
Synchronized Network Snapshots

Nofel Yaseen
University of Pennsylvania
nyaseen@seas.upenn.edu

John Sonchack
University of Pennsylvania
jsonch@seas.upenn.edu

Vincent Liu
University of Pennsylvania

liuv@seas.upenn.edu

ABSTRACT

When monitoring a network, operators rarely have a !ne-
grained and complete view of the network’s state. Instead,
today’s network monitoring tools generally only measure a
single device or path at a time; whole-network metrics are
a composition of these independent measurements, i.e., an
afterthought. Such tools fail to fully answer a wide range
of questions. Is my load balancing algorithm taking advan-
tage of all available paths evenly? How much of my network
is concurrently loaded? Is application tra"c synchronized?
These types of concurrent network behavior are challenging
to capture at !ne granularity as they involve coordination
across the entire network. At the same time, understanding
them is essential to the design of network switches, archi-
tectures, and protocols.

This paper presents the design of a Synchronized Network
Snapshot protocol. The goal of our primitive is the collection
of a network-wide set of measurements. To ensure that the
measurements are meaningful, our design guarantees they
are both causally consistent and approximately synchronous.
We demonstrate with a Wedge100BF implementation the
feasibility of our approach as well as its many potential uses.

CCS CONCEPTS

• Networks → Network measurement; Network mon-

itoring; Programmable networks;

KEYWORDS

Whole-network measurement, Network snapshots

ACM Reference Format:

Nofel Yaseen, John Sonchack, and Vincent Liu. 2018. Synchronized

Network Snapshots. In SIGCOMM ’18: SIGCOMM 2018, August 20–

25, 2018, Budapest, Hungary. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3230543.3230552

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for pro!t or commercial advantage and that

copies bear this notice and the full citation on the !rst page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci!c

permission and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

© 2018 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-5567-4/18/08. . . $15.00

https://doi.org/10.1145/3230543.3230552

1 INTRODUCTION

As networks continue to grow in size and bandwidth, a de-
tailed understanding of their overall behavior is increasingly
di"cult to come by. Consider the question: does my net-
work’s load balancing protocol balance the network’s load?
A de!nitive answer to this question (and others like it) is out
of the scope of traditional measurement tools.
In order to answer it, we would need visibility into the

!ne-grained behavior of the entire network. Instead, the tar-
get of traditional tools like switch counter polling and packet
sampling are individual entities in the network. Comparison
of measurements of di#erent entities is di"cult beyond just
averages and long-term behavior. Slightly better are path-
level metrics like those gathered at the end host [42], through
Explicit Congestion Noti!cation (ECN) [2], or In-band Net-
work Telemetry (INT) [22]. These path-level metrics provide
similar data as counters and packet sampling, but on the
level of entire paths; measurements from di#erent paths are,
however, still only comparable at a coarse granularity.

Thus, when faced with questions about network-wide be-
havior, operators are forced to approximate the answer using
tangential, but more easily collectible measurements. In the
case of load balancing, they might rede!ne the de!nition
of balance to a purely local metric (e.g., monitoring packet
drops or bu#er utilization for ‘high’ values) or look only at
average load. Similar workarounds exist for most questions
an operator might ask [1, 31, 42], but these approximations
can be misleading, especially in networks with bursty load
and/or high capacity [41]. The design of network switches,
architectures, and protocols depend on understanding net-
work behavior both in detail and at a network-wide scale.

This paper presents the design of a !ne-grained, accu-
rate, and precise measurement primitive that operates on
the scale of an entire network. The goal of our primitive
is the capture of a Synchronized Network Snapshot: a set of
local measurements that together provide a coherent image
of the entire network data plane at nearly a single point in
time. Enabling our work is a recent trend toward highly pro-
grammable switch data and control planes.We leverage these
tools to implement a system, Speedlight, for taking synchro-
nized network snapshots on Wedge100BF-series switches.
The implementation uses P4 and the code is open source.1

1https://github.com/eniac/Speedlight

402

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3230543.3230552&domain=pdf&date_stamp=2018-08-07

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Nofel Yaseen, John Sonchack, and Vincent Liu

Compared to more traditional measurement primitives,
synchronized network snapshots are a fundamentally dis-
tributed operation—one that involves tight coordination of
the control and data planes of multiple network devices.
Through coordination, network snapshots are able to guar-
antee both causal consistency (i.e., that the measured values
are coherent) and approximate synchronicity (i.e., that the
measurements were taken near-contemporaneously). The
primitive itself is agnostic to the type of local measurement
and supports the collection of any variable accessible from
the data plane: counters, packet samples, switch state, queue
depth, etc. It is also amenable to partial deployment.

At its core, our system is inspired by distributed snapshot
protocols [10, 23]. In a classical distributed snapshot, a snap-
shot initiator sends out a message that propagates among a
set of distributed nodes to cause them to (without stopping
the system or synchronizing clocks) take snapshots of their
local state. The guarantee provided by these protocols is that
the snapshot creates a causally consistent partition of the
system’s events. For any event e that is ‘pre-snapshot’, any
event that can be construed as causing e is also pre-snapshot.
In the context of networks, this might mean that if a snap-
shot of queue depth captures a packet p in a queue q, that p
will not be counted as part of any other queue, and further-
more that the e!ects of every send and receive that led to p
being in that particular queue at that particular time are also
included in the snapshot. For that reason, distributed snap-
shots are an attractive abstraction; however their application
to high-speed networks carries a few challenges.

First, while traditional snapshots provide a set of measure-
ments that could have happened simultaneously, one of their
primary criticisms is that they do not provide any guarantee
of how close in time the measurements occurred. Second,
snapshot protocols often make strong assumptions about the
system, e.g., that nodes are single-threaded and capable of ar-
bitrary computation, and that they are connected via reliable
FIFO channels. Real switches, on the other hand, are highly
parallel, extremely limited in their data plane processing
capabilities, and exhibit non-FIFO behavior (e.g., prioritiza-
tion, packet re-circulation, etc.). It can be di"cult to adapt
certain functionality to programmable data planes [35, 36],
and distributed snapshots are no exception.
The key insight of Speedlight is that modern switches

are two-level devices. The data plane can perform extremely
#ne-grained in-band processing of network tra"c, but is fun-
damentally limited in the type of computation and resources
available. Augmenting the data plane is a control plane with
the opposite tradeo!s.
Speedlight therefore splits the responsibility of taking

snapshots such that the data and control planes each miti-
gate the weaknesses of the other. At a high level, we #rst

break the data plane of each switch into small, simple compo-
nents that obey single-threaded and FIFO assumptions. The
snapshot implementation at each of these data plane compo-
nents is not fully featured, but provides two key properties:
(1) it allows for multiple simultaneous snapshot initiators
in the style of [38], and (2) it guarantees consistency and
correctness in all cases, regardless of data plane limitations.
The control plane CPU is then responsible for the global,
PTP-coordinated initiation of a snapshot at all data plane
components, as well as the stitching together of results.
The end result of our system is that all of the individual

measurements in a synchronized network snapshot are not
only consistent, they are guaranteed to occur almost con-
temporaneously. Our current implementation guarantees a
drift of at most 10s of microseconds (less than a single RTT
in most cases); drift can be decreased further using more ad-
vanced time synchronization techniques [25]. In addition to
presenting a detailed design and implementation, we demon-
strate the primitive on real workloads. To summarize, our
work makes the following contributions:

• We present a Synchronized Network Snapshot algorithm
for the collection of distributed state within the data
plane of a network. Our design provides strong guaran-
tees regarding both the semantics of the measured values
and their timeliness.

• We then present the design and implementation of Speed-
light, a practical realization of the Synchronized Network
Snapshot algorithm. Our prototype, built for Wedge-
100BF-series switches, is able to achieve microsecond-
level synchronization of global network snapshots.

• Finally, we use our system to measure real workloads
running on our testbed. This measurement study demon-
strates both feasibility and usefulness of our approach.

2 BACKGROUND AND MOTIVATION

Network measurement is a method through which we seek
to understand network behavior. This can be in the context
of designing new protocols/architectures, evaluating existing
ones, or diagnosing issues in live networks. Over the years,
a wide range of network measurement tools and analyses
have been created to assist in the aforementioned tasks.

Measuring path-level properties.One common approach
is the use of end-to-end or $ow/path-level measurement
tools. Extremely $exible, these tools enable observers to eval-
uate, from the network edge, the aggregate e!ect of the
network in the context of application-level measures like
latency, throughput, and drop rate. An advantage to this ap-
proach is that it accurately re$ects the overall experience of
application tra"c. They also often do not require additional
network support, although there are recent exceptions [2, 22].
Though e!ective for some use cases, edge vantage points

403

Synchronized Network Snapshots SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

typically lack visibility into !ne-grained network behavior

and details of the network’s structure [31].

Measuring devices. A much more !ne-grained approach is

tomeasure individual network components directly. This typ-

ically takes the form of counters or packet sampling/mirroring,

but recent proposals have explored the use of more complex

metrics like "ow-based queries, heavy-hitter analysis, and

TCP-level statistics [29, 31, 39, 40]. Direct measurement is

precise, and with su#cient device support, quite expressive.

2.1 Whole-network Measurement

Path-level and device-level metrics form the foundation of

today’s measurement tools. Unfortunately, by themselves

both approaches typically provide little to no guarantees

about the relationship between measurements, or the e$ect

of clock drift and other asynchronous behavior.

For bursty and/or high-capacity networks, even small

amounts of unattended asynchronicity can lead to large inac-

curacies inmeasurement. As an illustrative example, consider

a datacenter network. A good NTP accuracy within a LAN

is 1ms; in contrast, typical datacenter RTTs are an order of

magnitude lower, and there is evidence that tra#c bursts

can be even shorter (O(10 µs)) [41]. In e$ect, for any two

measurements of network behavior at di$erent locations,

their relationship is both tenuous and di#cult to bound. This

inaccuracy will only grow as network speeds increase.

Even within a single router, synchronized information is

not always available. Counters may be on di$erent line cards

and most counter polling mechanisms are not optimized for

polling more than one counter at a time.Without driver-level

modi!cations, polling a single counter on a modern switch

typically takes on the order of 1ms [41].

For the above reasons, measurements are not often com-

pared directly. Instead, when trying to examine network-

wide behavior, most frameworks aggregate individual mea-

surements, typically using statistical analysis over relatively

long time periods so as to skirt the issue of unsynchronized

clocks. Averaging and summation are particularly common

mechanisms. An observer can compare average utilization

of multiple components to determine how they di$er over

a given time span. They can also use a total path-level drop

count in combination with network tomography to pinpoint

lossy components. Network operators have become creative

in their techniques to obliquely measure the whole network;

however, as we will see in the next section, there are still

fundamental limitations to existing tools.

2.2 A Case for Consistency

To illustrate the importance of consistent whole-network

measurement, imagine we have the simple network depicted

in Figure 1. The network consists of two ingress routers

! "

$

(a) ‘Balanced’ Queues

! "

$

(b) ‘Unbalanced’ Queues

Figure 1: Asynchronous measurements can be mis-
leading. These diagrams show two possible measure-
ments of queue depth for x and y. In both cases, the
network could be perfectly balanced or arbitrarily
unbalanced—the measurements fail to distinguish be-
tween the two cases.

(a and b) connected to two egress routers (x and y) in an

asymmetric fashion. Even for this simple case, many critical

questions about network behavior are di#cult to answer.

1. Is the network load balanced?We begin with the ques-

tion asked in Section 1. Imagine that an operator deploys

a new load balancing protocol to a and b. How does she

evaluate its e#cacy? How would she know if there was a

performance bug in the protocol? How does she quantify

the room for improvement?

One possible solution is to sample the queue depth at x

and y; however, on their own, these samples do not answer

the above questions. Particularly in the presence of bursty

tra#c, asynchronous measurements can provide mislead-

ing results. For instance, the balanced queue measurements

shown in Figure 1a could be a result of (a) a perfectly bal-

anced network in which queue depths never di$er, (b) an

entirely unbalanced network in which one queue is always

empty, or (c) anything in between. All of the above is still

true if we observed unbalanced queues as in Figure 1b.

Common workarounds include averaging many samples

(an approach that captures biases and long-term e$ects, but

is not general) or only analyzing relative performance com-

pared to a previous solution (an approach that is not always

possible, and whose utility is limited). Instead, a set of con-

temporaneous measurements would give a more meaningful

view into the behavior of the network.

2. Where should we add capacity to the network? A re-

lated question is where an operator should add capacity to

the network, i.e., the process of network provisioning. To-

day, they might examine tail utilization or drops over every

link to identify bottlenecks in the network. Asynchronous

measurements are su#cient for this, but fail to answer many

followup questions. For instance, would adding a parallel

path alleviate congestion or is a per-link capacity upgrade

necessary? Balanced load among existing paths would indi-

cate the former, while localized hotspots would indicate the

404

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Nofel Yaseen, John Sonchack, and Vincent Liu

latter. They provide similarly limited insight into whether
alleviating one bottleneck would lead to others. Again, con-
temporaneous measurements would provide more insight
into network behavior.

3. Is tra!c synchronized? Synchronized measurements
can also assist in application-level debugging, especially in
the case of TCP incast and related performance problems.
Many of the same issues from the previous questions also
apply here. Today, detection of synchronized behavior is
typically done either empirically (e.g., testing if added jitter
in TCP sends alleviates the problem), or obliquely (e.g., test-
ing for characteristics of incast like high !ow count, TCP
timeouts, and drops [31, 42]). These workarounds are both
inaccurate and only possible after performance has already
been impacted. We argue that a whole-network measure-
ment primitive is a more natural and e"ective alternative.

4. What is the global forwarding state? Finally, a classic
problem in networking is the detection of bad forwarding
state. Forwarding loops are the canonical example of an un-
desirable network state that is di#cult to detect, especially
if the loops are transient and/or !apping. This class of prob-
lems have taken a newfound importance in the context of
RDMA and RoCE. RoCE’s PFC mechanisms can cause net-
work deadlocks, not only when there are routing loops, but
in many other cases as well [17]. For a general method of ver-
ifying and diagnosing these issues, a consistent snapshot is
crucial—otherwise we can observe states that are impossible.

3 OVERVIEW

We seek to design a measurement primitive that captures
a set of measurements representing a meaningful view of
the whole network as it appears at a single point in time.
We note that in pursuit of this goal, a truly simultaneous
network-wide snapshot is impossible without either freezing
the network or using prohibitively expensive hardware like
atomic clocks. Instead, our goal is a snapshot primitive with
the following two properties:

• Causal consistency: If a measurement in snapshot S in-
cludes the e"ect of event e (e.g., a packet reception), S
also includes the e"ects of every event that led to e .

• Near synchronicity: The time di"erence between every
pair of measurements in the snapshot is guaranteed to
be at most d , where d < RTT . Our prototype guarantees
d < 100 µs, even for large networks.

Rather than capturing the true instantaneous behavior, i.e.,
what one would have seen if we froze time to examine the
network, causal consistency provides a record of what could
have happened. Augmented with a tight bound on the maxi-
mum jitter of the snapshot, we argue that the combination
of these two requirements preserves most useful metrics.

Architecture. Our design for synchronized network snap-
shots involves three types of entities: data-plane process-
ing units of which each switch/router can have many, con-
trol planes running at each device, and snapshot observers
running on hosts connected to the network. Our design al-
lows for partial deployment (Section 10) as well as a wide
range of networking technologies and con$gurations. It is
also agnostic to the measured data—any value accessible at

line rate in the data plane can be snapshotted. It is achieves
all of this with minimal additional state and overhead.

Protocol. At the core of our design is a modi$ed version of
the Chandy-Lamport snapshot algorithm. Originally created
in the context of distributed systems, snapshots seek to cap-
ture the global state of a system without a common clock
or shared memory, and without a"ecting the operation of
the system itself. What Chandy and Lamport proposed was
a protocol in which an initiator can trigger a cascade of mes-
sages that, with causal consistency, partitions the system’s
events into ‘pre-snapshot’ and ‘post-snapshot’, then collects
the state of every node and channel at the boundary.

There are two key di"erences between our version and the
original. First, while most snapshot implementations begin
with a single initiator, snapshots in our system are initiated
at all nodes simultaneously. Second, our design is necessar-
ily bipartite. Modern control planes, typically running on
a general purpose CPU, can easily implement a fully fea-
tured snapshot protocol, but in terms of consistency, they
are no better than a remote host. Recent proposals for pro-
grammable data planes, on the other hand, more closely
adhere to the assumptions of the Chandy-Lamport protocol,
but today’s ASICs have limited functionality/resources. By
leveraging both, we seek to mask each plane’s de$ciencies
with the other’s strengths—neither is su#cient on its own.

Operation.ASynchronizedNetwork Snapshot begins humbly:
with a host acting as a snapshot observer. The observer broad-
casts a request to every device in the network to take a snap-
shot of a given metric at a given time in the future. The con-
trol planes running on every device then coordinate among
themselves using a protocol like PTP to achieve the synchro-
nized, network-wide initiation of a data plane snapshot. The
data plane, where processing elements most closely adhere
to the requirements of Chandy-Lamport, implements the
core of a multi-initiator snapshot protocol, while the control
plane $lls in missing pieces of the protocol as necessary.

4 NETWORK SNAPSHOT ALGORITHM

Before we describe the detailed design of our system for
Synchronized Network Snapshots, we $rst introduce the
design of an idealized data plane snapshot algorithm. In
Sections 5 and 6, we describe how we adapt this algorithm
to current hardware.

405

Synchronized Network Snapshots SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

!"#$%&&'()*

+(',*-.

!"#$%&&'()*

+(',*/.

!"#$%&&'()*

+(',*0.

1()"%&& .)"%&&

!"#$%&&'()*

+(',*-1

!"#$%&&'()*

+(',*/1

!"#$%&&'()*

+(',*01

!#",*-

!#",*/

!#",*0

Figure 2: A conceptual model of a router in a network
snapshot. At the lowest layer are the ingress/egress
processing units of individual ports. Connecting the
ingress and egress ports are unidirectional FIFO chan-
nels. Multiple channels may exist in the case of Class-
of-Service queues (two in the diagram, represented by
solid red and dotted blue arrows).

4.1 System Model

Abstractly, a network is a collection of switches and routers.
Each switch or router can be subdivided at many di!erent
levels. At the highest level, modern switches will often con-
tain one or more line cards, each line card being responsible
for one or more ports. The ports can be subdivided further
into ingress and egress processing units (see Figure 2), al-
though in some designs, multiple logical processing units can
be implemented with a single physical unit. Regardless, the
per-port, per-direction processing unit forms the fundamen-
tal building block of packet processing: despite aggressive
amounts of parallelism, for a single port and single direction,
processing is guaranteed to be linearizable.
Connecting the ports are unidirectional communication

channels. Within the device, the ingress processing unit of
each port is logically connected to the egress processing unit
of every other port.2 These connections can potentially con-
tain multiple sub-channels when the switch is con"gured to
prioritize certain tra#c. In those cases, individual classes of
service (CoS) obey FIFO ordering, but the packets of di!er-
ent service classes can be interleaved. Between devices are
physical links that connect the egress processing unit of one
port to an ingress unit on a di!erent network device.
In modern Ethernet, there is only one device sitting on

either end of the channel. In other types of networks or in
partial deployment scenarios, a logical channel exists be-
tween every connected egress and ingress.

4.2 Protocol

The original Chandy-Lamport algorithm relied on a few key
assumptions: linearizable nodes, simplex FIFO channels, no

2Some devices allow for more complex internal packet communication,

e.g., recirculation. If con"gured, those channels can be handled by adding

additional logical channels to our model.

• state: Local state to be snapshotted.

• snaps[]: Set of snapshotted state.

• sid: Current snapshot ID. Starts at 0.

− lastSeen[]: The last IDs seen from each upstream neighbors.

1 Function onReceiveCS(pkt):
2 if pkt.sid > sid then
3 /* New snapshot */

4 for i ← sid + 1 to pkt.sid do
5 snaps[i]← state

6 sid← pkt.sid

7 else if pkt.sid < sid then
8 /* In-$ight packet */

9 for i ← pkt.sid + 1 to sid do
10 Update channel state of snaps[i] with pkt

11 lastSeen[pkt.sender]← pkt.sid

12 All snapshots up to min(lastSeen[*]) are complete

13 Update state and set pkt.sid← sid

14 Function onReceiveNoCS(pkt):
15 if pkt.sid > sid then
16 for i ← sid + 1 to pkt.sid do
17 snaps[i]← state

18 sid← pkt.sid

19 All snapshots up to sid are complete

20 Update state and set pkt.sid← sid

Figure 3: Per-processing-unit pseudocode for our ide-
alized network snapshot protocol (w/ and w/o channel
state). The match-action approximation and other de-
tails are described in Sections 5 and 6. Global state pre-
ceded by ‘−’ is only necessary for channel state.

message drops, and bounded delay. When considering a net-
work of routers, few if any of these assumptions hold. Instead,
our network snapshot protocol operates over the network
of per-port, per-direction processing units connected by log-
ical communication channels (either a physical link or an
internal, logical CoS queue). This formulation gives us a
distributed system of linearizable nodes connected by FIFO
channels. To handle drops and delays, we take inspiration
from subsequent work (e.g., Li et. al. [27]) and classical net-
work assumptions. While snapshot protocols exist for other,
more relaxed system models, they typically require massive
storage requirements, delaying of messages, or they limit
the gathered state to packet/byte counts.

Figure 3 depicts our algorithm in pseudocode. Every pro-
cessing unit keeps track of its current snapshot ID, s , initial-
ized to 0. They also keep track of the local state that is the
target of the snapshot. Note that this requires snapshots of
shared state (e.g., a switch-wide packet counter) be taken as
a set of local snapshots or re-implemented as local state.

Every packet carries a snapshot ID "eld, sp that indicates
the epoch from which it was sent (similar to [27]). ‘Piggy-
backing’ of markers on every packet ensures that snapshot

406

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Nofel Yaseen, John Sonchack, and Vincent Liu

!"#$%&'

()*+%&,

--'

.&$#&,'

/,&0&+%

1

!"#$%&'

--'2$0%'

-&&+

3&$#'--'

2$0%'-&&+

()4"$,&'

/$56&%

7'2)5$8'

--'9:
9+;%;$%&'

<&='--

!"#$%&'--'
--'2$0%'

-&&+'

(>$+?

@;88'--'

.&$#&,

A##'--'

.&$#&,

-&%'B?,&00'

/),%

C&0

<)

/D2

/E2

C&0

<)

9+;%;$%;)+'

@,)4'

(/!1

C&0

<)
/6%';+

(8)+&'<)%;FG'

%)'(/!'

B?,&00

Figure 4: Pipeline of an ingress snapshot processing unit. Shaded boxes involve stateful registers.

!"#$%

&'()*+

,-.+.'+.#-%

/"#0%

1&23

4*5

6#

2$7'+*%

88%9'5+%

8**-

1#0$'"*%

&'()*+

:%9#(';%

88%,!
,-.+.'+*%

6*<%88

2$7'+*%88%

88%9'5+%

8**-%

1='->*73

&?9

&@9

4*5

6#

4*5

6#

A*0#B*%

88%C*'7*"

D>"*55.->%

+#%D-7%

=#5+32$7'+*%

1#E-+*"

&)+%.-

/.;;%88%

C*'7*"

1;#-*%6#+.FG%

+#%1&2%

D>"*55

Figure 5: An egress processing unit. Shaded boxes involve stateful registers. Not shown is the CPU egress path.

ID updates are resilient to packet loss. On receipt of a packet,
processing units compare the packet’s carried snapshot ID
with their local ID. If sp > s , the upstream neighbor has
begun a new snapshot, and the current node should as well.
The local state is immediately saved and the local ID is up-
dated (s ← sp). If, on the other hand, sp < s , the packet was
in-!ight when the snapshot occurred, and should therefore
be included in the channel’s state.
The speci"cs of how channel state should be recorded

is metric-dependent. For instance, a network-wide packet
count might require processing units to record the number
of packets in their queue, then add in-!ight packets to the
count as they arrive. In other cases, the operator may not
care about channel state at all (e.g., instantaneous queue
depth measurements), and can omit this step. Either way,
the processing unit sets sp ← s before forwarding. When
packets arrive with sp = s , no actions are necessary. The
above process ensures causal consistency of recorded states.

Initiating a snapshot. Snapshots can be concurrently ini-
tiated at any number of processing units by incrementing
their local snapshot ID. The a#ected processing units will tag
all subsequent packets with the incremented ID. Assuming
that the network is strongly connected and there is regular
tra$c !owing along every channel, even a single initiator
will eventually cause all processing units to take the snap-
shot. When those assumptions break down, re-initiations
may be necessary to ensure liveness. We discuss the details
and practical challenges of snapshot initiation in Section 6.

Completing a snapshot. If channel state is not important
to the measurement, a processing unit is "nished with its
snapshot as soon as it records its state and updates its local
snapshot ID. Otherwise, it is "nished when it sees that all of
its upstream neighbors have updated their ID. At that point,
there is no possibility of receiving additional in-!ight packets

(sp < s). To detect this, each processing unit stores an array
of the last seen ID from every upstream neighbor. Lines 11
and 12 in Figure 3 implement this process. With or without
channel state, a network-wide snapshot s ′ is complete when
all nodes in the system are "nished with snapshot s > s ′. As
with snapshot initiation, we discuss the practical concerns
of snapshot completion in real networks in Section 6.

Proof sketch. The proof of correctness for our algorithm
mirrors that of prior work, but we provide a brief sketch of
the proof here. For each state-a#ecting event e on node n,
e ∈ PRE (‘pre-snapshot’) if it occurs before the local snapshot
onn. The algorithm is correct if, for all e ∈ PRE, if e ′ happens
causally before e , then e ′ ∈ PRE.

(1) If e and e ′ are on the same processing unit, the above is
trivially true.

(2) Otherwise, e ∈ PRE ⇒ e ′ ∈ PRE by contradiction.
(a) Assume for snapshot i that e ′ ! PRE is a send of

packet p and e ∈ PRE is the matching receive.

(b) Since e ′ ! PRE, p must be carrying snapshot ID i .

(c) That is not possible since e ∈ PRE, thus there is a
contradiction.

(d) Similar logic can be applied to other relationships
between e and e ′.

5 DATA PLANE COORDINATION

This section is the "rst of two that describes in detail the
design of Speedlight. Speedlight leverages the match-action
stages and statefulmemory found in emerging programmable
ASICs such as the Barefoot To"no [8]. Using these tools, each
processing unit can execute limited computation over packet
headers/metadata using state in the form of register arrays.

Though the ASICs are powerful, their limitations and other
network-speci"c concerns make the translation from the
preceding snapshot algorithm to Speedlight di$cult. This

407

Synchronized Network Snapshots SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

section describes the design of Speedlight’s data plane while
Section 6 describes the control plane that complements it.

5.1 Packet Headers

As mentioned in Section 4.2, network snapshots require ad-
ditional header information. Speedlight does not require
host cooperation, so headers are added by the !rst snapshot-
enabled router, and removed before delivery to hosts. The
required !elds are as follows. If channel state is not desired,
items preceeded by a − may be omitted.

• Packet Type can take one of two values: initiation or
data. Most tra"c is classi!ed as data; initiation packets
are special control messages that we describe in Section 6.

• Snapshot ID is set at each hop to be the processing
unit’s current snapshot ID. Conceptually, it speci!es the
snapshot to which the send of the packet is a member,
and informs the current processing node whether the
packet is part of a new one, or in-#ight from an old one.

− Channel ID uniquely identi!es each upstream neighbor.
If there are multiple channels between neighbors, there
should be an ID for each. Our reference implementation
assumes switched Ethernet and no packet re-submission,
so for ingress processing units, there is only one upstream
neighbor (the external neighbor), and for egress units,
the number of upstream neighbors is bounded by the
number of ingress ports on the local router.

5.2 Stateful Variables

Some amount of inter-packet persistent state is also required
in each processing unit. These mirror the state in Figure 3.

• Counters store target local state of the snapshot. These
are managed separately from the snapshot protocol. This
variable corresponds to state in Figure 3.

• Snapshot ID is an integer representing the node’s cur-
rent snapshot ID. This value corresponds to sid.

• Snapshot Value[max snapshot id] stores the snap-
shoted state and, if necessary, channel state. These must
be encoded into a value that !ts into available register
space. Equivalent to snaps.

− Last Seen[# of neighbors] tracks the last snapshot ID
from each upstream neighbor. See de!nition of Chan-
nel ID for a discussion of what constitutes an upstream
neighbor in our system. Corresponds to lastSeen.

5.3 Packet Processing Procedure

Figures 4 and 5 show the operation of ingress and egress pro-
cessing units in Speedlight. Both approximate the algorithm
presented in Section 4 with a few notable di$erences.

In both types of processing units, the !rst step is to read the
target state and update it. The update process is orthogonal

to the snapshot logic, only intersecting if the target state
requires it (e.g., to ignore snapshot tra"c). The next step is
to examine the snapshot header.

The core of the snapshot processing procedure is similar to
the one described in Section 4.2. The processing unit updates
the neighbor’s last seen value and then tests to see if the
packet’s snapshot ID is less than, greater than, or equal to
the processing unit’s local ID. As mentioned in Section 4.2,
in-#ight packet handling is metric-speci!c and con!gured
by the network operator, and much of the algorithm can be
elided if channel state is not necessary.

Di!erences from the idealized algorithm. The primary
di$erences between Speedlight’s data plane and the algo-
rithm in Section 4.2 derive from hardware limitations in
high-speed programmable switches. One key limitation is
that today’s switches do not have the ability to loop through
(at line rate) intermediate snapshot IDs when the packet’s
ID and the local ID di$er by more than 1. Re-circulation
loops are not possible as they would violate FIFO ordering.
Instead, our implementation produces a complete and con-
sistent snapshot i$ the ID of all upstream neighbors and
the local processing unit di$er by at most 1. The following
section describes how we detect and mitigate inconsistency.
Another is that the space of possible snapshot IDs and

storage of the snapshot state are tightly constrained. As
such, Speedlight enables rollover of the snapshot ID to 0
after reaching the maximum ID. For this, we assume that
no ID in the system is ever ‘lapped’, i.e., that the maximum
di$erence between any two snapshot IDs in the system is
(max snapshot id − 1). This can be enforced by the snapshot
observers out-of-band. This assumption allows us to rely on
the contents of the Last Seen array as a reference to detect if
the packet’s ID and/or the local ID have rolled over.

Snapshot Noti"cations. We mask the above de!ciencies
using the control plane. Supporting that process is a noti!-
cation channel between the two planes. After any update of
either the local Snapshot ID or of any Last Seen array entry,
the data plane exports a noti!cation to the CPU to assist
in determining snapshot progress/completeness. For an up-
stream neighborn, this noti!cation includes the former value
of LastSeen[n] along with the former and new Snapshot ID.
Depending on the case, the former and new values may not
be distinct. It will become clear in the following section why
we need all four values.

6 CONTROL PLANE COORDINATION

Speedlight’s data plane is augmented with a control plane to
form a two-tier, mutualistic system in which each is respon-
sible for masking the limitations of the other. This section
examines some of the key scenarios in which the control
plane is necessary.

408

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Nofel Yaseen, John Sonchack, and Vincent Liu

!"#$%%&'"#$%%

()*

+ ,

-

Figure 6: The three ways in which a processing unit
can be induced to take a new snapshot. The initiation
can come from: (1) a neighboring device, (2) another
processing unit within the same device, or (3) from a
control plane initiation message that, for every port,
travels CPU→ingress→egress.

Synchronized snapshot initiation. One of the primary

responsibilities of Speedlight’s control plane is to initiate

snapshots in a timely fashion. At a high level, it does this

by (a) synchronizing clocks between the control planes of

di!erent network devices, and then (b) executing a global,

coordinated network snapshot initiation. Clock synchroniza-

tion is a well-studied "eld, and Speedlight leverages this

existing work. In our implementation, we use PTP, although

the choice of protocol is orthogonal to our design.

Coordinated snapshot initiation, (b), is executed using the

synchronized time. A snapshot observer "rst schedules a

snapshot i for a given time in the future by registering the

event with all device control planes. When the time comes,

the control planes broadcast a message to all local ingress

processing units. The message includes a snapshot header

with snapshot ID set to i , the newly initiated snapshot. The

ingress unit will process this snapshot header much like a

regular packet—initiating a new snapshot if i is larger than

the current snapshot ID. The control plane in this case is

treated as an additional neighbor for the last seen array,

though this value is only used for rollover detection and not

to detect snapshot completion. After processing is complete,

the ingress processing unit forwards the initiation to the

egress unit of the same port, which drops the packet after

processing. Unlike regular snapshot header processing, the

packet is not included in the update counter stage and is

never considered an in-#ight packet.

Including control plane initiation, there are three ways

by which a processing unit can be induced to take a new

snapshot. The three methods, illustrated in Figure 6, cover

normal snapshot-enabled packets from external (1) and in-

ternal (2) neighbors that have already begun the snapshot, as

well as the control plane initiation messages (3). With these

three initiation methods, Speedlight ensures a level of start-

time synchronization beyond what a similar counter polling

framework could achieve (see Section 8). That is in addition

to the consistency provided by the snapshot protocol itself.

Detecting snapshot completion and inconsistency. In a
classical distributed snapshot, a node’s local state is valid as

• lastRead[unit]: Latest "nalized snapshot for each unit.

− ctrlSnapID[unit]: Controller’s view of units’ current IDs.
− ctrlLastSeen[unit][neighbor]: Controller’s view of the last
seen array for each processing unit.

1 Function OnNotifyCS(unit, currentID, neighbor, currentLS):
2 if currentID ! ctrlSnapID[unit] then
3 /* New snapshot ID */

4 done← min(ctrlLastSeen[unit][*])

5 for i ← done + 1 to currentID do
6 Mark i as inconsistent

7 ctrlSnapID[unit]← currentID

8 if currentLS ! ctrlLastSeen[unit][neighbor] then
9 /* New last seen ID */

10 ctrlLastSeen[unit][neighbor]← currentLS

11 toRead← min(ctrlLastSeen[unit][*])

12 for i ← lastRead[unit] + 1 to toRead do
13 if i is not inconsistent then
14 Read snapshot value for i from unit

15 lastRead[unit]← toRead

16 Function OnNotifyNoCS(unit, currentID):
17 if currentID ! lastRead[unit] then
18 validValue← Read value for currentID from unit

19 for i ← currentID to lastRead[unit] + 1 do
20 value← Read snapshot value i from unit

21 If value is uninitialized use validValue, otherwise

validValue← value

22 lastRead[unit]← currentID

Figure 7: Control plane detection of complete and in-
consistent snapshots with and without channel state.
Note that min() must be rollback aware, but lastRead
can be used as a reference. Global state preceeded by
‘−’ are only necessary for channel state.

soon as it takes a local snapshot, and the state of the channel

is valid when it receives an up-to-date snapshot marker on

that channel. The global snapshot is complete when all such

state is valid. In Speedlight, the control plane is responsible

for gathering state and detecting the completion of snap-

shots. It is also responsible for detecting when snapshotted

values become inconsistent. This scenario only occurs when

channel state is required, and is not present in the original

Chandy-Lamport algorithm. Rather, it is the direct result of

the hardware limitations described in Section 5.

Figure 7 shows how a Speedlight control plane processes

snapshot noti"cations to detect completion/inconsistency

both with and without channel state.

(1) w/ Channel State: Recall that in the common case, a

processing unit is "nished with snapshot i when ∀u :

lastSeen[u] ≥ i . Hardware limitations introduce an extra

requirement: that the snapshot ID advances by exactly

1 each time. For example, if unit’s snapshot ID is 5 and

409

Synchronized Network Snapshots SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

it receives a message from the snapshot 2 epoch, ide-

ally the data plane would increment associated channel

state for snapshots 3–5. Unfortunately, current ASICs

cannot execute (at line rate) the required instructions

to keep those intermediate snapshot values consistent.

Speedlight marks them as inconsistent and handles no-

ti!cation drops conservatively.

(2) w/o Channel State: The simpler case, a processing unit

is done with a snapshot as soon as it increments its ID,

records its local state, and sends a noti!cation to the

CPU. The snapshot ID can still skip forward; however,

in this case, the CPU can infer the proper snapshot value.

See lines 19–21 in Figure 7. Note that we must check for

value initialization to account for noti!cation drops.

All values are shipped to the snapshot observer, which

assembles snapshots from all the devices with which it reg-

istered the snapshot. The observer computes completion

and executes retries. If a device fails, it may timeout and be

excluded from the global snapshot.

Ensuring liveness.An extension of the above two responsi-

bilities, the control plane is also responsible for ensuring that

snapshots are eventually initiated and completed at every

processing unit. There are two reasons why this may not

happen without assistance.

The !rst is packet drops of either the initiation message or

update noti!cations. Especially for ingress processing units

whose upstream neighbor is not snapshot enabled (e.g., a

unit connected to an end host), a dropped initiation means

that the processing unit will never advance its snapshot ID.

Dropped noti!cations can also be problematic as they may

cause snapshots to be incorrectly marked as inconsistent. To

address both issues, Speedlight control planes will resend

initiations for incomplete snapshots after a timeout. This is

safe as duplicate and outdated control plane initiations are

ignored by the data plane, and duplicate noti!cations are

dropped at the control plane. Speedlight’s control plane can

also proactively poll the data plane registers to help recover

from simple cases of noti!cation drops.

The second is a lack of tra"c when channel state is re-

quired. As completion of the snapshot is gated on receiving

an up-to-date snapshot marker from all upstream neighbors,

if there is no such tra"c on which to piggyback, the snap-

shot may never complete. This can happen due to tra"c

patterns, or it can be a natural consequence of the routing

con!guration (e.g., when using spanning trees or up-down

data center routing). Speedlight has separate mechanisms for

each situation. For a tra"c-related absence of packets, we

can inject broadcasts into the network that force propagation

of snapshot IDs. For a lack of tra"c due to network struc-

ture, operators can con!gure the removal of non-utilized

upstream neighbors from ctrlLastSeen consideration.

Node attachment. Finally, we discuss the process of adding

new devices to the network. For every snapshot, the snapshot

observer keeps a list of all currently active devices. When

adding a new device, it must be registered with the snapshot

observer before it is included in the next snapshot. New

devices will not start with the current snapshot ID. Instead

the control plane initializes all state (registers in the data

plane and tracking state at the control plane) to 0. As soon

as tra"c arrives from neighboring devices, the snapshot

will jump ahead to the current value, if it is not 0. If it does

jump ahead, the snapshot observer will ignore any spurious

snapshot completions as the device would not have been in

its expected device set when initiating the snapshot.

7 IMPLEMENTATION

We implemented a prototype of Speedlight with all of the

data plane and control plane functionality described in Sec-

tions 5 and 6 for Wedge 100BF-series switches [19]. Wedge

100BF switches are driven by the Barefoot To!no, a commod-

ity multi-Terabit data plane ASIC that integrates recent de-

signs for programmable line rate packet parsing [14], match-

action forwarding [9], and stateful processing [36].

7.1 Data Plane

The Speedlight data plane is a pipeline of P4 match-action

tables that compiles to the To!no. We created multiple ver-

sions for di#erent metrics, with and without wraparound

and channel state support. Each implementation contains

around 1000 lines of P4-14 code. Figures 4 and 5 show the

logical ingress and egress match-action pipelines, assuming

a snapshot that requires channel state.

Table 1 summarizes the key resources required by our pro-

totype, broken down by the resources’ logical functionality.

We make no guarantee of the optimality of our prototype;

the statistics represent a rough upper bound on the resource

utilization of Speedlight. Even so, the prototype occupies

less than 25% of any given type of dedicated resource—the

remainder can be used for other data plane functionality.

As Table 1 shows, the prototype utilizes 10 to 12 physical

processing stages in the To!no to satisfy sequential depen-

dencies in its control $ow. It does not prohibit those stages

from also implementing other ingress or egress data plane

functions. Anything independent of the snapshot logic, such

as forwarding or access control, can be compiled into the

same stages and operate in parallel.

Speedlight !ts well with other switch responsibilities. Its

data plane ismost expensive in terms of stateful ALUs (sALU),

used to implement operations on register arrays, e.g., updat-

ing or initializing a snapshot. This is opposite of typical data

plane functionality, which tends to apply mostly stateless

operations to packet headers.

410

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Nofel Yaseen, John Sonchack, and Vincent Liu

Variant Packet +Wrap + Chnl.

Count Around State

Computational Resources

Stateless ALUs 17 19 24

Stateful ALUs 9 9 11

Control Flow Resources

Logical Table IDs 27 35 37

Conditional Table Gateways 15 19 19

Physical Stages 10 10 12

Memory Resources

SRAM 606KB 671KB 770KB

TCAM 42KB 59KB 244KB

Table 1: Resource usage for the Speedlight data plane

on the To!no. Numbers are for a snapshot of per-port

packet counters and 64 ports.

Resource requirements for Speedlight increase with the

use of wraparound and channel state, features that require

more complex logic. Memory requirements also grow with

the number of ports in the snapshot, as the data plane must

allocate larger register arrays and tables to store and address

the per-port statistics. The con!guration shown in Table 1 is

for 64 port snapshots, the maximum number of ports that

a single processing engine in the Wedge100BF’s To!no can

support. A con!guration with wraparound and channel state

for 14 port snapshots, as used for evaluation in Section 8,

requires 638 KB of SRAM and 90KB of TCAM.

7.2 Control Plane

We wrote the snapshot control plane in Python (∼2000 lines

of code) and ran it on the switch CPU, which has a PCIe-3.0

X4 link to the To!no ASIC. The control plane uses a compiler

generated Thrift API to initialize tables, set up mirroring,

and poll register arrays. Time synchronization was done via

ptp4l and phc2sys.

The snapshot control plane receives noti!cations from

the To!no using a raw socket implemented by a kernel-

level DMA packet driver. It listens for noti!cations, which

trigger its main event handler as depicted in Figure 7. There

are alternatives to this approach, e.g., a P4 digest stream,

but we found that raw sockets made the implementation

straightforward and o"ered signi!cantly better performance.

8 EVALUATION

We evaluated Speedlight in a hardware testbed and used it to

perform measurement campaigns that study widely used dis-

tributed applications and protocols. Our testbed consists of

a Barefoot Wedge100BF-32X programmable switch with 128

25GbE ports connected to six servers with Intel(R) Xeon(R)

Silver 4110 CPUs via 25GbE links. We emulated a small leaf-

spine topology in our testbed, as depicted in Figure 8. We

!"#"

$%&#'%(

!"#"

$%&#'%(

!"#"

$%&#'%($%&#'%(

!"#"

)*'+*',

)-.#/0

$%&#'%($%&#'%(

$%&#'%($%&#'%(

Figure 8: Depiction of our testbed topology.

did this by splitting the 128 port switch into 4 fully isolated

logical switches with lower fan-outs.

As in a real deployment, the virtual switches were con-

nected with 100GbE passive copper links. At the data plane,

all forwarding tables were replicated for each virtual switch.

At the control plane, we ran duplicate versions of the pro-

tocol. To emulate clock drift between switch control planes,

snapshots were initiated based on the local system clock of

four distinct PTP-synchronized servers. With the inclusion

of network latency, our synchronization numbers therefore

represent an upper bound.

To load balance tra#c along the multiple paths in our

testbed, we implemented two di"erent algorithms alongside

the snapshot logic in the switch data plane ASIC: ECMP [16]

and $owlet switching [20].

Workload. We used three distributed applications in our

testbed. The !rst is Hadoop running a Terasort [4] bench-

mark workload with 5B rows of data. Our Hadoop instance

ran version 2.9.0 with YARN [5] on 10 mappers and 8 re-

ducers. The second is Spark’s GraphX [7] running a PageR-

ank [6] synthetic benchmark workload with 100,000 ver-

tices. Our Spark instance ran version of 2.2.1 with Yarn on

5 servers. Finally, we implemented memcache [3], running

an mc-crusher 50-key multi-get workload [13]. We popu-

lated the Hadoop and memcache instances with data during

a setup phase that was not measured.

Counters. We implemented a variety of performance coun-

ters including per-port packet and byte counters along with

queue depth measurements. However, in this section we pri-

marily focus on an exponentially-weighted moving average

(EWMA) of packet interarrival time. The EWMA counter

was implemented in two phases due to hardware limitations

on register computation:

interarrival = pkt_timestamp - last_ts[port]

last_ts[port] = pkt_timestamp

if packet_count[port] is even:

temp_ewma[port] += interarrival

else:

temp_ewma[port] /= 2

ewma[port] /= temp_ewma[port]

Underlined variables are implemented with stateful registers.

The EWMA updates on every other packet with the average

411

Synchronized Network Snapshots SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
D

F

Synchronization (us)

Switch State
Switch + Channel State
Polling

Figure 9: Synchronization of network-wide measure-

ments using snapshots and traditional polling.

interarrival of the last two packets. As shown in the code,

our implementation is functionally equivalent to an EWMA

with a decay factor of .5.

8.1 Synchronization of Network Snapshots

We begin by evaluating the synchronization properties of

Speedlight. For this, we con!gured processing units to tag

snapshot noti!cations with the current timestamp. Recall

that noti!cations are sent on any update of either the local

snapshot ID or the last seen array, i.e., on any progress in the

algorithm. In the experiment, we sent a command to each

of the four virtual control planes in our testbed to schedule

a snapshot. At the scheduled time, they sent initiations to

every processing unit (ingress and egress) under their control

as described in Section 6. Synchronization of a snapshot ID

is de!ned as the di"erence between the earliest and latest

timestamps on any noti!cation with that ID.

Figure 9 shows a CDF of synchronization for three di"er-

ent approaches: (1) traditional counter polling, (2) Speedlight

w/o channel state, and (3) Speedlight w/ channel state. In

both con!gurations of Speedlight, median synchronization

was ∼6.4 µs. The maximum synchronization delta we ob-

served was 22 µs w/o channel state, and 27 µs w/ channel

state, likely due to randomness in PTP, queuing, and sched-

uling. These values are well-within a single RTT for most

networks. As one might expect, channel state synchroniza-

tion has a longer tail as completion depends on all upstream

neighbors advancing to the current snapshot.

For comparison, we also measured the synchronization

of a typical counter polling framework where an observer

polls the statistic for each port individually via a control

plane agent that reads and returns the value on-demand. For

a full sequence of network-wide measurements, the median

di"erence between the !rst and last poll was 2.6ms.

8.2 Scalability of Speedlight

We also evaluate how Speedlight scales with the size and com-

plexity of the network. In particular, we ask two questions:

(1) how does the scale of the network a"ect the frequency

with which Speedlight can take snapshots, and (2) how does

 10

 100

 1000

 10000

4 8 16 32 64

M
a
x
im

u
m

 R
a
te

 (
H

z
)

of Ports/Router

Figure 10: Max. sustained snapshot rate before noti!-

cation queue buildup. Results are shown for a range

of router port counts and assume no channel state.

 0

 20

 40

 60

 80

 100

10 100 1000 10000
S

y
n
c
h
ro

n
iz

a
ti
o
n
 (

u
s
)

Number of Routers

Figure 11: Average synchronization of Speedlight

snapshots in larger network deployments. The snap-

shot assumes 64-port routers and no channel state.

the scale a"ect the time synchronization of those snapshots.

Storage scalability was brie#y addressed in Section 7.1.

Speedlight’s architecture lends itself well to scalability;

control planes are responsible for their own switch, and each

processing unit has at most one external neighbor regardless

of how many routers are added to the network. Instead, the

primary factor in performance is number of ports per router.

Figure 10 shows the maximum sustained snapshot fre-

quency versus router port count. In the experiment, we ini-

tiated a series of snapshots on a single switch with !xed

interval. Snapshot frequencies that were too high eventually

resulted in noti!cation drops. The graphs plot the highest

frequency without drops. Even for 64 ports (a full linecard),

Speedlight can sustain over 70 snapshots per second. Note

that the ASIC-CPU channel is more than su$cient; rather,

the bottleneck is in our unoptimized control plane processing

latency. Thus, Speedlight supports bursts of higher frequency

snapshots given a su$ciently large socket receive bu"er.

Network size primarily a"ects Speedlight’s synchroniza-

tion. Figure 11 shows average whole-network synchroniza-

tion for several large simulated networks. Our simulation

included PTP time drift, OpenNetworkLinux scheduling ef-

fects, and the latency between initiation and data plane snap-

shot execution. Distributions for all of these values were

collected from our hardware testbed. While Speedlight’s

multi-initiator design limits time drift, additional routers

412

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Nofel Yaseen, John Sonchack, and Vincent Liu

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Standard Deviation (ms)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

(a) Hadoop

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
D

F

Standard Deviation (ms)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

(b) GraphX

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Standard Deviation (us)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

(c) Memcache

Figure 12: Standard deviation of uplink load balancing in our leaf-spine topology. We compared two approaches:

!ow-based ECMP and !owlet load balancing.We tested Hadoop, GraphX, andmemcache as well as polling versus

snapshots. Note the di"erence in units on the x-axis.

and ports can make encountering tail e!ects more likely;

however, this e!ect is asymptotic and still stays under typi-

cal RTTs.

8.3 Use Case: Evaluating Load Balancing

We began this paper with a running example of a question

an operator might want to ask about a network: how well

is my load balancing protocol working? We demonstrate

Speedlight’s ability to answer this question by comparing

the performance characteristics of ECMP and Flowlet load

balancing algorithms in the presence of Hadoop, GraphX,

and memcache. In theory, Flowlet forwarding should bal-

ance load more fairly because it splits tra"c at a #ner gran-

ularity [20]. In practice, our understanding of the impact

of $owlets on load balance is limited to average utilization,

drop rate, $ow completion time, and other carefully crafted

proxies for the property in which we are actually interested.

In this experiment, we took a series of snapshots, and

computed the standard deviation of the EWMA of packet in-

terarrival times across uplink ports. To account for workload

deviations, uplinks were compared only to other uplinks on

the same switch. Figure 12 shows CDFs of the standard devi-

ations for our Hadoop, GraphX, and memcache workloads

taken with both snapshots and traditional polling. The three

workloads showcase three di!erent behaviors.

For Hadoop, polling shows little-to-no gain for $owets,

when in reality $owlets improve balance signi#cantly. For

GraphX, polling consistently underestimates the imbalance

in the network. Our Memcache workload is very evenly

distributed, but exhibits the opposite behavior—polling con-

sistently overestimates the imbalance.

Together, these experiments illustrate an important point.

For measures of whole-network behavior, the issue is not just

that polling might provide an incorrect view of the network,

but that it is di"cult to place a bound on the inaccuracy.

(a) Snapshot (b) Polling

Figure 13: Pairwise correlation coe#cients for egress

ports while running GraphX. The red boxes highlight

port pairs on the same ECMP paths, which are ex-

pected to have high positive correlations.

8.4 Use Case: Synchronized Tra#c

The second use case we target is the detection of synchro-

nized application tra"c patterns for understanding behavior

or debugging performance issues. For this experiment, we

measured EWMA of packet rates at egress of all ports, in 100

snapshots taken 1 second apart. We then calculated pairwise

correlation between ports using Spearman [12] tests.

Figure 13 shows the statistically signi#cant (ρ < 0.1) corre-

lation coe"cients found while running GraphX. With snap-

shots, the Spearman test found correlations for 43% more

of the port pairs. To validate correctness, we analyzed the

output for evidence of two ground truths related to the ap-

plication and network topology. First, we expected to see

no signi#cant correlations between the port egressing to

the master server (server 0) and any other port because the

master server did not participate in the distributed computa-

tion. Second, we expected to #nd high correlations between

possible ECMP next-hops.

With snapshots, the correlation coe"cients matched both

expected ground truths. Polling, on the other hand, failed to

identify the positive correlations between ECMP ports. As

shown by the red boxes in Figure 13, the correlations found

with polling were either statistically insigni#cant or, worse,

413

Synchronized Network Snapshots SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

statistically signi!cant but negative. Results were qualita-

tively similar for other applications and ρ values.

9 RELATEDWORK

Network measurement is a well-studied !eld, with many pro-

posals for better and more expressive measurement tools [15,

22, 31, 42]. As networks grow, it becomes even more im-

portant to have good monitoring and debugging tools. Our

work is, to the best of our knowledge, the !rst to demon-

strate practical, synchronous, and consistent network-wide

measurement. A large body of prior work has tackled related

goals and solutions. We discuss that work below.

Hardware-assistedmeasurement.With the recent rise of

programmable data and control planes, there has been in-

creased interest in novel measurement applications [28, 29,

31, 32, 37, 40]. Thus far, these approaches have concentrated

on exploring the limits of what can be feasibly collected. To-

gether, they are a testament to the expressiveness and utility

of programmable switches. Our work is complementary—

network snapshots can be of any local state, including the

statistics generated by these systems.

Multi-device measurement. One method to move beyond

single-component measurement is to leverage tra"c to cap-

ture relevant state as it traverses the network [1, 2, 15, 22].

For example, packets could record the minimum queue depth

at any intermediate switch. These techniques have the ad-

vantage of enforcing causal consistency at the level of an

single sample; however, like single component measurement,

it is still di"cult to compare across samples and paths.

Measurement aggregation. Another approach for trying

to understand network-wide behavior is to take measure-

ments of individual devices or paths and build larger in-

sights on top of their aggregates. There are too many such

approaches to cover here, but these largely rely on statis-

tics, thresholds, and similar techniques. Network tomogra-

phy [11, 21, 26, 30] is a common example that uses statistics

to tease out interesting behavior from long-term traces of

multiple devices. While this class of approaches can assist

in a variety of use cases, they lack the granularity to answer

the types of questions addressed in the preceding section.

Distributed snapshots. The literature on distributed snap-

shot algorithms is similarly rich. The original paper on the

topic [10] inspired a wide variety of improvements and re-

!nements. Of particular note are piggybacking-based proto-

cols like [24, 27]. Originally designed to allow for non-FIFO

channels, we borrow their techniques for handling packet

drops, but prohibit out-of-order delivery for e"ciency. Fi-

nally, we note that others have discussed the practicality of

distributed snapshots in networks [18, 34], but in the control

plane rather than the data plane.

10 DISCUSSION

Measuring Forwarding State. In Section 2.2, we remarked

that it may be useful to snapshot forwarding state. While

ASIC data planes are not typically able to record table entries

directly, they can record version information. Speci!cally,

the control plane can ensure every FIB rule and version tags

passing packets with a unique ID that is then stored back

into processing unit state. A snapshot of the state would then

give hints as to the entire network’s forwarding state.

Partial Deployment. Speedlight is amenable to partial de-

ployment. In this case, the snapshot would be of participating

devices and the communication channels between them. For

instance, in a data center, an operator might want for only

ToR switches or a particular cluster to be snapshot-enabled.

For snapshots without channel state, the only requirement

is that the snapshot header is appended and removed at the

proper time. The simplest method is to append the header

whenever an ingress processing unit encounters a packet

without one, and con!gure the remaining hosts to ignore IP

options in which the snapshot header is contained. If that is

not possible (e.g., due to security concerns with IP options),

the header should be removed at the last snapshot-enabled

device in the packet’s path. Causal consistency is maintained

even when there are multiple paths between devices.

Snapshots with channel state are slightly more complex. In

order to gather channel state, devices must be able to reduce

communication to FIFO channels. More speci!cally, devices

must tag packets with the physical path they take between

snapshot-enabled devices. We note that in the case of data

centers and snapshot-enabled ToRs, this requires only minor

modi!cations to the con!guration of existing devices [33].

11 CONCLUSION

The technique described in this paper, Synchronized Net-

work Snapshots, and its realization, Speedlight, provide un-

precedented visibility into the behavior of the network as a

whole. Whether for evaluating a design, diagnosing an issue,

or simply trying to understand an existing network, these

techniques help to answer critical questions.We demonstrate

that this approach is practical by implementing and deploy-

ing on a testbed a working version of our system, then using

it to collect interesting measurements of real workloads.

ACKNOWLEDGEMENTS

We gratefully acknowledge Sameera Gajjarapu, our shepherd

Aditya Akella, and the anonymous SIGCOMM reviewers for

all of their help and thoughtful comments.

414

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Nofel Yaseen, John Sonchack, and Vincent Liu

REFERENCES

[1] Aijay Adams, Petr Lapukhov, and Hongyi Zeng. 2016. Net-

NORAD: Troubleshooting networks via end-to-end probing.

(2016). https://code.facebook.com/posts/1534350660228025/

netnorad-troubleshooting-networks-via-end-to-end-probing/.

[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-

tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA:

Distributed Congestion-aware Load Balancing for Datacenters. In Pro-

ceedings of the 2014 ACM Conference on SIGCOMM (SIGCOMM ’14).

ACM, New York, NY, USA, 503–514. https://doi.org/10.1145/2619239.

2626316

[3] Dormando Anatoly Vorobey, Brad Fitzpatrick. 2009. Memcached.

(2009). https://memcached.org

[4] Apache Software Foundation. 2012. Hadoop, Terasort. (2012).

https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/

examples/terasort/package-summary.html

[5] Apache Software Foundation. 2012. Hadoop, YARN. (2012). https:

//hadoop.apache.org/docs/r2.7.0/

[6] Apache Software Foundation. 2014. PageRank, GraphX. (2014).

https://github.com/apache/spark/blob/master/examples/src/main/

scala/org/apache/spark/examples/graphx/SynthBenchmark.scala

[7] Apache Software Foundation. 2016. Spark. (2016). https://github.com/

apache/spark/

[8] Barefoot. 2017. Barefoot To!no. https://www.barefootnetworks.com/

technology/. (2017).

[9] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-

eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-

warding Metamorphosis: Fast Programmable Match-action Processing

inHardware for SDN. In Proceedings of the ACM SIGCOMM2013 Confer-

ence on SIGCOMM (SIGCOMM ’13). ACM, New York, NY, USA, 99–110.

https://doi.org/10.1145/2486001.2486011

[10] K Mani Chandy and Leslie Lamport. 1985. Distributed snapshots:

Determining global states of distributed systems. ACM Transactions

on Computer Systems (TOCS) 3, 1 (1985), 63–75.

[11] Yan Chen, David Bindel, Hanhee Song, and Randy H. Katz. 2004.

An Algebraic Approach to Practical and Scalable Overlay Network

Monitoring. In Proceedings of the 2004 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communi-

cations (SIGCOMM ’04). ACM, New York, NY, USA, 55–66. https:

//doi.org/10.1145/1015467.1015475

[12] Christophe Croux and Catherine Dehon. 2010. In"uence Functions of

the Spearman and Kendall Correlation Measures. Statistical methods

& applications 19, 4 (2010), 497–515.

[13] Dormando. 2016. mc-crusher. (2016). https://github.com/memcached/

mc-crusher

[14] Glen Gibb, George Varghese, Mark Horowitz, and Nick McKeown.

2013. Design Principles for Packet Parsers. In Proceedings of the ninth

ACM/IEEE symposium on Architectures for networking and communica-

tions systems. IEEE, Washington, D.C., USA, 13–24.

[15] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray

Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi-

Wei Lin, and Varugis Kurien. 2015. Pingmesh: A Large-Scale System

for Data Center Network Latency Measurement and Analysis. In Pro-

ceedings of the 2015 ACM Conference on Special Interest Group on Data

Communication (SIGCOMM ’15). ACM, New York, NY, USA, 139–152.

https://doi.org/10.1145/2785956.2787496

[16] C. Hopps. 2000. Analysis of an Equal-Cost Multi-Path Algorithm. RFC

2992. RFC Editor. 1–8 pages. https://tools.ietf.org/html/rfc2992

[17] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo, Kun Tan, Ji-

tendra Padhye, and Kai Chen. 2017. Tagger: Practical PFC Deadlock

Prevention in Data Center Networks. In Proceedings of the 13th Inter-

national Conference on Emerging Networking EXperiments and Tech-

nologies (CoNEXT ’17). ACM, New York, NY, USA, 451–463. https:

//doi.org/10.1145/3143361.3143382

[18] John P. John, Ethan Katz-Bassett, Arvind Krishnamurthy, Thomas

Anderson, and Arun Venkataramani. 2008. Consensus Routing: The

Internet as a Distributed System. In Proceedings of the 5th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

’08). USENIX Association, Berkeley, CA, USA, 351–364.

[19] Prem Jonnalagadda. 2017. Disaggregation and Programmable

Forwarding Planes. https://barefootnetworks.com/blog/

disaggregation-and-programmable-forwarding-planes/. (2017).

[20] Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur W. Berger.

2007. Dynamic Load Balancing Without Packet Reordering. Computer

Communication Review 37, 2 (2007), 51–62. https://doi.org/10.1145/

1232919.1232925

[21] Srikanth Kandula, Ratul Mahajan, Patrick Verkaik, Sharad Agarwal,

Jitendra Padhye, and Paramvir Bahl. 2009. Detailed Diagnosis in En-

terprise Networks. ACM SIGCOMM Computer Communication Review

39, 4 (2009), 243–254.

[22] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait

Dixit, and Lawrence J Wobker. 2015. In-band Network Telemetry via

Programmable Dataplanes. In Demo paper at SIGCOMM ’15.

[23] Ajay D Kshemkalyani, Michel Raynal, and Mukesh Singhal. 1995. An

introduction to snapshot algorithms in distributed computing. Dis-

tributed systems engineering 2, 4 (1995), 224.

[24] Ten H Lai and Tao H Yang. 1987. On distributed snapshots. Inform.

Process. Lett. 25, 3 (1987), 153–158.

[25] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim Weatherspoon.

2016. Globally Synchronized Time via Datacenter Networks. In Pro-

ceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16). ACM,

New York, NY, USA, 454–467. https://doi.org/10.1145/2934872.2934885

[26] Ma łgorzata Steinder and Adarshpal S Sethi. 2004. A survey of fault

localization techniques in computer networks. Science of computer

programming 53, 2 (2004), 165–194.

[27] Hon Fung Li, Thiruvengadam Radhakrishnan, and K. Venkatesh. 1987.

Global State Detection in Non-FIFO Networks. In International Con-

ference on Distributed Computing Systems (ICDCS). IEEE Computer

Society, Washington, D.C., USA, 364–370.

[28] Yuliang Li, RuiMiao, Changhoon Kim, andMinlan Yu. 2016. FlowRadar:

A Better NetFlow for Data Centers. In Proceedings of the 13th Usenix

Conference on Networked Systems Design and Implementation (NSDI

’16). USENIX Association, Berkeley, CA, USA, 311–324.

[29] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and

Vladimir Braverman. 2016. One Sketch to Rule Them All: Rethinking

Network Flow Monitoring with UnivMon. In Proceedings of the 2016

ACM SIGCOMMConference (SIGCOMM ’16). ACM, New York, NY, USA,

101–114. https://doi.org/10.1145/2934872.2934906

[30] Radhika Niranjan Mysore, Ratul Mahajan, Amin Vahdat, and George

Varghese. 2014. Gestalt: Fast, Uni!ed Fault Localization for Networked

Systems. In USENIX ATC. USENIX Association, Philadelphia, PA, 255–

267. https://www.usenix.org/conference/atc14/technical-sessions/

presentation/mysore

[31] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh

Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar,

and Changhoon Kim. 2017. Language-Directed Hardware Design for

Network Performance Monitoring. In Proceedings of the Conference of

the ACM Special Interest Group on Data Communication (SIGCOMM

’17). ACM, New York, NY, USA, 85–98.

[32] Remi Philippe. 2016. Next Generation Data Center Flow Telemetry.

Technical Report. Cisco.

415

Synchronized Network Snapshots SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

[33] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C. Snoeren. 2017.

Passive Realtime Datacenter Fault Detection and Localization. In Pro-

ceedings of the 14th USENIX Conference on Networked Systems Design

and Implementation (NSDI ’17). USENIX Association, Berkeley, CA,

USA, 595–612.

[34] Liron Schi!, Michael Borokhovich, and Stefan Schmid. 2014. Reclaim-

ing the Brain: Useful OpenFlow Functions in the Data Plane. In Proceed-

ings of the 13th ACMWorkshop on Hot Topics in Networks (HotNets-XIII).

ACM, New York, NY, USA, 7:1–7:7. https://doi.org/10.1145/2670518.

2673874

[35] Naveen Kr. Sharma, Antoine Kaufmann, Thomas Anderson,

Changhoon Kim, Arvind Krishnamurthy, Jacob Nelson, and Simon

Peter. 2017. Evaluating the Power of Flexible Packet Processing for

Network Resource Allocation. In Proceedings of the 14th USENIX

Conference on Networked Systems Design and Implementation (NSDI

’17). USENIX Association, Berkeley, CA, USA, 67–82.

[36] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim,

Mohammad Alizadeh, Hari Balakrishnan, George Varghese, Nick McK-

eown, and Steve Licking. 2016. Packet Transactions: High-Level Pro-

gramming for Line-Rate Switches. In Proceedings of the 2016 ACM

SIGCOMM Conference (SIGCOMM ’16). ACM, New York, NY, USA,

15–28.

[37] John Sonchack, Adam J. Aviv, Eric Keller, and Jonathan M. Smith. 2018.

Turbo"ow: Information Rich Flow Record Generation on Commodity

Switches. In Proceedings of the Thirteenth EuroSys Conference (EuroSys

’18). ACM, New York, NY, USA, Article 11, 16 pages. https://doi.org/

10.1145/3190508.3190558

[38] Madalene Spezialetti and Phil Kearns. 1986. E#cient Distributed Snap-

shots. In International Conference on Distributed Computing Systems

(ICDCS). IEEE Computer Society, Washington, D.C., USA, 382–388.

[39] Niels LM Van Adrichem, Christian Doerr, and Fernando A Kuipers.

2014. Opennetmon: Network monitoring in OpenFlow software-

de$ned networks. In Network Operations and Management Symposium

(NOMS). IEEE, Washington, D.C., USA, 1–8.

[40] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software De$ned Tra#c

Measurement with OpenSketch. In Proceedings of the 10th USENIX

Conference on Networked Systems Design and Implementation (NSDI

’13). USENIX Association, Berkeley, CA, USA, 29–42.

[41] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy.

2017. High-resolution Measurement of Data Center Microbursts. In

Proceedings of the 2017 Internet Measurement Conference (IMC ’17).

ACM, New York, NY, USA, 78–85. https://doi.org/10.1145/3131365.

3131375

[42] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu,

Ratul Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao,

and Haitao Zheng. 2015. Packet-Level Telemetry in Large Datacenter

Networks. In Proceedings of the 2015 ACM Conference on Special Interest

Group on Data Communication (SIGCOMM ’15). ACM, New York, NY,

USA, 479–491. https://doi.org/10.1145/2785956.2787483

416

