style is widely used
and quite popular. In addition, API descriptions of existing SDN
controllers [1, 3, 12] implemented in the Java language are also
written in the Javadoc style. In addition, this module can handle
other formats written in English, and thus API information of
some other controllers written in C, C++, or Python can be parsed
by this module if they provide reasonable descriptions of APIs.

Preprocessor: To increase the accuracy of the remaining steps,
this module pre-processes the extracted API description from the
API document parser. First, it finds the foremost sentence of each
API description, because the first sentence in Javadoc style API
description always contains an action that an API performs and
assets that an API accesses (i.e., most critical information). Then, it
converts any entity n-grams to a single term in the sentence based
on our SDN asset glossary and removes any special characters. To
avoid a mislabeling problem on a following module, it inserts a fake
subject (e.g., it) into the sentence and changes a verb word on the
sentence into three action words(i.e., READ, WRITE, EXECUTE) in
advance. The original verb word is tagged on the changed action
word.

Semantic Role Labeler: In an API description, resources that
an API accesses are represented in a semantical object sentence.
Each of these resources is a critical asset for an SDN controller.
To extract assets accessed by an API from API descriptions, this

module classifies each API description into semantic constituents
by leveraging a semantic role labeling technique [19]. Next, it
conducts investigation for a classified object sentence and a tagged
verb word on an action word to examine if the tagged verb word
is a word that takes a gerund or to-infinitive construction as an
object and if the classified object sentence starts with a to-infinitive
or gerund. The reason for doing such an investigation is that a
classified action word and object sentence is likely to be inaccurate
if a tagged verb word is one of the things that takes a gerund or
to-infinitive construction as an object and the extracted object
sentence starts with a to-infinitive or gerund. So, in that case, it
re-classifies the current object sentence into semantic constituents.

Intermediate Processor: This module preprocesses an object
sentence (classified by semantic role labeler) to allow the depen-
dency analyzer (next module) to clearly extract asset words from
an object sentence without disruption. For this, it first replaces
each of all the noun words in an object sentence with the stem of a
word using WordNet [13] stemmer. Then, it identifies any noun
phrase that is comprised of consecutive nouns using a shallow
parsing [18] and converges each of them into a single term. Also, it
tags part-of-speech(POS) for each element of an object sentence
in advance, and removes any determiner words and unnecessary
words in an object sentence based on the tagged POS.

Dependency Analyzer: The main role of this module is to
extract only asset words with their semantic relations so that
an SDN asset map generator (next module) can build an SDN

22

SecSoN’18, August 24, 2018, Budapest, Hungary Kang.et al.

asset map for an SDN controller. The tasks of this module are
divided into two steps. In the first place, it extracts only the sets of
nominal modifier (nmod) relation that holds between noun words
modified by a prepositional complement through the dependency
parsing [6]. It removes any non-noun words to avoid a case in
which a non-noun word is extracted as an SDN asset. The reason
for extracting only nmod relations is to analyze modification
relations between noun words so that we can reveal any semantic
relations between noun words. As the second step, based on
the extracted nmod relations, dependency analyzer generates
asset-linked lists by extracting all assets considering their semantic
relations using our pre-defined rules. Also, it tags an API action
word and a full path of an API to each node in asset-linked list.

SDN Asset Map Generator: To build an SDN asset map, this
module creates trees using an asset-linked list of each API in the
first place. The generated trees, which are created in the API unit,
are integrated into a single tree in the package unit, and the trees
in the package unit are integrated into a whole single tree by our
predefined rules. This whole single tree is an SDN asset map that
represents all SDN assets that APIs access, and a network operator
can generate a customized permission model by pruning this map.
To support that, AEGIS provides a simple language for the permis-
sion model policy to enable a network operator to set desired assets
and the depth of access control.

• Example Case of an Generating SDN Asset Map: Overall,
Figure 2 summarizes how an SDN asset map is generated by
the operations of components discussed so far. Specifically,
it shows how the ONOS SDN controller API is transferred
to an entry of an asset map. As shown in this figure, the API
Document Parser first takes an API document and extracts
the path and description of each API from that. And then the
preprocessor sanitizes them to make a simple sentence. The
semantic role labeler marks the which part of this sentence
as S (subject), V (verb), and O (object). After this process,
the intermediate processor discovers candidate assets and
the dependency analyzer generates an asset linked list that
implies all of the assets and their relations represented in
an API description. Finally, the generated asset linked list
will be merged into an SDN asset map by the SDN asset map
generator.

API
Document

Path = org.onosproject.net.flow.FlowRuleService.getFlowRuleCount()
Description = Returns the number of flow rules in the system.

API Document
Parser

It read the number of flow_rule in the system

Preprocessor

Semantic Role
Labeler

Intermediate
processor

Dependency
Analyzer

SDN Asset Map
Generator

(S It) (V read) (O the number of flow_rule in the system)

NN/ number IN/ of NN/ flow_rule /IN in NN/system

number

flow_rule

system

SDN Asset Map Asset linked list

READ <id = org.onosproject.net.flow.
FlowRuleService.getFlowRuleCount()

Figure 2: Overall process for generating an SDN asset map

API-Permission Mapping Constructor: This module creates
permission tokens by concatenating the node names from each
starting node to a root node and action word tagged on the starting
node. Then it maps each generated permission token to the full
path of the API tagged on each starting node, and as a result, it
generates API-permission mappings. This mapping clearly shows
what permission token should be examined by AEGIS whenever
each SDN controller API is invoked by an SDN application.

3.3 AEGIS Dynamic Engine
In this component, we employ a hooking technique [5] that
intercepts API calls from an SDN controller to minimize the
dependency of controller implementations. The dynamic engine of
AEGIS consists of four modules and a detailed explanation for each
module is as follows.

API Hooker: The API hooker sniffs all SDN API invocations
from an SDN application and its call stack and stops the API
execution before the API code is executed whenever an SDN
application calls the API for access control. In this module, we use
the hooking technique to allow AEGIS to access control without
any modifications of the SDN controller code in a completely
separate process from the SDN controller. The hooking technique
enables us to intercept various features including function calls in
a separate process. Also, this component sniffs the API invocation
that is related to the application un/installation internally invoked
at an SDN controller as a permission enforcer component.

Permission Enforcer: The permission enforcer accepts the
information of the API invocation by the API hooker, and it is
activated whenever a network operator tries to un/install the
SDN application. It responsible for granting or withdrawing the
permission tokens to an SDN application and also enforces the
permission reviewing process to a network operator by parsing a
manifest file.

Permission Checker: The permission checker accepts the
API-permission mappings, the application-granted permissions,
and information of API invocation with its call-stack from the API
hooker. This component makes a decision to deny or allow based
on whether all of the applications existed on the call stack have the
appropriate permission tokens to access the invoked API or not.

Injector: The injector accepts a decision to deny or allow from
the permission checker. Based on this decision, it injects the code
that generates a security exception into an invoked API entrance
to prevent the API code from being executed when the decision is
to deny using the code injection technique.

4 EVALUATION
To evaluate our ideas, we have implemented a prototype system (ap-
proximately 3,000 line) in Python language. It can be easily applied
to most Java-based SDN controllers without any modifications, and
furthermore, it can also support non-Java based SDN controllers
although some manual effort, such as converting an API description
format to Javadoc style, is required.

23

AEGIS: An Automated Permission Generation and Verification System for SDNs SecSoN’18, August 24, 2018, Budapest, Hungary

4.1 Completeness and Soundness

ONOS

application

permission

id

state

predeactivation_processing_hook

cluster node

topic

leadership

candidate_node

node_id

id_generator
message

state

configuration

subscriber

metadata

system_time

codec
json

class

component
name

configuration_property value

core

product_version

hybrid_logical_time

event

store

device_key

service pending_transaction

builder

system
work_queue statistic

counter

topology

graph_path_search_algorithm

link_weight_function

shortest_path_pair

graph_view

device

localnode mastership
role

term_number
local_controller master

connection_point link count

port_delta_statistic

port

mastership_role

driver
driver_provider macaddress

driver_handler

edge_point packet

group bucket

group_mapping objective composition_policy_expression

filtering_rule

forwarding_rule

hop_element

flow_rule batch_operation

flow_table_statistic

flow_type

load

cluster
device

link
descriptor

traffic broadcast

dhcp

ip macaddress

default_lease_time

default_rebinding_time

default_renewal_time

event time

host host_service

intent

timestamp

intent_compiler binding

pending_map indent_data

event

state

id owner

listener

timestamp

message_type message_handler

communication_end_point message

meter

route

sink

source_connection

data_source_associatio

class subject key configuration

packet
packet_request

packet_processor
processing_pipeline processor

priority_binding
network outbound_packet

partition

id

total_number

controller_node

local_persistent_set builder

region
device

host

resource

availability

resource_allocation

child_resource

routing

connect_point

ip_prefix

ip_address

statistic
port flow_rule

link ingress load

ui

user
preference copy

user_name

layout peer child_layout

root_layout

COUNT

READ <id = net.device.DeviceService.getPortDeltaStatistics>
READ <id = net.deivce.DeviceService.getPortStatistics>
READ <id = net.device.DeviceService.getStatisticsForPort>

………

WRITE <id = net.device.DeviceAdminService.changePortState>
READ <id = net.device.DeviceService.getPort>

……….

DEVICE

PORT

READ <id = net.device.DeviceService.getDevice>

WRITE <id = net.device.DeviceAdminService.removeDevice>

READ <id = net.device.DeviceService.isAvailable>

………

MASTERSHIP_ROLE

TIMESTAMP

STATISTIC

………

READ <id = net.device.DeviceService.getDeviceCount>
………

READ <id = net.device.DeviceClockService.getTimestamp >
READ <id = net.device.DeviceClockService.isTimestampAvailable>

………

READ <id = net.device.DeviceService.getRole>
……….

………

Figure 3: SDN asset map (ONOS case)

4.1.1 Completeness. To evaluate the completeness of AEGIS, we
extract each asset map from Floodlight [1], ONOS [17] and POX [3]
controllers using AEGIS. An example of an asset map automatically
generated by AEGIS from ONOS controller is depicted in Figure
3. As shown in the figure, it is a kind of the tree data structure in
which each node represents an asset of an SDN controller. Each
node has metadata that contains the information about which APIs
can touch it. In an asset map, if the API name and the information
is tagged as metadata at a node, it means that AEGIS completes
the processing of this API description. In contrast, if there are SDN
APIs that are not listed on an asset map, it means that AEGIS fails
in processing of the APIs not listed on an asset map. We extract
tagged APIs on nodes of each extracted controller asset map, make
a list, and compare it to a list of each controller’s Northbound-APIs.
The overall results are listed in Table 1, and this result shows that
AEGIS can cover more than 94% of each controller’s APIs.

To examine why AEGIS fails to cover some API descriptions (2
- 6%), we have manually inspected failure cases. All of them are
cases in which API description is incorrectly written. For example,
a Javadoc-style API description should start with a verb, but there
are cases in which an API description starts with a noun. Another
example case is that two words connected by a conjunction “and”
have different parts of speech even though they must have the
same part of speech. In addition, there are cases in which two
identical words appear in succession due to typos. Because AEGIS
extracts the assets that an API accesses from an API description,
it is of course impossible to correctly extract the assets if an API
description is incorrectly written.

4.1.2 Soundness. Since each permission and asset will be var-
ied on each network operator and there is no ground truth, it is
very hard to evaluate the soundness of AEGIS. Thus, we actually

Controller # of total APIs # of covered APIs Coverage
ONOS 355 348 98%

Floodlight 198 186 94%
POX 14 14 100%

Table 1: API coverage of AEGIS
Question # of positive responses # of negative responses Correctness

Action word &
583 17 97.2%

resources
Correlations 574 23 95.7%

Table 2: Soundness survey result
contacted SDN experts to investigate if AEGIS successfully extracts
assets and makes an asset map. To do this, we provided two techni-
cal questions about our framework to 20 SDN experts3 and collected
their responses4.

First, we showed API descriptions, classified action words, and
resource words extracted from each API description by AEGIS to
SDN experts and let them evaluate whether AEGIS correctly classi-
fies and extracts resource words expressed in the API description
or not. Also, we showed an API implementation code to the SDN
experts and asked them to evaluate whether extracted resources
through AEGIS are actually accessed by APIs. The overall results
are summarized in Table 25. Around 97.2% of responses indicated
AEGIS accurately extracts the resource words and classifies actions
into three action words. We also evaluated why the remaining 2.8%
were negative responses and fount out that AEGIS misses some
resources that are accessed by APIs. This happens if the API descrip-
tions do not include this information. For example, changePortState,
which is one of the ONOS APIs, actually allows an application to ac-
cess device, port, and state resources in ONOS, but this information
is not described in its descriptions. We believe this is a critical error
as well, because a developer cannot know if this API can access a
state variable and thus it should be rectified.

Second, we showed API descriptions of an SDN controller and an
asset map generated by AEGIS to the SDN experts, and asked them
to evaluate if AEGIS precisely analyzes the correlation of resources
using the prepositions presented in the API description. The survey
result showed that 95.7% of the responses indicated AEGIS correctly
extracts the correlations of the resources. The negative response
indicates that although it seems that AEGIS correctly analyzes the
correlations, it is difficult to judge because results can vary and are
dependent on a subjective point of view. For example, resources
mastership, role are recognized as two separate resources, but in
our analysis, mastership_role is a single resource.
4.2 Use Case
To demonstrate the effectiveness of AEGIS, we present that AEGIS
supports more flexible and granular access control than the Security-
Mode ONOS through our simple attack scenario.

Our brief attack scenario is as follows. The network operator
wants to grant a permission that can change only the port state
information in the application. In the Security-Mode ONOS permis-
sion model, the application needs a DEVICE_WRITE permission to

3They have experiences of operating SDN networks or implementing SDN applications
at least more than a year.
4To reduce the overhead of each survey, we randomly select 30 APIs from three
controllers (ONOS, FloodLight, and POX).
5The number of each positive and negative responses is sum of respondent for each
API.

24

SecSoN’18, August 24, 2018, Budapest, Hungary Kang.et al.

access and change the port state information. The network operator
believes the application will only change the port state information,
so he grants DEVICE_WRITE permission to the application. But the
application erases the device information from the controller using
the granted DEVICE_WRITE permission. The reason this attack sce-
nario is possible is that the permission model of the Security-Mode
ONOS is coarse-grained and fixed.

On the other hand, AEGIS can invalidate this attack scenario
because it can automatically generate a fine-grained permission
model based on a network operator’s security view. In this attack
scenario, the network operator’s security view is to make the ap-
plication inaccessible to any other sub-assets of the device asset
except a port asset. If we extract an asset map of the ONOS using
AEGIS, we can get information about assets related to device as-
set, any relations between those assets, and APIs that can touch
each of those assets. If the network operator establishes a permis-
sion model policy based on his security view, AEGIS automatically
generates a corresponding permission model. Specifically, AEGIS
generates a DEVICE_PORT_WRITE, which is a permission token
that allows the application to only invoke APIs that can manipulate
port information as one of the permission tokens. If the application
is granted this DEVICE_PORT_WRITE permission token, it can
only invoke the API that performs the write action among the APIs
tagged at the port asset in the asset map, and cannot invoke any
other APIs. That is, AEGIS invalidates the attack scenario that is
valid for Security-Mode ONOS.

To demonstrate this, we conducted an experiment with only
granting DEVICE_PORT_WRITE permission token to a test appli-
cation that deletes the device information when it is activated. The
experimental result is shown in Figure 4. As shown in this figure,
an exception occurs whenever the test application invokes the API
which deletes a device information. This experimental result is
evidence that AEGIS automatically generates a fine-grained per-
mission model based on the security-view of the network operator,
thereby invalidating the attack scenario for Security-Mode ONOS.

Figure 4: Result of attack scenario using AEGIS in ONOS

5 RELATEDWORK
a) SDN Application Security: Our work was inspired by several
efforts [10, 16, 21, 22, 26] to demonstrate potential security prob-
lems with malicious SDN applications and mitigate these security
problems. Shin et al. demonstrated that the malicious SDN applica-
tion can manipulate the controller’s internal information and shut
down the controller, and proposed a sandbox approach for secur-
ing the SDN controller [21]. Lee et al. showed attack cases with
malicious SDN application and suggested a security assessment
framework to automatically discover vulnerabilities [10].

On the other hand, there have been efforts to mitigate the threat
from the malicious SDN application by applying the permission
system to the SDN controller. Porras et al. suggested an application
role-based privilege separation approach to restrict the abuse of

application API usage [16]. Wen et al. pointed out that the permis-
sion model of SE-Floodlight [16] is coarse-grained, and proposed a
model that combines policy and permission-based access control
for a fine-grained permission model [22]. Yoon et al. proposed an
approach similar to the Android permission model [2] for securing
the ONOS controller [26].

Different from previous efforts, AEGIS is the first trial to auto-
matically generate a flexible permission model and enable access
control regardless of the controller type based on the generated
permission model.

b) Applications of NLP for Security: This research is built
on a large body of previous work on enhancing security using NLP
techniques [9, 15, 20, 27, 28]. Most methods have been studied in
the Android field. Pandita et al. proposed a way to improve the
security of Android permission system by lifting the fidelity of the
application description [15]. They used NLP techniques to evaluate
the fidelity of application description by extracting keywords that
matched with the permission type from the Android API docu-
mentation. Qu et al. also tried to enhance security by rasing up
the fidelity of the Android application description using the NLP
technique, but they also applied machine learning to improve the
accuracy of extracting keywords [20]. Zhang et al. suggested a way
to improve security by automatically generating a security-centric
application description using a kind of NLP technique [28]. Kong
et al. analyzed the application reviews registered in the Android
app market using the NLP technique, and based on this analysis,
they analyzed the security-related behaviors of the application [9].

All of these previous works are valuable research that graft NLP
technique upon security. However, to the best of our knowledge,
there is no research harmonizing the NLP technique into security
to extract the assets of the system and automatically generate a
permission model. Specifically, AEGIS is distinguished as being the
first attempt at applying NLP techniques to automatically analyze
the assets of the SDN controller for the purpose of generating a
permission model.

6 CONCLUSION
Since the SDN controller is mission-critical software that manages
the entire network, several ideas have been tried to make it secure
and robust. While certain studies attempted to apply permission-
based access control to protect SDN assets in the context of specific
SDN controllers, they did not support flexible and automated ac-
cess control for SDN assets. Our work is complementary because
it attempts to automate some of the manual efforts of prior works.
Specifically, AEGIS is the first attempt at automatically and flexibly
generating permission model from the API description using NLP
techniques. It is also the first study to completely separate the per-
mission system from the SDN controller to facilitate its application
for any controller without source-code modification.

ACKNOWLEDGEMENTS
This work was partly supported by Networks Business, Samsung
Electronics Co., Ltd. and the National Science Foundation (NSF)
award no. 1642150. The views and conclusions contained herein are
the authors’ and do not represent the official views of the funding
agencies.

25

AEGIS: An Automated Permission Generation and Verification System for SDNs SecSoN’18, August 24, 2018, Budapest, Hungary

REFERENCES
[1] A Big Switch Networks. 2013. Project Floodlight. http://

www.projectfloodlight.org/floodlight/.
[2] Android project. 2012. Android Security Mechanism. https://

source.android.com/security/overview/app-security.html.
[3] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,

Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, et al.
2014. ONOS: towards an open, distributed SDN OS. In Proceedings of the third
workshop on Hot topics in software defined networking. ACM, 1–6.

[4] Samantha Bookman. 2016. AT&T: Data centers are key as NFV, SDN become
increasingly important. http://www.fiercetelecom.com/telecom/at-t-data-
centers-are-key-as-nfv-sdn-become-increasingly-important

[5] Arshan Dabirsiaghi. 2010. Javasnoop: How to hack anything in java. BlackHat
Las Vegas (2010).

[6] Marie-Catherine De Marneffe, Bill MacCartney, Christopher D Manning, et al.
2006. Generating typed dependency parses from phrase structure parses. In
Proceedings of LREC, Vol. 6. Genoa Italy, 449–454.

[7] Alissa Irei. 2016. New Verizon service uses Viptela SD-WAN technol-
ogy. http://searchsdn.techtarget.com/news/4500276392/New-Verizon-service-
uses-Viptela-SD-WAN-technology

[8] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. 2013. B4:
Experience with a globally-deployed software defined WAN. In ACM SIGCOMM
Computer Communication Review, Vol. 43. ACM, 3–14.

[9] Deguang Kong, Lei Cen, and Hongxia Jin. 2015. Autoreb: Automatically under-
standing the review-to-behavior fidelity in android applications. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
ACM, 530–541.

[10] Seungsoo Lee, Changhoon Yoon, Chanhee Lee, Seungwon Shin, Vinod Yeg-
neswaran, and Phillip Porras. 2017. DELTA: A security assessment framework
for software-defined networks. In Proceedings of NDSS, Vol. 17.

[11] Tao Lei, Zhaoming Lu, Xiangming Wen, Xing Zhao, and Luhan Wang. 2014.
SWAN: An SDN based campus WLAN framework. InWireless Communications,
Vehicular Technology, Information Theory and Aerospace & Electronic Systems
(VITAE), 2014 4th International Conference on. IEEE, 1–5.

[12] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. 2014. Opendaylight: To-
wards a model-driven sdn controller architecture. In 2014 IEEE 15th International
Symposium on. IEEE, 1–6.

[13] George A Miller. 1995. WordNet: a lexical database for English. Commun. ACM
38, 11 (1995), 39–41.

[14] Oracle. 2017. How to Write Doc Comments for the Javadoc Tool. http://
www.oracle.com/technetwork/articles/java/index-137868.html.

[15] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013. WHY-
PER: Towards Automating Risk Assessment ofMobile Applications. In Proceedings
of the 22Nd USENIX Conference on Security (SEC’13). USENIX Association, Berke-
ley, CA, USA, 527–542. http://dl.acm.org/citation.cfm?id=2534766.2534812

[16] Phillip A Porras, Steven Cheung, Martin W Fong, Keith Skinner, and Vinod
Yegneswaran. 2015. Securing the Software Defined Network Control Layer.. In
NDSS.

[17] POX. 2014. Python Network Controller. http://www.noxrepo.org/pox/about-
pox/.

[18] V. Punyakanok and D. Roth. 2001. The Use of Classifiers in Sequential Inference.
In NIPS. MIT Press, 995–1001. http://cogcomp.cs.illinois.edu/papers/nips01.pdf

[19] V. Punyakanok, D. Roth, and W. Yih. 2008. The Importance of Syntactic Parsing
and Inference in Semantic Role Labeling. Computational Linguistics 34, 2 (2008).
http://cogcomp.cs.illinois.edu/papers/PunyakanokRoYi07.pdf

[20] Zhengyang Qu et al. 2014. Autocog: Measuring the description-to-permission
fidelity in android applications. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 1354–1365.

[21] Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jaewoong Chung,
Phillip Porras, Vinod Yegneswaran, Jiseong Noh, and Brent Byunghoon Kang.
2014. Rosemary: A robust, secure, and high-performance network operating
system. In Proceedings of the 2014 ACM SIGSAC conference on computer and
communications security. ACM, 78–89.

[22] Xitao Wen, Bo Yang, Yan Chen, Chengchen Hu, Yi Wang, Bin Liu, and Xiaolin
Chen. 2016. Sdnshield: Reconciliating configurable application permissions for
sdn app markets. In Dependable Systems and Networks (DSN), 2016 46th Annual
IEEE/IFIP International Conference on. IEEE, 121–132.

[23] Wikipedia. 2018. Natural-language processing. https://en.wikipedia.org/wiki/
Natural-languageprocessing Online; Accessed 08-05-2018.

[24] C Yoon and S Lee. 2016. Attacking Sdn Infrastructure: Are We Ready For The
Next-Gen Networking? BlackHat-USA-2016 (2016).

[25] Changhoon Yoon, Seungsoo Lee, Heedo Kang, Taejune Park, Seungwon Shin,
Vinod Yegneswaran, Phillip Porras, and Guofei Gu. 2017. FlowWars: Systemizing
the Attack Surface and Defenses in Software-Defined Networks. IEEE/ACM
Transactions on Networking 25, 6 (2017), 3514–3530.

[26] Changhoon Yoon, Seungwon Shin, Phillip Porras, Vinod Yegneswaran, Heedo
Kang, Martin Fong, Brian O’Connor, and Thomas Vachuska. 2017. A Security-
Mode for Carrier-Grade SDN Controllers. In Proceedings of the 33rd Annual
Computer Security Applications Conference. ACM, 461–473.

[27] Le Yu, Xiapu Luo, Chenxiong Qian, and Shuai Wang. 2016. Revisiting the
description-to-behavior fidelity in android applications. In Software Analysis,
Evolution, and Reengineering (SANER), 2016 IEEE 23rd International Conference
on, Vol. 1. IEEE, 415–426.

[28] Mu Zhang, Yue Duan, Qian Feng, and Heng Yin. 2015. Towards automatic
generation of security-centric descriptions for Android apps. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security.
ACM, 518–529.

26

http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
https://source.android.com/security/overview/app-security.html
https://source.android.com/security/overview/app-security.html
http://www.fiercetelecom.com/telecom/at-t-data-centers-are-key-as-nfv-sdn-become-increasingly-important
http://www.fiercetelecom.com/telecom/at-t-data-centers-are-key-as-nfv-sdn-become-increasingly-important
http://searchsdn.techtarget.com/news/4500276392/New-Verizon-service-uses-Viptela-SD-WAN-technology
http://searchsdn.techtarget.com/news/4500276392/New-Verizon-service-uses-Viptela-SD-WAN-technology
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://dl.acm.org/citation.cfm?id=2534766.2534812
http://www.noxrepo.org/pox/about-pox/
http://www.noxrepo.org/pox/about-pox/
http://cogcomp.cs.illinois.edu/papers/nips01.pdf
http://cogcomp.cs.illinois.edu/papers/PunyakanokRoYi07.pdf
https://en.wikipedia.org/wiki/Natural-language_processing
https://en.wikipedia.org/wiki/Natural-language_processing

	Abstract
	1 Introduction
	2 Problem statement
	3 System Design
	3.1 AEGIS Overview
	3.2 AEGIS Static Engine
	3.3 AEGIS Dynamic Engine

	4 Evaluation
	4.1 Completeness and Soundness
	4.2 Use Case

	5 Related Work
	6 Conclusion
	References

