
Dwarfs on Accelerators: Enhancing OpenCL Benchmarking for
Heterogeneous Computing Architectures
Beau Johnston

Research School of Computer Science
Australian National University

Canberra, Australia
beau.johnston@anu.edu.au

Josh Milthorpe
Research School of Computer Science

Australian National University
Canberra, Australia

josh.milthorpe@anu.edu.au

ABSTRACT
For reasons of both performance and energy e�ciency, high perfor-
mance computing (HPC) hardware is becoming increasingly hetero-
geneous. �e OpenCL framework supports portable programming
across a wide range of computing devices and is gaining in�uence
in programming next-generation accelerators. To characterize the
performance of these devices across a range of applications requires
a diverse, portable and con�gurable benchmark suite, and OpenCL
is an a�ractive programming model for this purpose.

We present an extended and enhanced version of the Open-
Dwarfs OpenCL benchmark suite, with a strong focus placed on
the robustness of applications, curation of additional benchmarks
with an increased emphasis on correctness of results and choice
of problem size. Preliminary results and analysis are reported for
eight benchmark codes on a diverse set of architectures – three
Intel CPUs, �ve Nvidia GPUs, six AMD GPUs and a Xeon Phi.

1 INTRODUCTION
High performance computing (HPC) hardware is becoming increas-
ingly heterogeneous. A major motivation for this is to reduce
energy use; indeed, without signi�cant improvements in energy
e�ciency, the cost of exascale computing will be prohibitive. From
June 2016 to June 2017, the average energy e�ciency of the top
10 of the Green500 supercomputers rose by 2.3x, from 4.8 to 11.1
giga�ops per wa�.[10] For many systems, this was made possible
by highly energy-e�cient Nvidia Tesla P100 GPUs. In addition to
GPUs, future HPC architectures are also likely to include nodes
with FPGA, DSP, ASIC and MIC components. A single node may
be heterogeneous, containing multiple di�erent computing devices;
moreover, a HPC system may o�er nodes of di�erent types. For
example, the Cori system at Lawrence Berkeley National Labora-
tory comprises 2,388 Cray XC40 nodes with Intel Haswell CPUs,
and 9,688 Intel Xeon Phi nodes [7]. �e Summit supercomputer at
Oak Ridge National Laboratory is based on the IBM Power9 CPU,
which includes both NVLINK [22], a high bandwidth interconnect
between Nvidia GPUs; and CAPI, an interconnect to support FPGAs
and other accelerators. [23] Promising next generation architec-
tures include Fujitsu’s Post-K [21], and Cray’s CS-400, which forms
the platform for the Isambard supercomputer [9]. Both architec-
tures use ARM cores alongside other conventional accelerators,
with several Intel Xeon Phi and Nvidia P100 GPUs per node.

Given this heterogeneity of hardware and the wide diversity
of scienti�c application codes, workload characterization, perfor-
mance prediction and scheduling are all becoming more challenging.

To evaluate di�erent approaches requires a representative bench-
mark suite which is portable to a wide variety of devices. We focus
on the OpenCL programming model as it is supported on a wide
range of systems including CPU, GPU and FPGA devices. While it
is possible to write application code directly in OpenCL, it may also
be used as a base to implement higher-level programming models.
�is technique was shown by Mitra et al. [20] where an OpenMP
runtime was implemented over an OpenCL framework for Texas
Instruments Keystone II DSP architecture. Having a common back-
end in the form of OpenCL allows a direct comparison of identical
code across diverse architectures.

In this paper, we present an extended version of the OpenDwarfs
benchmark suite, a set of OpenCL benchmarks for heterogeneous
computing platforms.[15] We added new benchmarks to improve
the diversity of the suite, and made a number of modi�cations
aimed at improving the reproducibility and interpretability of re-
sults, portability between devices, and �exibility of con�guration
including problem sizes. We report preliminary results for a sub-
set of the enhanced OpenDwarfs suite on a range of platforms
including CPU, GPU and MIC devices.

2 ENHANCING THE OPENDWARFS
BENCHMARK SUITE

�e OpenDwarfs benchmark suite comprises a variety of OpenCL
codes, classi�ed according to pa�erns of computation and commu-
nication known as the 13 Berkeley Dwarfs.[1] �e original suite
focused on collecting representative benchmarks for scienti�c ap-
plications, with a thorough diversity analysis to justify the addition
of each benchmark to the corresponding suite. We aim to extend
these e�orts to achieve a full representation of each dwarf, both by
integrating other benchmark suites and adding custom kernels.

Marjanović et al. [18] argue that the selection of problem size
for HPC benchmarking critically a�ects which hardware proper-
ties are relevant. We have observed this to be true across a wide
range of accelerators, therefore we have enhanced the OpenDwarfs
benchmark suite to support running di�erent problem sizes for
each benchmark. To improve reproducibility of results, we also
modi�ed each benchmark to execute in a loop for a minimum of
two seconds, to ensure that sampling of execution time and perfor-
mance counters was not signi�cantly a�ected by operating system
noise.

For the Spectral Methods dwarf, the original OpenDwarfs ver-
sion of the FFT benchmark was complex, with several code paths
that were not executed for the default problem size, and returned
incorrect results or failures on some combinations of platforms

ar
X

iv
:1

80
5.

03
84

1v
1 

 [
cs

.D
C

] 
 1

0 
M

ay
 2

01
8



and problem sizes we tested. We replaced it with a simpler high-
performance FFT benchmark created by Eric Bainville [3], which
worked correctly in all our tests. We have also added a 2-D discrete
wavelet transform from the Rodinia suite [5] (with modi�cations
to improve portability), and we plan to add a continuous wavelet
transform code.

To understand benchmark performance, it is useful to be able to
collect hardware performance counters associated with each timing
segment. LibSciBench is a performance measurement tool which
allows high precision timing events to be collected for statistical
analysis [12]. It o�ers a high resolution timer in order to measure
short running kernel codes, reported with one cycle resolution
and roughly 6 ns of overhead. We used LibSciBench to record tim-
ings in conjunction with hardware events, which it collects via
PAPI [24] counters. We modi�ed the applications in the Open-
Dwarfs benchmark suite to insert library calls to LibSciBench to
record timings and PAPI events for the three main components of
application time: kernel execution, host setup and memory transfer
operations. �rough PAPI modules such as Intel’s Running Average
Power Limit (RAPL) and Nvidia Management Library (NVML), Lib-
SciBench also supports energy measurements, for which we report
preliminary results in this paper.

3 RELATEDWORK
�e NAS parallel benchmarks [2] follow a ‘pencil-and-paper’ ap-
proach, specifying the computational problem but leaving imple-
mentation choices such as language, data structures and algorithms
to the user. �e benchmarks include varied kernels and applications
which allow a nuanced evaluation of a complete HPC system, how-
ever, the unconstrained approach does not readily support direct
performance comparison between di�erent hardware accelerators
using a single set of codes.

Martineau et al. [19] collected a suite of benchmarks and three
mini-apps to evaluate Clang OpenMP 4.5 support for Nvidia GPUs.
�eir focus was on comparison with CUDA; OpenCL was not con-
sidered.

�e Scalable Heterogeneous Computing benchmark suite (SHOC) [16],
unlike OpenDwarfs and Rodinia, supports multiple nodes using
MPI for distributed parallelism. SHOC supports multiple program-
ming models including OpenCL, CUDA and OpenACC, with bench-
marks ranging from targeted tests of particular low-level hardware
features to a handful of application kernels. Sun et al. [28] pro-
pose Hetero-Mark, a Benchmark Suite for CPU-GPU Collaborative
Computing, which has �ve benchmark applications each imple-
mented in HCC – which compiles to OpenCL, HIP – for a CUDA
and Radeon Open Compute back-end, and a CUDA version. Mean-
while, Chai by Gómez-Luna et al. [11], o�ers 15 applications in 7
di�erent implementations with the focus on supporting integrated
architectures.

�ese benchmark suites focus on comparison between languages
and environments; whereas our work focuses on benchmarking for
device speci�c performance limitations, for example, by examining
the problem sizes where these limitations occur – this is largely
ignored by benchmarking suites with �xed problem sizes.

Additionally, our enhanced OpenDwarfs benchmark suite aims
to cover a wider range of application pa�erns by focusing exclu-
sively on OpenCL using higher-level benchmarks.

Barnes et al. [4] collected a representative set of applications
from the current NERSC workload to guide optimization for Knights
Landing in the Cori supercomputer. As it is not always feasible
to perform such a detailed performance study of the capabilities
of di�erent computational devices for particular applications, the
benchmarks described in this paper may give a rough understanding
of device performance and limitations.

4 EXPERIMENTAL SETUP
4.1 Hardware
�e experiments were conducted on a varied set of 15 hardware
platforms: three Intel CPU architectures, �ve Nvidia GPUs, six
AMD GPUs, and one MIC (Intel Knights Landing Xeon Phi). Key
characteristics of the test platforms are presented in Table 1. �e
L1 cache size should be read as having both an instruction size
cache and a data cache size of equal values as those displayed.
For Nvidia GPUs, the L2 cache size reported is the size L2 cache
per SM multiplied by the number of SMs. For the Intel CPUs,
hyper-threading was enabled and the frequency governor was set
to ‘performance’.

4.2 So�ware
OpenCL version 1.2 was used for all experiments. On the CPUs we
used the Intel OpenCL driver version 6.3, provided in 16.1.1 and
the 2016-R3 opencl-sdk release. On the Nvidia GPUs we used the
Nvidia OpenCL driver version 375.66, provided as part of CUDA
8.0.61, AMD GPUs used the OpenCL driver version provided in the
amdappsdk v3.0.

�e Knights Landing (KNL) architecture used the same OpenCL
driver as the Intel CPU platforms, however, the 2018-R1 release
of the Intel compiler was required to compile for the architecture
natively on the host. Additionally, due to Intel removing support for
OpenCL on the KNL architecture, some additional compiler �ags
were required. Unfortunately, as Intel has removed support for
AVX2 vectorization (using the ‘-xMIC-AVX512’ �ag), vector instruc-
tions use only 256-bit registers instead of the wider 512-bit registers
available on KNL. �is means that �oating-point performance on
KNL is limited to half the theoretical peak.

GCC version 5.4.0 with glibc 2.23 was used for the Skylake i7
and GTX 1080, GCC version 4.8.5 with glibc 2.23 was used on the
remaining platforms. OS Ubuntu Linux 16.04.4 with kernel version
4.4.0 was used for the Skylake CPU and GTX 1080 GPU, Red Hat
4.8.5-11 with kernel version 3.10.0 was used on the other platforms.

As OpenDwarfs has no stable release version, it was extended
from the last commit by the maintainer on 26 Feb 2016. [25] Lib-
SciBench version 0.2.2 was used for all performance measurements.

4.3 Measurements
We measured execution time and energy for individual OpenCL
kernels within each benchmark. Each benchmark run executed
the application in a loop until at least two seconds had elapsed,
and the mean execution time for each kernel was recorded. Each
benchmark was run 50 times for each problem size (see §4.4) for

2



Table 1: Hardware

Name Vendor Type Series Core
Count

Clock Frequency
(MHz)

(min/max/turbo)

Cache (KiB)
(L1/L2/L3)

TDP
(W)

Launch
Date

Xeon E5-2697 v2 Intel CPU Ivy Bridge 24∗ 1200/2700/3500 32/256/30720 130 Q3 2013
i7-6700K Intel CPU Skylake 8∗ 800/4000/4300 32/256/8192 91 Q3 2015
i5-3550 Intel CPU Ivy Bridge 4∗ 1600/3380/3700 32/256/6144 77 Q2 2012
Titan X Nvidia GPU Pascal 3584† 1417/1531/– 48/2048/– 250 Q3 2016
GTX 1080 Nvidia GPU Pascal 2560† 1607/1733/– 48/2048/– 180 Q2 2016
GTX 1080 Ti Nvidia GPU Pascal 3584† 1480/1582/– 48/2048/– 250 Q1 2017
K20m Nvidia GPU Kepler 2496† 706/–/– 64/1536/– 225 Q4 2012
K40m Nvidia GPU Kepler 2880† 745/875/– 64/1536/– 235 Q4 2013
FirePro S9150 AMD GPU Hawaii 2816∥ 900/–/– 16/1024/– 235 Q3 2014
HD 7970 AMD GPU Tahiti 2048∥ 925/1010/– 16/768/– 250 Q4 2011
R9 290X AMD GPU Hawaii 2816∥ 1000/–/– 16/1024/– 250 Q3 2014
R9 295x2 AMD GPU Hawaii 5632∥ 1018/–/– 16/1024/– 500 Q2 2014
R9 Fury X AMD GPU Fuji 4096∥ 1050/–/– 16/2048/– 273 Q2 2015
RX 480 AMD GPU Polaris 4096∥ 1120/1266/– 16/2048/– 150 Q2 2016
Xeon Phi 7210 Intel MIC KNL 256‡ 1300/1500/– 32/1024/– 215 Q2 2016
∗ Hyper�readed cores
† CUDA cores
∥ Stream processors
‡ Each physical core has 4 hardware threads per core, thus 64 cores

both execution time and energy measurements. A sample size of
50 per group – for each combination of benchmark and problem
size – was used to ensure that su�cient statistical power β = 0.8
would be available to detect a signi�cant di�erence in means on
the scale of half standard deviation of separation. �is sample size
was computed using the t-test power calculation over a normal
distribution.

To help understand the timings, the following hardware counters
were also collected:

● total instructions and IPC (Instructions Per Cycle);
● L1 and L2 data cache misses;
● total L3 cache events in the form of request rate (requests

/ instructions), miss rate (misses / instructions), and miss
ratio (misses/requests);

● data TLB (Translation Look-aside Bu�er) miss rate (misses
/ instructions); and

● branch instructions and branch mispredictions.
For each benchmark we also measured memory transfer times
between host and device, however, only the kernel execution times
and energies are presented here.

Energy measurements were taken on Intel platforms using the
RAPL PAPI module, and on Nvidia GPUs using the NVML PAPI
module.

4.4 Setting Sizes
For each benchmark, four di�erent problem sizes were selected,
namely tiny, small, medium and large. �ese problem sizes are

based on the memory hierarchy of the Skylake CPU. Speci�cally,
tiny should just �t within L1 cache, on the Skylake this corresponds
to 32 KiB of data cache, small should �t within the 256 KiB L2 data
cache, medium should �t within 8192 KiB of the L3 cache, and
large must be much larger than 8192 KiB to avoid caching and
operate out of main memory.

�e memory footprint was veri�ed for each benchmark by print-
ing the sum of the size of all memory allocated on the device.

For this study, problem sizes were not customized to the memory
hierarchy of each platform, since the CPU is the most sensitive to
cache performance. Also, note for these CPU systems the L1 and
L2 cache sizes are identical, and since we ensure that large is at
least 4× larger than L3 cache, we are guaranteed to have last-level
cache misses for the large problem size.

Caching performance was measured using PAPI counters. On
the Skylake L1 and L2 data cache miss rates were counted using the
PAPI L1 DCM and PAPI L2 DCM counters. For L3 miss events, only
the total cache counter event (PAPI L3 TCM) was available. �e
�nal values presented as miss results are presented as a percentage,
and were determined using the number of misses counted divided
by the total instructions (PAPI TOT INS).

�e methodology to determine the appropriate size parameters
is demonstrated on the k-means benchmark.

4.4.1 kmeans. K-means is an iterative algorithm which groups
a set of points into clusters, such that each point is closer to the
centroid of its assigned cluster than to the centroid of any other
cluster. Each step of the algorithm assigns each point to the cluster

3



with the closest centroid, then relocates each cluster centroid to the
mean of all points within the cluster. Execution terminates when no
clusters change size between iterations. Starting positions for the
centroids are determined randomly. �e OpenDwarfs benchmark
previously required the object features to be read from a previously
generated �le. We extended the benchmark to support generation
of a random distribution of points. �is was done to more fairly
evaluate cache performance, since repeated runs of clustering on
the same feature space (loaded from �le) would deterministically
generate similar caching behavior. For all problem sizes, the number
of clusters is �xed at 5.

Given a �xed number of clusters, the parameters that may be
used to select a problem size are the number of points Pn , and
the dimensionality or number of features per point Fn . In the
kernel for k-means there are three large one-dimensional arrays
passed to the device, namely feature, cluster and membership.
In the feature array which stores the unclustered feature space,
each feature is represented by a 32-bit �oating-point number, so
the entire array is of size Pn × Fn × sizeof (�oat). cluster is the
working and output array to store the intermediately clustered
points, it is of sizeCn × Fn × sizeof (�oat), whereCn is the number
of clusters. membership is an array indicating whether each point
has changed to a new cluster in each iteration of the algorithm, it is
of size Pn × sizeof (int), where sizeof (int) is the number of bytes
to represent an integer value. �ereby the working kernel memory,
in KiB, is:

size (feature) + size (membership) + size (cluster)
1024

(1)

Using this equation, we can determine the largest problem size
that will �t in each level of cache. �e tiny problem size is de�ned
to have 256 points and 30 features; from Equation 1 the total size
of the main arrays is 31.5 KiB, slightly smaller than the 32 KiB L1
cache. �e number of points is increased for each larger problem
size to ensure that the main arrays �t within the lower levels of the
cache hierarchy, measuring the total execution time and respective
caching events. �e tiny, small and medium problem sizes in the
�rst row of Table 2 correspond to L1, L2 and L3 cache respectively.
�e large problem size is at least four times the size of the last-level
cache – in the case of the Skylake, at least 32 MiB – to ensure that
data are transferred between main memory and cache.

For brevity, cache miss results are not presented in this paper
but were used to verify the selection of suitable problem sizes for
each benchmark. �e procedure to select problem size parameters
is speci�c to each benchmark, but follows a similar approach to
k-means.

4.4.2 lud, �t, srad, crc, nw. �e LU-Decomposition lud, Fast
Fourier Transform fft, Speckle Reducing Anisotropic Di�usion
srad, Cyclic Redundancy Check crc and Needleman-Wunsch nw
benchmarks did not require additional data sets. Where necessary
these benchmarks were modi�ed to generate the correct solution
and run on modern architectures. Correctness was examined either
by directly comparing outputs against a serial implementation of the
codes (where one was available), or by adding utilities to compare
norms between the experimental outputs.

4.4.3 dwt. Two-Dimensional Discrete Wavelet Transform is
commonly used in image compression. It has been extended to
support loading of Portable PixMap (.ppm) and Portable GrayMap
(.pgm) image format, and storing Portable GrayMap images of the
resulting DWT coe�cients in a visual tiled fashion. �e input
image dataset for various problem sizes was generated by using
the resize capabilities of the ImageMagick application. �e original
gum leaf image is the large sample size has the ratio of 3648 × 2736
pixels and was down-sampled to 80 × 60.

4.4.4 gem, nqueens, hmm. For three of the benchmarks, we
were unable to generate di�erent problem sizes to properly exercise
the memory hierarchy.

Gemnoui gem is an n-body-method based benchmark which
computes electrostatic potential of biomolecular structures. Deter-
mining suitable problem sizes was performed by initially browsing
the National Center for Biotechnology Information’s Molecular
Modeling Database (MMDB) [17] and inspecting the corresponding
Protein Data Bank format (pdb) �les. Molecules were then selected
based on complexity, since the greater the complexity the greater
the number of atoms required for the benchmark and thus the larger
the memory footprint. tiny used the Prion Peptide 4TUT [29] and
was the simplest structure, consisting of a single protein (1 mole-
cule), it had the device side memory usage of 31.3 KiB which should
�t in the L1 cache (32 KiB) on the Skylake processor. small used a
Leukocyte Receptor 2D3V [27] also consisting of 1 protein molecule,
with an associated memory footprint of 252KiB. medium used the
nucleosome dataset originally provided in the OpenDwarfs bench-
mark suite, using 7498 KiB of device-side memory. large used an
X-Ray Structure of a Nucleosome Core Particle [6], consisting of
8 protein, 2 nucleotide, and 18 chemical molecules, and requiring
10 970.2 KiB of memory when executed by gem. Each pdb �le was
converted to the pqr atomic particle charge and radius format using
the pdb2pqr [8] tool. Generation of the solvent excluded molecular
surface used the tool msms [26]. Unfortunately, the molecules used
for the medium and large problem sizes contain uninitialized val-
ues only noticed on CPU architectures and as such further work
is required to ensure correctness for multiple problem sizes. �e
datasets used for gem and all other benchmarks can be found in this
paper’s associated GitHub repository [13].

�e nqueens benchmark is a backtrack/branch-and-bound code
which �nds valid placements of queens on a chessboard of size n×n,
where each queen cannot be a�acked by another. For this code,
memory footprint scales very slowly with increasing number of
queens, relative to the computational cost. �us it is signi�cantly
compute-bound and only one problem size is tested.

�e Baum-Welch Algorithm Hidden Markov Model hmm bench-
mark represents the Graphical Models dwarf and did not require
additional data sets, however validation of the correctness of results
has not occurred apart from over the tiny problem size, as such, it
is the only size examined in the evaluation.

4.4.5 Summary of Benchmark Se�ings. �e problem size param-
eters for all benchmarks are presented in Table 2.

Each Device can be selected in a uniform way between appli-
cations using the same notation, on this system Device comprises
of -p 1 -d 0 -t 0 for the Intel Skylake CPU, where p and d are
the integer identi�er of the platform and device to respectively use,

4



Table 2: OpenDwarfs workload scale parameters Φ

Benchmark tiny small medium large
kmeans 256 2048 65600 131072
lud 80 240 1440 4096
csr 736 2416 14336 16384
fft 2048 16384 524288 2097152
dwt 72x54 200x150 1152x864 3648x2736
srad 80,16 128,80 1024,336 2048,1024
crc 2000 16000 524000 4194304
nw 48 176 1008 4096
gem 4TUT 2D3V nucleosome 1KX5
nqueens 18 – – –
hmm 8,1 900,1 1012,1024 2048,2048

Table 3: Program Arguments

Benchmark Arguments
kmeans -g -f 26 -p Φ

lud -s Φ

csr† -i Ψ

Ψ = createcsr -n Φ -d 5000△

fft Φ

dwt -l 3 Φ-gum.ppm

srad Φ1 Φ2 0 127 0 127 0.5 1

crc -i 1000 Φ.txt

nw Φ 10
gem Φ 80 1 0
n-queens Φ

hmm -n Φ1-s Φ2-v s
△�e -d 5000 indicates density of the matrix in

this instance 0.5% dense (or 99.5% sparse).
† �e csr benchmark loads a �le generated by
createcsr according to the workload size pa-
rameter Φ; this �le is represented by Ψ.

and -p 1 -d 0 -t 1 for the Nvidia GeForce GTX 1080 GPU. Each
application is run as Benchmark Device -- Arguments, where
Arguments is taken from Table 3 at the selected scale of Φ. For re-
producibility the entire set of Python scripts with all problem sizes
is available in a GitHub repository [13]. Where Φ is substituted
as the argument for each benchmark, it is taken as the respective
scale from Table 2 and is inserted into Table 3.

5 RESULTS
�e primary purpose of including these time results is to demon-
strate the bene�ts of the extensions made to the OpenDwarfs Bench-
mark suite. �e use of LibSciBench allowed high resolution tim-
ing measurements over multiple code regions. To demonstrate
the portability of the Extended OpenDwarfs benchmark suite, we

present results from 11 varied benchmarks running on 15 di�erent
devices representing four distinct classes of accelerator. For 12 of
the benchmarks, we measured multiple problem sizes and observed
distinctly di�erent scaling pa�erns between devices. �is under-
scores the importance of allowing a choice of problem size in a
benchmarking suite.

5.1 Time
We �rst present execution time measurements for each benchmark,
starting with the Cyclic Redundancy Check crc benchmark which
represents the Combinational Logic dwarf.

Figure 1 shows the execution times for the crc benchmark over
50 iterations on each of the target architectures, including the KNL.
�e results are colored according to accelerator type: red for CPU
devices, green for consumer GPUs, blue for HPC GPUs, and purple
for the KNL MIC. Execution times for crc are lowest on CPU-type
architectures, probably due to the low �oating-point intensity of
the CRC computation [14, Ch. 6]. Excluding crc, all the other
benchmarks perform best on GPU type accelerators; furthermore,
the performance on the KNL is poor due to the lack of support for
wide vector registers in Intel’s OpenCL SDK. We therefore omit
results for KNL for the remaining benchmarks.

Figures 2 and 3 shows the distribution of kernel execution times
for the remaining benchmarks. Some benchmarks execute more
than one kernel on the accelerator device; the reported iteration
time is the sum of all compute time spent on the accelerator for
all kernels. Each benchmark corresponds to a particular dwarf:
Figure 2a (kmeans) represents the MapReduce dwarf, Figure 2b
(lud) represents the Dense Linear Algebra dwarf, Figure 2c (csr)
represents Sparse Linear Algebra, Figure 2d (dwt) and Figure 2e
(fft) represent Spectral Methods, Figure 3a (srad) represents the
Structured Grid dwarf and Figure 3b (nw) represents Dynamic Pro-
gramming.

Finally, Figure 4 presents results for the three applications with
restricted problem sizes and only one problem size is shown. �e
N-body Methods dwarf is represented by (gem) and the results are
shown in Figure 4a, the Backtrack & Branch and Bound dwarf is
represented by the (nqueens) application in Figure 4b and (hmm)
results in Figure 4c represent the Graphical Models dwarf.

Examining the transition from tiny to large problem sizes (from
le� to right) in Figure 3a shows the performance gap between
CPU and GPU architectures widening for srad – indicating codes
representative of structured grid dwarfs are well suited to GPUs.

In contrast, Figure 3b shows Dynamic Programming problems
have performance results tied to micro-architecture or OpenCL
runtime support and can not be explained solely by considering
accelerator type. For instance, the Intel CPUs and NVIDIA GPUs
perform comparably over all problem sizes, whereas all AMD GPUs
exhibit worse performance as size increases.

For most benchmarks, the coe�cient of variation in execution
times is much greater for devices with a lower clock frequency,
regardless of accelerator type. While execution time increases with
problem size for all benchmarks and platforms, the modern GPUs
(Titan X, GTX1080, GTX1080Ti, R9 Fury X and RX 480) performed
relatively be�er for large problem sizes, possibly due to their greater
second-level cache size compared to the other platforms. A notable

5



0.0

0.1

0.2

0.3

0.4

0.5

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

Xeo
n 

Phi 
72

10

tim
e 

(m
s)

tiny

0

1

2

3

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

Xeo
n 

Phi 
72

10

tim
e 

(m
s)

small

0

25

50

75

100

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

Xeo
n 

Phi 
72

10

tim
e 

(m
s)

medium

0

200

400

600

800

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

Xeo
n 

Phi 
72

10

tim
e 

(m
s)

large

accelerator type CPU Consumer GPU HPC GPU MIC

Figure 1: Kernel execution times for the crc benchmark on di�erent hardware platforms

exception is k-means for which CPU execution times were compa-
rable to GPU, which re�ects the relatively low ratio of �oating-point
to memory operations in the benchmark.

Generally, the HPC GPUs are older and were designed to alleviate
global memory limitations amongst consumer GPUs of the time.
(Global memory size is not listed in Table 1.) Despite their larger
memory sizes, the clock speed of all HPC GPUs is slower than all
evaluated consumer GPUs. While the HPC GPUs (devices 7-9, in
blue) outperformed consumer GPUs of the same generation (devices
10-13, in green) for most benchmarks and problem sizes, they were
always beaten by more modern GPUs. �is is no surprise since all
selected problem sizes �t within the global memory of all devices.

A comparison between CPUs (devices 1-3, in red) indicates the
importance of examining multiple problem sizes. Medium-sized
problems were designed to �t within the L3 cache of the i7-6700K
system, and this conveniently also �ts within the L3 cache of the
Xeon E5-2697 v2. However, the older i5-3550 CPU has a smaller L3
cache and exhibits worse performance when moving from small to
medium problem sizes, and is shown in Figures 2b, 2d, 2e and 3a,

Increasing problem size also hinders the performance in certain
circumstances for GPU devices. For example, Figure 3b shows
a widening performance gap over each increase in problem size
between AMD GPUs and the other devices.

Predicted application properties for the various Berkeley Dwarfs
are evident in the measured runtime results. For example, Asanović
et al. [1] state that applications from the Spectral Methods dwarf
is memory latency limited. If we examine dwt and fft – the ap-
plications which represent Spectral Methods – in Figure 2d and
Figure 2e respectively, we see that for medium problem sizes the
execution times match the higher memory latency of the L3 cache
of CPU devices relative to the GPU counterparts. �e trend only
increases with problem size: the large size shows the CPU devices
frequently accessing main memory while the GPUs’ larger memory
ensures a lower memory access latency. It is expected if had we
extended this study to an even larger problem size that would not
�t on GPU global memory, much higher performance penalties
would be experienced over GPU devices, since the PCI-E intercon-
nect has a higher latency than a memory access to main memory
from the CPU systems. As a further example, Asanović et al. [1]

state that the Structured Grid dwarf is memory bandwidth limited.
�e Structured Grid dwarf is represented by the srad benchmark
shown in Figure 3a. GPUs exhibit lower execution times than CPUs,
which would be expected in a memory bandwidth-limited code as
GPU devices o�er higher bandwidth than a system interconnect.

5.2 Energy
In addition to execution time, we are interested in di�erences in en-
ergy consumption between devices and applications. We measured
the energy consumption of benchmark kernel execution on the
Intel Skylake i7-6700k CPU and the Nvidia GTX1080 GPU, using
PAPI modules for RAPL and NVML. �ese were the only devices
examined since collection of PAPI energy measurements (with Lib-
SciBench) requires superuser access, and these devices were the
only accelerators available with this permission. �e distributions
were collected by measuring solely the kernel execution over a
distribution of 50 runs. RAPL CPU energy measurements were col-
lected over all cores in package 0 rapl:::PP0 ENERGY:PACKAGE0.
NVML GPU energy was collected using the power usage readings
nvml:::GeForce GTX 1080:power for the device and presents the
total power draw (+/-5 wa�s) for the entire card – memory and
chip. Measurements results converted to energy J from their origi-
nal resolution nJ and mW on the CPU and GPU respectively.

From the time results presented in Section 5.1 we see the largest
di�erence occurs between CPU and GPU type accelerators at the
large problem size. �us we expect that the large problem size
will also show the largest di�erence in energy.

Figures 5a and 5b show the kernel execution energy for several
benchmarks for the large size. All results are presented in joules.
�e box plots are coloured according to device: red for the Intel
Skylake i7-6700k CPU and blue for the Nvidia GTX1080 GPU. �e
logarithmic transformation has been applied to Figure 5b to em-
phasise the variation at smaller energy scales (< 1 J), which was
necessary due to small execution times for some benchmarks. In
future this will be addressed by balancing the amount of computa-
tion required for each benchmark, to standardize the magnitude of
results.

All the benchmarks use more energy on the CPU, with the excep-
tion of crc which as previously mentioned has low �oating-point

6



0

5

10

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

tiny

0.0

0.5

1.0

1.5

2.0

2.5

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

small

0

5

10

15

20

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

medium

0

10

20

30

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

large(a) kmeans

0.0

0.3

0.6

0.9

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

0.0

0.3

0.6

0.9

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

0

2

4

6

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

0

20

40

60

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

(b) lud

0.00

0.05

0.10

0.15

0.20

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

0.0

0.1

0.2

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

0.0

0.5

1.0

1.5

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

0.0

0.5

1.0

1.5

2.0

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

(c) csr

0.0

0.2

0.4

0.6

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

0.0

0.2

0.4

0.6

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

0

3

6

9

12

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

0

25

50

75

100

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

(d) dwt

0.0

0.1

0.2

0.3

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

0.0

0.1

0.2

0.3

0.4

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

0

5

10

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

0

20

40

60

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

(e) fft

accelerator type CPU Consumer GPU HPC GPU

Figure 2: Benchmark kernel execution times on di�erent hardware platforms

7



0.00

0.05

0.10

0.15

0.20

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

tiny

0.0

0.1

0.2

0.3

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

small

0

2

4

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

medium

0

10

20

30

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

large(a) srad

0.0

0.2

0.4

0.6

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

0.0

0.2

0.4

0.6

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

0.0

0.2

0.4

0.6

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

0.0

2.5

5.0

7.5

10.0

12.5

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

(b) nw

accelerator type CPU Consumer GPU HPC GPU

Figure 3: Benchmark kernel execution times on di�erent hardware platforms (continued)

0.0

0.1

0.2

0.3

0.4

0.5

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m

K40
m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

(a) gem

0.0

0.3

0.6

0.9

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m

K40
m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

(b) nqueens

0

1

2

3

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n 

X

GTX 1
08

0

GTX 1
08

0 
Ti

K20
m

K40
m

Fire
Pro

 S
91

50

HD 7
97

0

R9 
29

0X

R9 
29

5x
2

R9 
Fur

y X

RX 4
80

tim
e 

(m
s)

(c) hmm

accelerator type

CPU
Consumer GPU
HPC GPU

Figure 4: Single problem sized benchmarks of kernel execution times on di�erent hardware platforms

intensity and so is not able to make use of the GPU’s greater �oating-
point capability. Variance with respect to energy usage is larger on
the CPU, which is consistent with the execution time results.

6 CONCLUSIONS
We have performed essential curation of the OpenDwarfs bench-
mark suite. We improved coverage of spectral methods by adding a
new Discrete Wavelet Transform benchmark, and replacing the pre-
vious inadequate fft benchmark. All benchmarks were enhanced
to allow multiple problem sizes; in this paper we report results for

four di�erent problem sizes, selected according to the memory hier-
archy of CPU systems as motivated by Marjanović’s �ndings [18].
�ese can now be easily adjusted for next generation accelerator
systems using the methodology outlined in Section 4.4.

We ran many of the benchmarks presented in the original Open-
Dwarfs [15] paper on current hardware. �is was done for two
reasons, �rstly to investigate the original �ndings to the state-
of-the-art systems and secondly to extend the usefulness of the
benchmark suite. Re-examining the original codes on range of
modern hardware showed limitations, such as the �xed problem
sizes along with many platform-speci�c optimizations (such as local

8



0

50

100

150

200

kmeans lud csr fft dwt gem srad crc

applications

en
er

gy
 (

j) device

i7−6700k

gtx1080

(a) Kernel execution energy

0.02

0.2

2

20

200

kmeans lud csr fft dwt gem srad crc

applications

en
er

gy
 (

j) device

i7−6700k

gtx1080

(b) Log of kernel execution energy

Figure 5: Benchmark kernel execution energy (large problem size) on Core i7-6700K and Nvidia GTX1080

work-group size). In the best case, such optimizations resulted in
sub-optimal performance for newer systems (many problem sizes
favored the original GPUs on which they were originally run). In
the worst case, they resulted in failures when running on untested
platforms or changed execution arguments.

Finally a major contribution of this work was to integrate Lib-
SciBench into the benchmark suite, which adds a high precision
timing library and support for statistical analysis and visualization.
�is has allowed collection of PAPI, energy and high resolution
(sub-microsecond) time measurements at all stages of each appli-
cation, which has added value to the analysis of OpenCL program
�ow on each system, for example identifying overheads in kernel
construction and bu�er enqueuing. �e use of LibSciBench has also
increased the reproducibility of timing data for both the current
study and on new architectures in the future.

7 FUTUREWORK
We plan to complete analysis of the remaining benchmarks in
the suite for multiple problem sizes. In addition to comparing
performance between devices, we would also like to develop some
notion of ‘ideal’ performance for each combination of benchmark
and device, which would guide e�orts to improve performance
portability. Additional architectures such as FPGA, DSP and Radeon
Open Compute based APUs – which further breaks down the walls
between the CPU and GPU – will be considered.

Each OpenCL kernel presented in this paper has been inspected
using the Architecture Independent Workload Characterization
(AIWC). Analysis using AIWC helps understand how the structure

of kernels contributes to the varying runtime characteristics be-
tween devices that are presented in this work, and will be published
in the future.

Certain con�guration parameters for the benchmarks, e.g. local
workgroup size, are amenable to auto-tuning. We plan to integrate
auto-tuning into the benchmarking framework to provide con�-
dence that the optimal parameters are used for each combination
of code and accelerator.

�e original goal of this research was to discover methods for
choosing the best device for a particular computational task, for
example to support scheduling decisions under time and/or energy
constraints. Until now, we found the available OpenCL benchmark
suites were not rich enough to adequately characterize performance
across the diverse range of applications and computational devices
of interest. Now that a �exible benchmark suite is in place and
results can be generated quickly and reliably on a range of accel-
erators, we plan to use these benchmarks to evaluate scheduling
approaches.

ACKNOWLEDGEMENTS
We thank our colleagues at �e University of Bristol’s High Perfor-
mance Computing Research group for the use of “�e Zoo” Research
cluster for experimental evaluation.

REFERENCES
[1] Krste Asanović, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,

Parry Husbands, Kurt Keutzer, David A Pa�erson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Kathy Yelick. 2006. �e landscape of parallel
computing research: A view from Berkeley. Technical Report UCB/EECS-2006-183.
EECS Department, University of California, Berkeley.

9



[2] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Robert L Carter,
Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, �omas A Lasinski, Rob S
Schreiber, et al. 1991. �e NAS parallel benchmarks. Internat. J. Supercomputing
Applic. 5, 3 (1991), 63–73.

[3] Eric Bainville. 2010. OpenCL Fast Fourier Transform. (2010). h�p://www.bealto.
com/gpu-�.html

[4] Taylor Barnes, Brandon Cook, Jack Deslippe, Douglas Doer�er, Brian Friesen,
Yun He, �orsten Kurth, Tuomas Koskela, Mathieu Lobet, Tareq Malas, et al.
2016. Evaluating and optimizing the NERSC workload on Knights Landing. In
International Workshop on Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS). IEEE, 43–53.

[5] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Shea�er,
Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heteroge-
neous computing. In IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 44–54.

[6] Curt A Davey, David F Sargent, Karolin Luger, Armin W Maeder, and Timothy J
Richmond. 2002. Solvent mediated interactions in the structure of the nucleosome
core particle at 1.9Å resolution. Journal of Molecular Biology 319, 5 (2002), 1097–
1113.

[7] Tina Declerck, Katie Antypas, Deborah Bard, Wahid Bhimji, Shane Canon,
Shreyas Cholia, Helen Yun He, Douglas Jacobsen, and Nicholas J Wright Prabhat.
2016. Cori - A system to support data-intensive computing. Proceedings of the
Cray User Group (2016), 8.

[8] Todd J Dolinsky, Jens E Nielsen, J Andrew McCammon, and Nathan A Baker.
2004. PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann
electrostatics calculations. Nucleic Acids Research 32, suppl 2 (2004), W665–
W667.

[9] Michael Feldman. 2017. Cray to Deliver ARM-Powered Supercomputer to UK
Consortium. TOP500 Supercomputer Sites (Jan 2017). h�ps://www.top500.org/
news/cray-to-deliver-arm-powered-supercomputer-to-uk-consortium/

[10] Michael Feldman. 2017. TOP500 Meanderings: Supercomputers Take Big Green
Leap in 2017. TOP500 Supercomputer Sites (Sep 2017). h�ps://www.top500.org/
news/top500-meanderings-supercomputers-take-big-green-leap-in-2017/

[11] Juan Gómez-Luna, Izzat El Hajj, Victor Chang, Li-Wen Garcia-Flores, Simon
Garcia de Gonzalo, �omas Jablin, Antonio J Pena, and Wen-mei Hwu. 2017.
Chai: Collaborative heterogeneous applications for integrated-architectures. In
IEEE International Symposium on Performance Analysis of Systems and So�ware
(ISPASS). IEEE.

[12] Torsten Hoe�er and Roberto Belli. 2015. Scienti�c benchmarking of parallel
computing systems: Twelve ways to tell the masses when reporting perfor-
mance results. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 73.

[13] Beau Johnston. 2017. OpenDwarfs. h�ps://github.com/BeauJoh/OpenDwarfs.
(2017).

[14] Anagha S Joshi. 2016. A performance focused, development friendly and model
aided parallelization strategy for scienti�c applications. Master’s thesis. Clemson
University.

[15] Konstantinos Krommydas, Wu-Chun Feng, Christos D Antonopoulos, and Niko-
laos Bellas. 2016. OpenDwarfs: Characterization of dwarf-based benchmarks on
�xed and recon�gurable architectures. Journal of Signal Processing Systems 85, 3
(2016), 373–392.

[16] M Graham Lopez, Je�rey Young, Jeremy S Meredith, Philip C Roth, Mitchel
Horton, and Je�rey S Ve�er. 2015. Examining recent many-core architectures
and programming models using SHOC. In International Workshop on Performance
Modeling, Benchmarking and Simulation of High Performance Computer Systems
(PMBS). ACM, 3.

[17] �omas Madej, Christopher J Lanczycki, Dachuan Zhang, Paul A �iessen,
Renata C Geer, Aron Marchler-Bauer, and Stephen H Bryant. 2013. MMDB
and VAST+: tracking structural similarities between macromolecular complexes.
Nucleic Acids Research 42, D1 (2013), D297–D303.

[18] Vladimir Marjanović, José Gracia, and Colin W Glass. 2016. HPC benchmarking:
problem size ma�ers. In International Workshop on Performance Modeling, Bench-
marking and Simulation of High Performance Computer Systems (PMBS). IEEE,
1–10.

[19] Ma� Martineau, Simon McIntosh-Smith, Carlo Bertolli, Arpith C Jacob, Samuel F
Antao, Alexandre Eichenberger, Gheorghe-Teodor Bercea, Tong Chen, Tian Jin,
Kevin O’Brien, et al. 2016. Performance analysis and optimization of Clang’s
OpenMP 4.5 GPU support. In International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS).
IEEE, 54–64.

[20] Gaurav Mitra, Eric Stotzer, Ajay Jayaraj, and Alistair P Rendell. 2014. Implemen-
tation and optimization of the OpenMP accelerator model for the TI Keystone II
architecture. In International Workshop on OpenMP. Springer, 202–214.

[21] Timothy Morgan. 2016. Inside Japan’s Future Exascale ARM Su-
percomputer. (Jun 2016). h�ps://www.nextplatform.com/2016/06/23/
inside-japans-future-exa�ops-arm-supercomputer/

[22] Timothy Morgan. 2016. NVLink Takes GPU Acceleration To �e Next Level.
�e Next Platform (May 2016). h�ps://www.nextplatform.com/2016/05/04/

nvlink-takes-gpu-acceleration-next-level/
[23] Timothy Morgan. 2017. �e Power9 Rollout Begins With Summit And Sierra

Supercomputers. �e Next Platform (Sep 2017). h�ps://www.nextplatform.com/
2017/09/19/power9-rollout-begins-summit-sierra/

[24] Philip J Mucci, Shirley Browne, Christine Deane, and George Ho. 1999. PAPI:
A portable interface to hardware performance counters. In Proceedings of the
Department of Defense HPCMP users group conference, Vol. 710.

[25] OpenDwarfs 2017. OpenDwarfs (base version). h�ps://github.com/vtsynergy/
OpenDwarfs/commit/31c099a�5343e93ba9e8c3cd42bee5ec536aa93. (26 Feb
2017).

[26] Michel F Sanner, Arthur J Olson, and Jean-Claude Spehner. 1996. Reduced
surface: an e�cient way to compute molecular surfaces. Biopolymers 38, 3 (1996),
305–320.

[27] Mitsunori Shiroishi, Mizuho Kajikawa, Kimiko Kuroki, Toyoyuki Ose, Daisuke
Kohda, and Katsumi Maenaka. 2006. Crystal structure of the human monocyte-
activating receptor, “Group 2” leukocyte Ig-like receptor A5 (LILRA5/LIR9/ILT11).
Journal of Biological Chemistry 281, 28 (2006), 19536–19544.

[28] Yifan Sun, Xiang Gong, Kavyan Amir, Amir Kavyan Ziabari, Leiming Yu, Xiangyu
Li, Saoni Mukherjee, Carter McCardwell, Alejandro Villegas, and David Kaeli.
2016. Hetero-Mark, a benchmark suite for CPU-GPU collaborative computing.
In IEEE International Symposium on Workload Characterization (IISWC).

[29] Lu Yu, Seung-Joo Lee, and Vivien C Yee. 2015. Crystal structures of polymorphic
prion protein β1 peptides reveal variable steric zipper conformations. Biochem-
istry 54, 23 (2015), 3640–3648.

10

http://www.bealto.com/gpu-fft.html
http://www.bealto.com/gpu-fft.html
https://www.top500.org/news/cray-to-deliver-arm-powered-supercomputer-to-uk-consortium/
https://www.top500.org/news/cray-to-deliver-arm-powered-supercomputer-to-uk-consortium/
https://www.top500.org/news/top500-meanderings-supercomputers-take-big-green-leap-in-2017/
https://www.top500.org/news/top500-meanderings-supercomputers-take-big-green-leap-in-2017/
https://github.com/BeauJoh/OpenDwarfs
https://www.nextplatform.com/2016/06/23/inside-japans-future-exaflops-arm-supercomputer/
https://www.nextplatform.com/2016/06/23/inside-japans-future-exaflops-arm-supercomputer/
https://www.nextplatform.com/2016/05/04/nvlink-takes-gpu-acceleration-next-level/
https://www.nextplatform.com/2016/05/04/nvlink-takes-gpu-acceleration-next-level/
https://www.nextplatform.com/2017/09/19/power9-rollout-begins-summit-sierra/
https://www.nextplatform.com/2017/09/19/power9-rollout-begins-summit-sierra/
https://github.com/vtsynergy/OpenDwarfs/commit/31c099aff5343e93ba9e8c3cd42bee5ec536aa93
https://github.com/vtsynergy/OpenDwarfs/commit/31c099aff5343e93ba9e8c3cd42bee5ec536aa93

	Abstract
	1 Introduction
	2 Enhancing the OpenDwarfs Benchmark Suite
	3 Related Work
	4 Experimental Setup
	4.1 Hardware
	4.2 Software
	4.3 Measurements
	4.4 Setting Sizes

	5 Results
	5.1 Time
	5.2 Energy

	6 Conclusions
	7 Future Work
	References

