
ar
X

iv
:1

60
9.

07
96

4v
4

 [
cs

.D
B

]
 1

1
Se

p
20

18
1

K-Regret �eries Using Multiplicative Utility Functions

JIANZHONG QI, The University of Melbourne

FEI ZUO, The University of Melbourne

HANAN SAMET, University of Maryland

JIA CHENG YAO, The University of Melbourne

The k-regret query aims to return a size-k subset S of a databaseD such that, for any query user that selects

a data object from this size-k subset S rather than from databaseD, her regret ratio is minimized. The regret

ratio here is modeled by the relative difference in the optimality between the locally optimal object in S and

the globally optimal object in D. The optimality of a data object in turn is modeled by a utility function of

the query user. Unlike traditional top-k queries, the k-regret query does not minimize the regret ratio for a

specific utility function. Instead, it considers a family of infinite utility functions F , and aims to find a size-k

subset that minimizes the maximum regret ratio of any utility function in F .

Studies on k-regret queries have focused on the family of additive utility functions, which have limitations

in modeling individuals’ preferences and decision making processes, especially for a common observation

called the diminishing marginal rate of substitution (DMRS). We introduce k-regret queries with multiplica-

tive utility functions, which are more expressive in modeling the DMRS, to overcome those limitations. We

propose a query algorithm with bounded regret ratios. To showcase the applicability of the algorithm, we ap-

ply it to a special family of multiplicative utility functions, the Cobb-Douglas family of utility functions, and

a closely related family of utility functions, the Constant Elasticity of Substitution family of utility functions,

both of which are frequently used utility functions in microeconomics. After a further study of the query

properties, we propose a heuristic algorithm that produces even smaller regret ratios in practice. Extensive

experiments on the proposed algorithms confirm that they consistently achieve small maximum regret ratios.

CCS Concepts: • Information systems → Top-k retrieval in databases; • Theory of computation →

Database queryprocessing and optimization (theory);Data structures and algorithms for dataman-

agement;

Additional Key Words and Phrases: K-regret, multiplicative utility functions, skyline, maximum regret ratio

ACM Reference format:

Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao. 2018. K-Regret Queries Using Multiplicative Utility

Functions. ACM Trans. Datab. Syst. 1, 1, Article 1 (January 2018), 42 pages.

https://doi.org/10.1145/3230634

1 INTRODUCTION

Ever growing data have produced various databases that are beyond any user’s capability to ex-
plore them in full. For example, Amazon has a database of over 562 million products [2]; Book-
ing.com has a database of over 1.7 million hotels [1].Window queries [5] (a.k.a. range queries [3, 4]),

Authors’ address: J. Qi, F. Zuo, and J. C. Yao, The University of Melbourne, Australia, Email: jianzhong.qi@unimelb.edu.au,

{fzuo, yaoj1}@student.unimelb.edu.au; H. Samet, University of Maryland, USA, Email: hjs@cs.umd.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.

0362-5915/2018/1-ART1 $15.00

https://doi.org/10.1145/3230634

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

http://arxiv.org/abs/1609.07964v4
https://doi.org/10.1145/3230634
https://doi.org/10.1145/3230634

1:2 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

Table 1. A Computer Database

Computer CPU (pi .c1) Brand recognition (pi .c2) f1(pi) f2(pi) f3(pi) f4(pi)

p1 2.3 80 41.15 3.08 13.56 2.38
p2 1.7 90 45.85 2.58 12.37 1.77
p3 2.8 50 26.40 3.27 11.83 2.88
p4 2.1 55 28.55 2.63 10.75 2.17
p5 2.1 50 26.05 2.58 10.25 2.17
p6 3.0 55 29.00 3.52 12.85 3.09

top-k queries [14, 20, 21, 42, 49], and skyline queries [8, 25, 26, 34, 43] have been used traditionally
to produce a representative subset S when a databaseD is too large. Window queries return data
objects with attribute values falling in certain ranges, which may not represent the distribution of
the full database. Top-k and skyline queries, on the other hand, suffer by either requiring a prede-
fined utility function to model user preferences over the data objects, or returning an unbounded
number of data objects. Recent studies [24, 32, 52] aim to overcome these limitations by a new type
of query, the k-regret query, which returns a size-k subset S ⊆ D that minimizes the maximum

regret ratio of any query user. The set S is called the regret-minimizing set. The concept of regret
comes from microeconomics [27]. Intuitively, if a query user had selected the locally optimal ob-
ject in S, and were later shown the globally optimal object in D, then the query user may have
some regret. A k-regret query uses the regret ratio to model how regretful the query user may
be, which is the relative difference in the optimality between the locally optimal object and the
globally optimal object. Here, the optimality is computed by a utility function. The k-regret query
considers a family of infinite utility functions such as the family of linear summation functions. It
aims to find the subset S that minimizes the maximum regret ratio for any utility function in such
a function family.
To illustrate the k-regret query, consider an online computer shop with a database D of com-

puters as shown in Table 1. There are six computers: D = {p1,p2, ...,p6}. Every computer pi has
two attributes: CPU clock speed and brand recognition, denoted as pi .c1 and pi .c2, respectively.
Here, brand recognition represents how well a brand is recognized by the customers. A larger
value means that the brand is better recognized. Since the database may be too large to be shown
in its entirety, the shop considers showing only a size-k subset S ⊆ D in the front page as a
recommendation. Such a subset may be S = {p1,p3,p5} (i.e., k = 3). Suppose that there is a cus-
tomer whose preference can be expressed as a utility function f1(pi) = 0.5 · pi .c1 + 0.5 · pi .c2 .
The customer may purchase p1 from the recommended subset S since p1 has the largest utility
value: f1(p1) = 0.5 · p1.c1 + 0.5 · p1.c2 = 0.5 × 2.3 + 0.5 × 80 = 41.15 > f1(p3) = 26.40 >
f1(p5) = 26.05. Note that another computer p2 ∈ D exists with an even larger utility value
f1(p2) = 0.5 × 1.7 + 0.5 × 90 = 45.85. If the customer later sees p2, she may have some regret.

Her regret ratio is computed as
f1(p2) − f1(p1)

f1(p2)
≈ 10.25%. For another customer with a different

utility function f2(pi) = 0.99 ·pi .c1 + 0.01 ·pi .c2, the computer in S that best suits her preference is
p3: f2(p3) = 0.99×2.8+0.01×50 ≈ 3.27 > f2(p1) ≈ 3.08 > f2(p5) ≈ 2.58. For this customer, the glob-
ally optimal computer in D is p6: f2(p6) = 0.99 × 3.0 + 0.01× 55 = 3.52. If the customer purchases

p3, her regret ratio will be
f2(p6) − f2(p3)

f2(p6)
≈ 7.05%. Since customers have different preferences and

different utility functions, different data objects are needed to minimize their regret ratios. It is

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:3

unlikely that a size-k subset can satisfy all the customers. The k-regret query addresses this limita-
tion by finding a subset S that minimizes the maximum regret ratio for a family of infinite utility
functions.
Existing studies on k-regret queries have focused on the families of additive utility functions

(AUFs) where the overall utility of an object is computed as the sum of the utility in each attribute
of the object. The linear summation functions f1 and f2 are examples. They can be written in a
more general form:

f (pi) =

d
∑

j=1

α j · pi .c j ,

whered denotes the number of attributes, andα j ∈ [0, 1] is theweight of attribute j . Studies [24, 32]
have shown that the maximum regret ratio of the k-regret query with AUFs can be bounded.
A significant limitation of AUFs, however, is that the overall utility of an object always increases

at the same rate as the utility in an attribute increases. For an AUF f (pi) =
∑d

j=1 α j ·pi .c j , the value

of f (pi) always increases by α j units for every unit of increase in attribute j . A large increase in the
value of an attribute may cause a dramatic change in the value of the overall utility. Objects with
the maximum values in certain attributes tend to be favored by AUFs, especially when the value
ranges vary for different attributes. Consider again the example above. Utility function f1 favors p2
which has the maximum value in c2 but also the minimum value in c1. The two attributes c1 and c2,
however, have the same weight (0.5) in the utility function, indicating that the user has the same
preference towards the two attributes. The object favored by f1 does not suit this preference. Thus,
utility functions like f1 do not model individuals’ preferences and decision making processes well.
Intuitively, as the value of an attribute gets larger, adding an extra unit to its value should con-

tribute a smaller increment to the overall utility. For example, adding a 4GB RAM to an old home
computer with a 512MB RAMwould make a major difference in the user experience; adding a 4GB
RAM to a server with 256GB RAM would probably go without notice. This is in fact a common
observation in individuals’ decision making process called the diminishing marginal rate of substi-

tution (DMRS) [11, 17, 45, 46]. The DMRS refers to the principle that, as the utility in an attribute
j gets larger, the extent to which this utility can make up (substitute) for the utility in any other
attribute j ′ decreases (diminishes). Thus, as the utility of attribute j gets larger, the increment of
the overall utility when adding an extra unit to attribute j decreases.
To overcome the limitation of AUFs, we introduce a new type of k-regret queries with utility

functions that are more expressive in modeling the DMRS – the k-regret query withmultiplicative

utility functions (MUFs). An MUF computes the overall utility of an object as the product of the
utility in each attribute:

f (pi) =

d
∏

j=1

pi .c
α j
j

An MUF helps deal with exponential-like utility functions and is more expressive in modeling
the DMRS for the following reason. Since the attribute value pi .c j has been raised to the power
equal to the weight α j , as pi .c j gets larger, the increment of f (pi) when adding an extra unit

to pi .c j decreases. This is because the function д(pi .c j) = (pi .c j + 1)α j − pi .c
α j
j is monotonically

decreasing (i.e., ∀α j ∈ [0, 1] : д
′(pi .c j) ≤ 0). An MUF models user preferences towards different

attributes better. For example, an MUF f3(pi) = pi .c
0.5
1 · pi .c

0.5
2 has the same weight in the two

attributes. It favors p1 in the example above, where f3(p1) = 2.30.5 × 800.5 ≈ 13.56 is larger than
the function value of any other object. Object p1 does not have the maximum value in either
attribute but is reasonably good in both attributes. It suits the user preference. The MUF is also

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:4 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

more robust to large value changes in an attribute, since a weight with a value between 0 and 1
is in the power computation. The varying value ranges caused by the different types of attributes
can be easily handled by an MUF, enabling the use of the attribute values in their natural form
without normalization.

A related family of utility functions called the Constant Elasticity of Substitution (CES) functions

studied earlier [24] can also model the DMRS. CES functions are not MUFs, and they have limita-

tions as discussed below. A CES utility function f (pi) has the form of f (pi) = (
∑d

j=1 α j · pi .c
b
j)

1
b

where b is a system parameter. Raising pi .c j to the power of b allows a CES utility function to
model the DMRS, making the function a popular utility function [45–47]. However, parameter b
is a constant across all attributes. This leads to less flexibility in modeling different diminishing
marginal rates of substitution over different attributes [12]. As studies in economics show [7, 29],
finding a suitable value of b to fit a CES utility function to real data can be difficult and is sensitive
to data construction. In comparison, an MUF raises pi .c j to the power of α j which can have differ-
ent values for different attributes. This allows different diminishing marginal rates of substitution
over different attributes and can be easier to fit user preferences.
The higher expressive power of MUFs brings challenges in bounding the maximum regret ra-

tio for them. It is difficult to tightly bound the product of a series of exponential expressions. To
the best of our knowledge, so far, no existing bound has been obtained for the k-regret query with
MUFs. We overcome the challenges with a novel algorithm that we callMinVar. MinVar is an adap-
tion of the CUBE [32] and theMinWidth [24] algorithms, which are k-regret query algorithms for
AUFs. The MinVar algorithm partitions the data space into multiple buckets. Together the buckets
enclose all the data objects, and one object in each bucket is returned to form the answer set S. For
any utility function, the corresponding optimal object p∗ must be in some bucket. There is an ob-
ject s∗ in this bucket that has been returned in S. The distance between p∗ and s∗ is bounded by the
range of attribute values spanned by the bucket in each attribute, which further bounds the maxi-
mum regret ratio. Our contribution in MinVar is a novel space partitioning strategy based on data
distribution, which produces tighter buckets in practice. More importantly, we make theoretical
contributions by showing that the MinVar algorithm can obtain a maximum regret ratio bounded

between Ω(
1

k2
) andO(ln(1+

1

k
1

d−1

)) for k-regret queries with MUFs, where d denotes the number

of data attributes. To showcase the applicability of the MinVar algorithm in real world scenarios,
we apply it on k-regret queries with a special family of MUFs, the Cobb-Douglas functions, which
is used extensively in economics studies for modeling the DMRS [16, 18, 48]. As a by-product, we

derive a new upper bound O(
1

k
1

d−1

) on the maximum regret ratio for k-regret queries with CES

functions [48]. This upper bound is tighter than a previously obtained bound [24], while it also
applies to the MinWidth algorithm [24] proposed for k-regret queries with CES functions.
MinVar aims to bound themaximum regret ratios rather than tominimize them. Its bucket-based

answer object selection strategy is conservative. It works well when there are a large number of
data objects lying in different buckets, each of which is optimal for a different utility function.
However, in real data sets, many of the objects may not be optimal for any utility function. Some
of the buckets created by MinVar may not contain any data objects that are optimal for any utility
function. Returning objects in those buckets does not contribute to lowering the maximum regret
ratios. We will show that, for MUFs, the set P of all the skyline points (objects) [8] in a databaseD
minimizes the maximum regret ratio, which is 0. This is because any non-skyline point pi must be
dominated by at least one skyline point pj , and hence its utility f (pi) does not exceed the utility
f (pj) for any MUF f . If |P | ≤ k , the entire set of P should be returned as the query answer set.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:5

Otherwise, we need to select k skyline points to form a size-k answer set. We use the regret ratio
to guide the selection of skyline points such that the difference in the utilities of the selected and
unselected points is minimized. This leads to a heuristic algorithm named MaxDif that produces
even smaller maximum regret ratios in practice.
To summarize, our paper makes the following contributions:

• We introduce a novel type of k-regret queries – k-regret queries with multiplicative util-
ity functions, which are more expressive in modeling the diminishing marginal rate of
substitution in making decisions.
• We propose an algorithm named MinVar to process the query and to bound the maximum
regret ratios. Based on this algorithm, we obtain bounds of the maximum regret ratio for
the k-regret query with multiplicative utility functions.
• The MinVar algorithm is deigned for multiplicative utility functions but it can also be
applied to non-multiplicative utility functions. We showcase such applicability via two
families of utility functions used in economic studies: (i) the Cobb-Douglas family of util-
ity functions, which is a special type of multiplicative utility functions that has not been
studied before in the context of k-regret queries, and (ii) the CES family of utility func-
tions, which is a family of non-multiplicative utility functions but is closely related to the
Cobb-Douglas family of utility functions. As a by-product, we derive an upper bound on
the maximum regret ratio for k-regret queries with CES utility functions that is tighter
than an existing bound [24] under the case where the function parameter b ∈ (0, 1). This
bound applies to our MinVar algorithm as well as the MinWidth algorithm [24] proposed
for k-regret queries with CES utility functions.
• Since MinVar aims to bound the maximum regret ratios rather than to minimize them,
we further propose a heuristic algorithm named MaxDif that computes a size-k subset of
skyline points to minimize the maximum regret ratios.
• We perform extensive experiments using both real and synthetic data to verify the effec-
tiveness and efficiency of the proposed algorithms. The results show that the maximum
regret ratios obtained by the proposed algorithms are consistently small. Meanwhile, the
proposed algorithms are more efficient than the baseline algorithm MaxDom [28], which
is a heuristic algorithm that computes top-k representative skyline points.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3 presents
the basic concepts. Sections 4 and 5 describe the MinVar algorithm and derive bounds on the
maximum regret ratio for k-regret queries with MUFs, respectively. Section 6 showcases the appli-
cability of MinVar to both MUFs and non-MUFs. Section 7 presents the heuristic algorithmMaxDif.
Section 8 examines the results of our experiments while Section 9 concludes the paper.

2 RELATED WORK

We review two queries: skyline and k-regret.
Skyline queries. The skyline query [8] is an earlier attempt to generate a representative subset
S of a database D without specifying any utility functions. This query is defined based on the
dominance relationship. It considers a database D of d-dimensional points (d ∈ N+). Let pi and pj
be two points inD. Pointpi is said to dominate pointpj if and only if ∀l ∈ [1..d],pi .cl ≥ pj .cl ∧∃l ∈

[1..d],pi .cl > pj .cl , where pi .cl (pj .cl) denotes the coordinate of pi (pj) in dimension l . Here, the
“≥” and “>” operators represent the preference relationship. A point with a larger coordinate in
dimension l is preferable in that dimension. The skyline query returns the subset S ⊆ D where
each point is not dominated by any other point inD. It is interesting to observe that the attributes
in the domain over which the skyline query is executed do not have to be spatial [38], as is the

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:6 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

case when they are embedded in a spatial database (e.g., [19, 39, 40]), nor is there a requirement
for a distance function to exist between the objects (e.g., Euclidean or Hausdorff [33]).
The skyline query can be answered by a two-layer nested loop over the points inD and another

layer of loop over the d dimensions to filter out the points dominated. The remaining points are
skyline points which are the query answer. More efficient algorithms have been proposed in the
literature [34, 43] but are not the focus of our study.
While the skyline query does not require a utility function, it suffers in lacking control over the

size of the answer set. In the worst case, the entire database may be returned. Studies have tried to
overcome this limitation by combining the skyline query with the top-k query. For example, Xia et
al. [50] introduce the ε-skyline which adds a weight to each dimension of the data points to reflect
user preference towards the dimension. The weights create a built-in rank for the points which can
be used to answer the top-k skyline query. Chan et al. [13] rank the points by the skyline frequency,
i.e., how frequently a point appears as a skyline point when different numbers of dimensions
are considered. A few other studies extract a representative subset of the skyline points. Lin et
al. [28] propose to return the k points that together dominate the most non-skyline points as the
k most representative skyline subset. Tao et al. [44] select k representative skyline points based on
the distance between the skyline points instead. These studies bound the size of the answer set.
However, they do not bound the maximum regret ratio of the set.
K-regret queries. Nanongkai et al. [32] introduce the concept of regret minimization to top-k

query processing and propose thek-regret query. This query does not require query users to specify
their utility functions. Instead, it considers a family of infinite utility functions, and finds the subset
S that minimizes the maximum regret ratio of the entire family of utility functions. Nanongkai et
al. propose the CUBE algorithm to process the k-regret query with the family of linear summation

utility functions, i.e., each utility function f is in the form of f (pi) =
∑d

j=1 α j · pi .c j where α j
denotes theweight of dimension j . The CUBE algorithm is efficient, but themaximum regret ratio it
obtains is quite large in practice. To obtain a smaller maximum regret ratio, in a different paper [31],
Nanongkai et al. propose an interactive algorithm where query users are involved in guiding the
search for answers with smaller regret ratios. Peng and Wong [36] advance the k-regret query
studies by utilizing geometric properties to improve the query efficiency. Asudeh et al. [6] use the
convex hull to find the data points that minimize the maximum regret ratio for linear summation
utility functions. They propose an algorithm that can approximate the maximum regret ratio to
within a user given threshold. Cao et al. [10] and Chester et al. [15] also consider linear summation
utility functions but compute the k-regret minimizing sets, which is NP-hard.
Kessler Faulkner et al. [24] build on top of CUBE and propose three algorithms,MinWidth, Area-

Greedy, and Angle. These three algorithms can process k-regret queries with the “concave”, “con-
vex”, and CES utility functions. Nevertheless, the “concave” and “convex” utility functions consid-
ered have focused on additive forms (See Braziunas and Boutilier [9] and Keeney and Raiffa [23]
for more details on additive utilities and additive independence). They are summations over a set
of concave and convex functions. The CES utility functions also sum over a set of terms. In this
paper, we introduce the use of the family of multiplicative utility functions to overcome the linear-
ity limitation of the additive utility functions. We present an algorithm that can produce answers
with bounded maximum regret ratios for k-regret queries with multiplicative utility functions. As
a by-product, we also derive a new upper bound on the maximum regret ratio for k-regret queries
with CES utility functions which is tighter than a previously obtained upper bound [24], while the
bound also applies to the MinWidth algorithm.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:7

Table 2. Frequently Used Symbols

Symbol Description

D A database
n The cardinality of D
d The dimensionality of D
k The k-regret query parameter
S A size-k subset selected from D
P The set of all the skyline points in D
pi A point in D

pi .c j The coordinate value of pi in dimension j

t The number of intervals into which the data
domain is partitioned in a dimension

Zeighami and Wong [52] propose to compute the average regret ratio. They do not assume any
particular type of utility functions, but use sampling to obtain a few utility functions for the com-
putation. This study is less relevant to our work and is not discussed further.
Note that Chester et al. [15] have used the term k-regret minimizing set to denote a subset S

of size r that minimizes the maximum k-regret ratio, where the regret is measured by the utility
difference between the optimal point in S and the kth optimal point in the databaseD. We use the
term k-regret query following the closest related work [24] to denote a query that finds the regret-
minimizing set, which is a subset S of size k that minimizes the maximum regret ratio, where the
regret is measured by the utility difference between the optimal points in S and D.
The concept of regret has also been used in a classic problem in operations research – themulti-

armed bandit (MAB) problem [22]. The MAB problem assumes N arms each associated with an
unknown reward distribution. During a multi-round process, in each round, an agent chooses an
arm and collects a reward generated by the corresponding reward distribution. Let the reward
collected at round i be ri and the largest expected reward of any arm be µ∗. The regret after T

rounds isTµ∗−
∑T

i=1 E(ri). The key question in theMAB problem is how to balance the exploitation
on the arm with the largest expected reward observed so far (to maximize ri for the current round)
and the exploration to find the armwith the globally largest expected reward µ∗ (to maximize ri for
future rounds). This is less relevant to our problem, and we will not discuss this question further.

3 PRELIMINARIES

We present basic concepts and a problem definition in this section. The symbols frequently used
in the discussion are summarized in Table 2.
We consider a database D of n data objects. Every data object pi ∈ D is a d-dimensional point

in Rd
+
, whered is a positive integer and the coordinate values of the points are all positive numbers.

We use pi .c j to denote the coordinate value of pi in dimension j . This coordinate value represents
the utility of pi in dimension j . A larger coordinate value denotes a larger utility and is preferable.
A query parameter k is given. It specifies the size of the answer set S (S ⊆ D) to be returned. We
assume d ≤ k ≤ n.
Gain. Let f : D → R+ be a function that models the utility of a data object, i.e., how preferable

the data object is by a query user. The gain of a query user over a set S, denoted by дain(S, f), is

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:8 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

the maximum utility of any object in S, i.e.,

дain(S, f) = max
pi ∈S

f (pi) (1)

Continuing with the example shown in Table 1, if S = {p1,p3,p5} and f3(pi) = pi .c
0.5
1 · pi .c

0.5
2 ,

дain(S, f3) = max
pi ∈S

f3(pi) = f3(p1) = 2.30.5 × 800.5 ≈ 13.56

Regret. For a subset S of D, the gain over S may be smaller than that of D. The difference
between дain(D, f) and дain(S, f) is the regret of a query user if she selects the locally optimal
object from S and is later shown the globally optimal object in D, denoted by reдretD(S, f):

reдretD(S, f) = дain(D, f) − дain(S, f) (2)

Regret ratio. The regret ratio, r_ratioD(S, f), is a relative measure of the regret. It is computed
as the regret reдretD(S, f) over the gain дain(D, f), i.e.,

r_ratioD(S, f) =
reдretD(S, f)

дain(D, f)
=

maxpi ∈D f (pi) −maxpj ∈S f (pj)

maxpi ∈D f (pi)
(3)

Continuing with the example in Table 1, given S = {p1,p3,p5} and f3(pi) = pi .c
0.5
1 · pi .c

0.5
2 ,

дain(S, f3) = дain(D, f3) = f3(p1) ≈ 13.56. We have reдretD(S, f3) = 0 and r_ratioD(S, f3) =
0%. Given a different utility function f4(pi) = pi .c

0.99
1 · pi .c

0.01
2 , дain(S, f4) = f4(p3) ≈ 2.88 and

дain(D, f4) = f4(p6) ≈ 3.09. Then, reдretD(S, f4) ≈ 0.21 and r_ratioD(S, f4) ≈
0.21
3.09 ≈ 6.80%.

Maximum regret ratio. Given a set S and a family of utility functions F , the maximum regret

ratio formulates how regretful a query user can be if her utility function is in F . It is the supremum
of the regret ratio of a query user with any utility function in F , i.e.,

mr_ratioD(S,F) = sup
f ∈F

r_ratioD(S, f) = sup
f ∈F

maxpi ∈D f (pi) −maxpj ∈S f (pj)

maxpi ∈D f (pi)
(4)

Here, the supremum is used instead of the maximum because we consider an infinite set F .
Continuing with the example above, if F = { f3, f4},

mr_ratioD(S,F) = max{0%, 6.80%} = 6.80%

The k-regret query aims to return the size-k subset S ⊆ D that minimizes the maximum regret
ratio for a family of utility functions.

Definition 1 (K-Regret �ery). Given a family of utility functions F , the k-regret query re-

turns a size-k subset S ⊆ D, such that the maximum regret ratio over S is smaller than or equal to

that over any other size-k subset S′ ⊆ D. Formally,

∀S′ ⊆ D ∩ |S′ | = k :mr_ratioD(S,F) ≤ mr_ratioD(S
′
,F)

Specific utility functions are not always available because the query users are not usually known
in advance and their utility functions may not be specified precisely. The k-regret query does not
require any specific utility functions to be given. Instead, the query considers a family of infinite

functions such as the family of linear functions [32], i.e., f (pi) =
∑d

j=1 α j · pi .c j where α j is the
weight of dimension j . The k-regret query minimizes the maximum regret ratio of any utility
function in such a family of utility functions, without knowing the value of the α j ’s.
Our contribution to the study ofk-regret queries is the incorporation of a family ofmultiplicative

utility functions (MUFs).

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:9

Definition 2 (Multiplicative Utility Function). A multiplicative utility function (MUF) f
is defined to be a utility function of the following form:

f (pi) =

d
∏

j=1

pi .c
α j
j ,

where α j ≥ 0 is a function parameter and
∑d

j=1 α j ≤ 1.

Definition 3 (K-Regret�ery with MUFs). The k-regret query with MUFs takes a database
D of d-dimensional points and a family of MUFs F as the input. It returns a size-k subset S ⊆ D,

such that the maximum regret ratiomr_ratioD(S,F) is minimized.

We note that a k-regret query to find the size-k subset S that minimizes the maximum regret
ratio is NP-hard, as shown by Chester et al. [15]. In this study, we first focus on bounding the
maximum regret ratio for k-regret queries with MUFs. We compute a subset S with a maximum
regret ratio that is bounded by a decreasing function of k . This subset, however, may not minimize
the maximum regret ratio. We thus further design a greedy algorithm to compute a subset to
(heuristically) minimize the maximum regret ratio.

Scale invariance. It has been shown [24, 32] thatk-regret queries with additive utility functions
are scale invariant, i.e., scaling the data domain in any dimension does not change the maximum
regret ratio of a setS. This property also holds for k-regret queries with MUFs. For anMUF f (pi) =
∏n

d=1 pi .c
α j
j , we can scale each dimension by a factor λj > 0, resulting in a new MUF f ′(pi) =

∏n
d=1(λj · pi .c j)

α j =
∏n

d=1 λ
α j
j ·

∏n
d=1 pi .c

α j
j = (

∏n
d=1 λ

α j
j)f (pi). Such scaling does not affect the

regret ratio (and hence the maximum regret ratio), i.e., r_ratioD(S, f
′) = r_ratioD(S, f):

r_ratioD(S, f
′) =

maxpi ∈D f
′(pi) −maxpj ∈S f

′(pj)

maxpi ∈D f
′(pi)

=

(
∏n

d=1 λ
α j
j)(maxpi ∈D f (pi) −maxpj ∈S f (pj))

(
∏n

d=1 λ
α j
j)maxpi ∈D f (pi)

=

maxpi ∈D f (pi) −maxpj ∈S f (pj)

maxpi ∈D f (pi)

= r_ratioD(S, f)

In what follows, for conciseness, we refer to the regret of a query user as the regret when the
context is clear. The same applies to the regret ratio and the maximum regret ratio of a query user.

4 THE MINVAR ALGORITHM

We propose an algorithm named MinVar to process k-regret queries with MUFs. MinVar shares
a similar overall algorithmic approach with that of CUBE [32] and MinWidth [24] which were
proposed to process k-regret queries with additive utility functions. The core idea of the algorithm
is to partition the data space into multiple buckets that together enclose all data points, and return
one data point in each bucket to form the answer set S. For any utility function, the corresponding
optimal data point p∗ must be in some bucket. There is a point s∗ in this bucket that has been
returned in S. The distance between p∗ and s∗ is bounded by the range of attribute values spanned
by the bucket in each attribute, which further bounds the maximum regret ratio.
Our contributions in the MinVar algorithm are a novel data space partitioning strategy that

follows the data distribution and produces tighter buckets, and theoretical bounds on themaximum

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:10 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

regret ratios obtained. We first discuss how to partition the data space and select the point in each
bucket to be returned. We derive the bounds on the maximum regret ratio afterwards.

ALGORITHM 1: MinVar

Input: D = {p1,p2, ...,pn}: a d-dimensional database; k : the size of the answer set.

Output: S: a size-k subset ofD.

1 S ← ∅;

2 for i = 1, 2, ...,d − 1 do

3 Find p∗i which has the largest utility p∗i .ci in dimension i ;

4 cτi ← p∗i .ci ;

5 S ← S ∪ {p∗i };

6 itr ← 0;

7 while |S| < k and itr < itrm do

8 t ← ⌊(k − d + 1)
1

d−1 ⌋ + itr ;

9 for i = 1, 2, ...,d − 1 do

10 bps[i] ← FindBreakpoints(D,t ,n, i, cτi);

11 for each (d − 1)-integer combination 1 ≤ j1 ≤ t , 1 ≤ j2 ≤ t , ..., 1 ≤ jd−1 ≤ t do

12 B ← {p ∈ D|∀i ∈ [1..d − 1] : bps[i][ji].lo ≤ p.ci ≤ bps[i][ji].hi};

13 s∗ ← arдmaxp ∈B p.cd ;

14 S ← S ∪ {s∗};

15 if |S| == k then

16 break;

17 itr ← irt + 1;

18 S ← S ∪ {k − |S| random points in D \ S};

19 return S;

The MinVar algorithm. Algorithm 1 summarizes the MinVar algorithm. Before partitioning
the data space, the algorithm first finds the optimal point p∗i in each of the first d − 1 dimensions,
i.e., p∗i .ci is the largest in dimension i (i = 1, 2, ...,d − 1). These d − 1 optimal points are added to S
(Lines 1 to 5). They are intended to minimize the regret ratio for the first d−1 dimensions. Another
k−d+1 points are needed to fill up S. These points minimize the regret ratio for dimension d . The
algorithm partitions each of the first d − 1 dimensions of the data domain into t intervals (Lines 8
to 10), where

t = ⌊(k − d + 1)
1

d−1 ⌋ (5)

These intervals together partition the data space into td−1 buckets:

1 ≤ td−1 = ⌊(k − d + 1)
1

d−1 ⌋(d−1) ≤ k − d + 1 (6)

The algorithm selects one point s∗ in each bucket that has the largest utility s∗.cd in dimension d ,
and adds s∗ to S (Lines 11 to 14). There may be less than k−d +1 buckets, and some of the buckets
may be empty. Thus, there may be less than k −d + 1 points added in this step. To ensure k points
in S, we repeat the partitioning step and increase t by 1 in each iteration (Lines 7, 8, and 17). This
creates more buckets and obtains more points to be added to S. The loop terminates when |S| = k

(Lines 15 and 16) or a preset number of iterations itrm has been reached (Line 7). At this point, if
|S| < k , we simply fill it up with randomly selected points and return the set (Line 18). The set S
is then returned (Line 19).

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:11

Dimension 1

Dimension 3

Dimension 2

p
2
*

p
1
*

s
3
*

s
1
*

s
2
*

s
4
*

Fig. 1. The MinVar algorithm

Figure 1 gives an example. Suppose d = 3 and k = 6. Then t = ⌊(6 − 3 + 1)
1

3−1 ⌋ = 2. We first add
the two points p∗1 and p

∗
2 to S which have the largest utility in dimensions 1 and 2, respectively.

Then, the data domain in dimensions 1 and 2 are each partitioned into t = 2 intervals, forming
td−1 = 23−1 = 4 buckets. Fourmore points s∗1 , s

∗
2 , s
∗
3 , and s

∗
4 are added toS, each has the largest utility

in dimension 3 in a different bucket. Now there are 6 points in S, i.e., S = {p∗1,p
∗
2, s
∗
1 , s
∗
2, s
∗
3, s
∗
4}. No

further partitioning is needed, and the set S is returned as the query answer.
The FindBreakpoints algorithm. The novelty of MinVar lies in the sub-algorithm FindBreak-

points to find the breakpoints to partition a dimension of the data domain into t intervals (Line 10).
The intuition behind the algorithm is as follows. The optimal point p∗ for any utility function f

must lie in one of the buckets created. Let this bucket be B. The algorithm selects a point s∗ from
B to represent this bucket and adds it to S. In the best case, p∗ is selected as s∗, and the regret
ratio is 0. To maximize the probability of p∗ being selected, intuitively, we should partition each
dimension such that every interval contains the same number of points. Otherwise, if the intervals
are skewed and p∗ happens to lie in a dense interval, then its probability of being selected is small.

MinVar

MinWidth

CUBE CUBE

Dimension 1

Dimension 2
p*

s*

Fig. 2. Creating the intervals in a dimension

In CUBE [32], the data domain is partitioned evenly, i.e., each interval has the same size of
cτi
t
, where cτi denotes the largest utility in dimension i (assuming that the data domain starts at

0). When the data points are not uniformly distributed, the probability of p∗ being selected to
represent its bucket is small. Figure 2 gives an example where d = 2. The two intervals created
by CUBE in dimension 1 are highly unbalanced in the number of points in each interval. Point p∗

has a large utility in both dimensions and may be optimal for many MUFs. However, it will not be

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:12 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

selected by CUBE, since it falls in a dense bucket, and there is another point s∗ with a larger utility
in dimension 2. In MinWidth [24], the data domain is partitioned with a greedy heuristic. This
heuristic leaves out some empty intervals with no data points. It uses a binary search to determine
theminimal interval width such that t intervals of suchwidth can cover the rest of the data domain.
MinWidth handles sparse data better, but the equi-width intervals still do not handle skewed data
well. Figure 2 shows two intervals created by MinWidth which are still unbalanced (one has 5
points and the other has 3). The two points p∗ and s∗ are still in the same bucket.

ALGORITHM 2: FindBreakpoints

Input: D = {p1,p2, ...,pn}: a d-dimensional database; t : number of intervals; n : size of D; i : dimension

number for which the breakpoints are to be computed; cτi : the largest utility in dimension i .

Output: bps[i]: an array of t pairs of breakpoints.

1 Sort D ascendingly on dimension i ; let the sorted point sequence be p ′1,p
′
2, ...,p

′
n ;

2 hi ← 0, δ ← 0;

3 while hi , n do

4 lo← 1;

5 for j = 1, 2, ..., t do

6 hi ′← min{lo + ⌈n/t⌉ − 1 + δ ,n};

7 Find the largest hi ∈ [lo..hi ′] such that p ′
hi
.ci − p

′
lo
.ci≤

cτi
t
;

8 bps[i][j].lo← p ′
lo
.ci ;

9 bps[i][j].hi← p ′
hi
.ci ;

10 lo← hi + 1;

11 δ ← δ + inc;

12 return bps[i];

To overcome these limitations, our FindBreakpoints algorithm adaptively uses t variable-width

intervals such that the number of points in each interval is as close to ⌈
n

t
⌉ as possible, i.e., the

variation of the number of points in each interval is minimized, which motivates the name of the

MinVar algorithm. As shown in Fig. 2, the two gray intervals created by MinVar contain ⌈
8

2
⌉ = 4

points each; p∗ will be selected to represent its bucket. To help derive the maximum regret ratio
bounds in the following subsections, we also require that thewidth of each interval does not exceed
cτi
t
. Under this constraint, it is not always possible to create t intervals with exactly ⌈

n

t
⌉ points in

each interval. Therefore, we allow ⌈
n

t
⌉ + δ data points in each interval, where δ is a parameter

that will be adaptively chosen by the algorithm. At the start δ = 0.
Algorithm 2 summarizes the FindBreakpoints algorithm. This algorithm first sorts the data

points in ascending order of their coordinate values in dimension i . The sorted points are denoted
as p ′1,p

′
2, ...,p

′
n (Line 1). The algorithm then creates t intervals, where lo and hi represent the sub-

script lower and upper bounds of the data points to be put into one interval, respectively. At the

start, lo = 1 (Line 4). Between lo and lo + ⌈
n

t
⌉ − 1 + δ , the algorithm finds the largest subscript hi

such that p ′
hi
.ci −p

′
lo
.ci does not exceed

cτi
t
. We then have obtained the two breakpoints of the first

interval bps[i][1].lo = p ′
lo
.ci and bps[i][1].hi = p

′
hi
.ci , where bps[i] is an array to store the intervals

in dimension i . We update lo to be hi + 1, and repeat the above process to create the next interval

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:13

(Lines 5 to 10). When t intervals are created, if they cover all the n points, we have successfully
created the intervals for dimension i . Otherwise, we need to allow a larger number of points in
each interval. We increase δ by inc which is a system parameter (Line 11), and repeat the above
procedure to create t intervals until n points are covered. Then, we return the interval array bps[i]
(Line 12). Note that the algorithm always terminates, because when δ increases to n, the algorithm

will simply create intervals each with width
cτi
t
. The t intervals must cover the entire data domain

and hence cover all n points.
Algorithm correctness. As will be shown in the following subsections, the bounds on maxi-

mum regret ratios rely on the fact that the interval size does not exceed
cτi

⌊(k − d + 1)
1

d−1 ⌋
. In Min-

Var, even though FindBreakPoints creates variable-width intervals, each interval is still bounded

by
cτi
t
. The value of t starts at ⌊(k−d +1)

1
d−1 ⌋ and is kept increasing in the loop. Therefore, MinVar

creates intervals where the size does not exceed
cτi

⌊(k − d + 1)
1

d−1 ⌋
. This satisfies the requirement

of the bounds and guarantees the algorithm correctness. In practice, MinVar can obtain maximum
regret ratios smaller than the upper bound derived, since the intervals created by FindBreakPoints

may be smaller than
cτi
t

and t may be larger than ⌊(k − d + 1)
1

d−1 ⌋.

Algorithm complexity. FindBreakpoints uses a database D of n points and an array bps[i]

to store t intervals. The space complexity is O(n + t) = O(n) where t = ⌊(k − d + 1)
1

d−1 ⌋ ≪ n.
Leaving out the space for storing the input data, the space complexity is O(t). Sorting the points
in dimension i takesO(n logn) time (Line 1). The inner loop of FindBreakpoints (Lines 5 to 10) has
t iterations. In each iteration, computing hi requires a binary search between p ′

lo
and p ′

hi ′
, which

takes O(logn) time. Thus, The inner loop takes O(t logn) time. The outer loop has
n

inc
iterations

in the worst case. Together, FindBreakpoints takesO(n logn +
tn logn

inc
) time.

MinVar uses a database D of n points, an answer set S of size k , a (d − 1) × t two dimensional
array bps . An array of size td−1 = k − d + 1 is also needed to help select the points s∗ in the
k − d + 1 buckets. The space complexity is O(n + k + dt). Leaving out the space for storing the
input data, the space complexity is O(k + dt). The first for-loop of MinVar (Lines 2 to 5) takes
O(nd) time. The second for-loop (Lines 9 and 10) calls FindBreakpoints d − 1 times, which takes

O(dn logn+
tdn logn

inc
) time. The third for-loop (Lines 11 to 16) finds a point s∗ in each of thek−d+1

buckets. A linear scan on the database D is needed for this task. For each point p visited, we need
a binary search on each of the d−1 arrays bps[i] to identify the bucket of p, and to update the point
selected s∗ in that bucket if needed. This takesO(nd log t) time. The second and third for-loops are
enclosed in a loop to iterate through multiple values of t . The number of iterations is bounded by

itrm . Overall, MinVar takesO(nd + itrm(dn logn+
(t + itrm)dn logn

inc
+nd log(t + itrm))) time. Here,

n

inc
and itrm are controllable parameters of the system. In the experiments, we set inc = 0.1%n. We

observe that itrmax = 11 is sufficient in the data sets tested. The time complexity then simplifies
to O(nd logn + nd log t) = O(nd log(nt)).

5 MAXIMUM REGRET RATIO BOUNDS

We derive bounds for the maximum regret ratio of k-regret queries with MUFs.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:14 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

5.1 Upper Bound

We start with an upper bound of a set S returned by MinVar. The intuition behind the bound
is as follows. Given any MUF, its optimal point p∗ must be in some bucket created by MinVar.
There is also one point s∗ returned by MinVar that is at the same bucket as p∗. The point s∗ has the
largest coordinate value in dimensiond . Meanwhile, the difference between s∗ andp∗ in dimension

i (1 ≤ i ≤ d − 1) is bounded by the interval size
cτi
t
. Thus, the difference between the weighted

products of the coordinate values of the two points should be bounded in a certain range. This
range yields an upper bound of the maximum regret ratios.
We assume that pi .c j has been normalized into the range of (1, 2] to simplify the derivation of

the upper bound. This can be done by a normalization function N(pi .c j) = 1 +
pi .c j

maxpi ∈D{pi .c j }
.

In fact, it is common to normalize the data domain in different dimensions into the same range,
so that utility values of different dimensions become more comparable. Note that our derivation of

the bounds still holds without this assumption, although the bounds may become less concise. This as-
sumption does not affect the correctness of theMinVar algorithm either, although now the interval

size should be bounded by
cτi − 1

t
where 1 is the lower bound of the data domain.

Our upper bound is given by the following theorem.

Theorem 1. Let F = { f | f (pi) =
∏d

j=1 pi .c
α j
j } be a set of MUFs, where α j ≥ 0,

∑d
j=1 α j ≤ 1, and

1 < pi .c j ≤ 2. The maximum regret ratiomr_ratioD(S,F) of an answer set S of MinVar satisfies

mr_ratioD(S,F) ≤ ln(1 +
1

t
) (7)

Proof. Weprove the theoremby showing that for eachMUF f ∈ F , the regret ratio r_ratioD(S, f)

must be less than or equal to ln(1 +
1

t
). Thus, the maximum regret ratio of F must also be less

than or equal to ln(1 +
1

t
).

Let p∗ be the point in D with the largest utility computed by f , i.e.,

p∗ = argmax
pi ∈D

f (pi)

Let s∗ be the point in S that is selected by MinVar in the same bucket in which p∗ lies. We have:

reдretD(S, f) = maxpi ∈D f (pi) −maxpi ∈S f (pi)

≤ f (p∗) − f (s∗)

=

d
∏

j=1

p∗.c
α j
j −

d
∏

j=1

s∗.c
α j
j

= exp (ln

d
∏

j=1

p∗.c
α j
j) − exp (ln

d
∏

j=1

s∗.c
α j
j)

(8)

Next, we show that ex − ey ≤ (x −y)ex , which will enable us to simplify the exponential terms
in the equation above. Let д(x) = 1−e−x −x . We have д′(x) = e−x −1 and д′′(x) = −e−x . By letting
д′(x) = 0, we have x = 0, while д′′(0) = −1 < 0. Thus, the maximum of д(x) is д(0) = 0, which
means 1−e−x−x ≤ 0. Therefore, 1−e−x ≤ x . Replacingx by x−y yields 1−ey−x ≤ x−y.Wemultiply
ex to both sides of the inequality and obtain (1 − ey−x)ex ≤ (x − y)ex . Thus, ex − ey ≤ (x − y)ex .
Equation 8 is then relaxed as follows.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:15

reдretD(S, f) ≤ (ln

d
∏

j=1

p∗.c
α j
j − ln

d
∏

j=1

s∗.c
α j
j) ·

d
∏

j=1

p∗.c
α j
j

= (

d
∑

j=1

α j lnp
∗
.c j −

d
∑

j=1

α j ln s
∗
.c j) ·

d
∏

j=1

p∗.c
α j
j

=

[

d
∑

j=1

α j (lnp
∗
.c j − ln s

∗
.c j)

]

·

d
∏

j=1

p∗.c
α j
j

(9)

Since MinVar selects the point in a bucket with the largest value in dimension d , we know that
p∗.cd ≤ s∗.cd and hence lnp∗.cd ≤ ln s∗.cd , i.e., lnp

∗
.cd − ln s∗.cd ≤ 0. Thus, we can remove the

utility in dimension d from the computation and relax the regret to be:

reдretD(S, f) ≤

[

d−1
∑

j=1

α j (lnp
∗
.c j − ln s

∗
.c j)

]

·

d
∏

j=1

p∗.c
α j
j

=

[

d−1
∑

j=1

α j ln(
p∗.c j

s∗.c j
)

]

·

d
∏

j=1

p∗.c
α j
j

(10)

Since s∗ is selected from the same bucket in which p∗ lies, p∗.c j − s∗.c j must be constrained by

the bucket size in dimension j , which is
cτj − 1

t
where cτj and 1 are the largest and smallest utility

values in dimension j , i.e.,

∀j ∈ [1..d − 1],p∗.c j − s
∗
.c j ≤

cτj − 1

t
(11)

Thus,
p∗.c j

s∗.c j
≤ 1 +

cτj − 1

t · s∗.c j
(12)

Since 1 < s∗.c j ≤ cτj ≤ 2, we have

p∗.c j

s∗.c j
< 1 +

1

t
(13)

Therefore,

reдretD(S, f) <

[

d−1
∑

j=1

α j ln(1 +
1

t
)

]

·

d
∏

j=1

p∗.c
α j
j (14)

For the regret ratio r_ratioD(S, f), we have

r_ratioD(S, f) =
reдretD(S, f)

дain(D, f)

<

[

∑d−1
j=1 α j ln(1 +

1
t)
]

·
∏d

j=1 p
∗
.c
α j
j

∏d
j=1 p

∗.c
α j
j

=

d−1
∑

j=1

α j ln(1 +
1

t
) = ln

(

(1 +
1

t
)
∑d−1
j=1 α j

)

≤ ln(1 +
1

t
)

(15)

�

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:16 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

In the theorem, t = ⌊(k − d + 1)
1

d−1 ⌋. Intuitively, when k increases (i.e., returning more points),
the maximum regret ratio is expected to decrease; when d increases (i.e., accumulating regret over
more dimensions), the maximum regret ratio is expected to increase. For simplicity, we say that
the upper bound grows in the scale ofO(ln(1 + 1

k
1

d−1

)).

To give an example, consider a 2-dimensional database, i.e., d = 2. Let k = 3, which means t = 2.
The upper bound of the maximum regret ratio is ln(1+ 1

t
) = ln 3

2 ≈ 40.54%. As k increases (e.g., to

20), this upper bound will decrease (e.g., to ln 20
19 ≈ 5.13%).

We have assumed pi .c j ∈ (1, 2] in the proof above. In a more general case where pi .c j lies in a
range (c⊥, c⊤), 0 ≤ c⊥ < c⊤ (positive utilities are considered), the upper bound derived becomes

less concise. In particular, Equation 11 becomes ∀j ∈ [1..d − 1],p∗.c j − s
∗
.c j ≤

cτj − c⊥

t
, since the

lower bound of the data space is now c⊥. Dividing both sides of the inequality by s∗.c j yields:

p∗.c j

s∗.c j
≤ 1 +

cτj − c⊥

t · s∗.c j
< 1 +

c⊤ − c⊥

t · c⊥

The rest of the proof stays the same, except for that 1 +
1

t
needs to be replaced by 1 +

c⊤ − c⊥

t · c⊥
.

Therefore, in the more general case, the maximum regret ratio is bounded by ln(1+
c⊤ − c⊥

t · c⊥
). This

bound is less tight as it may be greater than 1.

5.2 Lower Bound

We now derive a lower bound of the maximum regret ratio of any k-regret algorithm for MUFs (in-
cluding but not limited to MinVar), assuming an infinite databaseD. We show that, given a family

of MUFs F , it is impossible to bound the regret ratio to below Ω(
1

k2
) for a database D of infinite

2-dimensional points (i.e., d = 2). The idea behind the lower bound is as follows. Given sufficient
points, for any size-k subsetS returned, we can find anMUF f such that its corresponding optimal
point is sufficiently far away from any of the points in S, and the regret ratio r_ratioD(S, f) is at

least Ω(
1

k2
).

Theorem 2. Given k > 0, there must be a database D of 2-dimensional points such that the

maximum regret ratio of any size-k subset S ⊆ D over a family of MUFs F is at least Ω(
1

k2
).

Proof. We assume a data space of (1, e] × (1, e] in this proof. Consider an infinite set D of 2-
dimensional points, where each point p corresponds to an angle θ in a polar coordinate system as
illustrated in Fig. 3. The coordinate values of p satisfy:

{

p.c1 = ecosθ

p.c2 = esin θ
0 < θ ≤

π

2
(16)

Given a size-k subset S ⊆ D, each point si ∈ S corresponds to a θi ∈ (0,
π

2
] where si .c1 = ecos θi

and si .c2 = esin θi . Assume that the points s1, s2, ..., sk in S are sorted in ascending order of their

corresponding θi values, i.e., 0 < θ1 ≤ θ2 ≤ ... ≤ θk ≤
π

2
. Further, let θ0 = 0 and θk+1 =

π

2
. Then

θi (i ∈ [0..k + 1]) can be represented as a point on a unit circle as shown in Fig. 3. There are k + 2

points in [0,
π

2
]. Every pair of adjacent points forms an angle, resulting in a total of k + 1 angles.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:17

θ
0

θ
1

θ
j

θ
j+1

θ*

θ
k+1 θ

k
θ
i

Δ

Fig. 3. Lower bound illustration

One of the adjacent pairs (i.e., for some j ∈ [0..k]) must satisfy:

θ j+1 − θ j ≥
π

2(k + 1)
(17)

Otherwise, if all angles are less than
π

2(k + 1)
, their sum will be less than

π

2
. Let θ ∗ be in the middle

of θ j and θ j+1, i.e.,

θ ∗ =
θ j + θ j+1

2
(18)

We construct an MUF f where the optimal point p∗ corresponds to θ ∗, i.e., p∗.c1 = ecos θ
∗
and

p∗.c2 = esin θ
∗
, and prove the theorem based on the regret ratio of f .

Consider an MUF f (p) = p.ccos θ
∗

1 · p.csin θ
∗

2 .

ln f (p) = ln (p.ccosθ
∗

1 · p.csin θ
∗

2)

= cosθ ∗ · lnp.c1 + sin θ
∗ · lnp.c2

= cosθ ∗ · cosθ + sin θ ∗ · sin θ

(19)

Let д(θ) = cosθ ∗ · cosθ + sinθ ∗ · sin θ . By letting д′(θ) = 0, we obtain θ = θ ∗. Meanwhile,
д′′(θ ∗) = −1 < 0. Thus, ln f (p) is maximized when θ = θ ∗, and f (p) is maximized when p = p∗.

ln f (p∗) = cos2 θ ∗ + sin2 θ ∗ = 1; f (p∗) = e . (20)

Meanwhile, let si be the optimal point for f inS. Since there is no other points inS that is between
θ j and θ j+1,

|θi − θ
∗ | = ∆ ≥ θ j+1 − θ

∗
= θ ∗ − θ j ≥

π

4(k + 1)
(21)

We consider the case where θi − θ
∗
= ∆. The other case where θ ∗ − θi = ∆ is symmetric. We omit

it for conciseness.

ln f (si) = ln (si .c
cos θ ∗

1 · si .c
sin θ ∗

2)

= cos(θ ∗ + ∆) · cosθ ∗ + sin(θ ∗ + ∆) · sinθ ∗

= (cosθ ∗ cos∆ − sinθ ∗ sin ∆) · cosθ ∗ + (sinθ ∗ cos∆ + cosθ ∗ sin∆) · sin θ ∗

= cos2 θ ∗ · cos∆ + sin2 θ ∗ · cos∆
= cos∆

(22)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:18 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

Here, the transformation is based on sine and cosine of sum identities. Now we have f (si) = ecos∆,
and r_ratioD(S, f) satisfies

r_ratioD(S, f) =
f (p∗) − f (si)

f (p∗)
=

e − ecos∆

e
= 1 − ecos∆−1 (23)

Based on the Maclaurin series, we have

ecos∆−1 = 1 −
∆
2

2
+

∆
4

6
− · · · (24)

Thus,

r_ratioD(S, f) =
∆
2

2
−
∆
4

6
+ · · · (25)

We already know that

∆ ≥
π

4(k + 1)
(26)

Therefore,

r_ratioD(S, f) ≥
π 2

32(k + 1)2
− o(

1

k4
) (27)

This means that r_ratioD(S, f) is at least Ω(
1

k2
). �

6 CASE STUDIES

In this section, we showcase the applicability of the MinVar algorithm to both MUFs and non-
MUFs. We derive the maximum regret ratio bounds for applying MinVar on k-regret queries with
a real world example of MUFs – the Cobb-Douglas family of utility functions, and a closely related
family of non-multiplicative utility functions – the Constant Elasticity of Substitution (CES) family
of utility functions.

6.1 The K-Regret�ery with Cobb-Douglas Functions

The Cobb-Douglas function was first proposed as a production function to model the relationship
between multiple inputs and the amount of output generated [16]. It was later generalized as a
utility function. As a real example of MUFs, this utility function has been used extensively in
economics studies for modeling the diminishing marginal rate of substitution [16, 18, 48].

Definition 4 (Cobb-Douglas function). A generalized Cobb-Douglas function [48] with d

inputs x1, x2, ..., xd is a mapping X : Rd
+
→ R+,

X(x1, x2, ..., xd) = A

d
∏

j=1

x
α j
j

Here, A > 0 and α j ≥ 0 are the function parameters.

The generalized Cobb-Douglas function is very similar to an MUF. The d inputs here can be
seen as a data point of d dimensions where input x j is the utility in dimension j . MinVar applies
to k-regret queries with Cobb-Douglas functions straightforwardly.
To derive an upper bound of the maximum regret ratio for a family of Cobb-Douglas functions

F = {X1,X2, ...,Xn },

we transform each functionXi to anMUF by scaling the parameterA to 1. It can be shown straight-
forwardly that this scaling does not affect the regret ratio or the maximum regret ratio. Assume

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:19

that x j has been normalized into the range of (1, 2]. Then, the regret ratio upper bound derived in
Section 5.1 applies, i.e.,

r_ratioD(S,Xi) ≤ ln

(

(1 +
1

t
)
∑d−1
j=1 α j

)

(28)

Here, each function Xi has a different set of parameters {α1,α2, ...,αd }. If
∑d

j=1 α j ≤ 1 holds for

every Xi ∈ F , the maximum regret ratio is bounded by

mr_ratioD(S,F) ≤ ln(1 +
1

t
) (29)

Otherwise, the maximum regret ratio is bounded by

mr_ratioD(S,F) ≤ ln

(

(1 +
1

t
)α

τ

)

,

ατ = max{
d−1
∑

j=1

Xi .α j |Xi ∈ F ,Xi .α j is a parameter of Xi }.
(30)

Similarly, the lower bound Ω(
1

k2
) of the maximum regret ratio derived in Section 5.2 also applies.

6.2 The K-Regret�ery with CES Functions

The CES function is a non-MUF that is closely related to the Cobb-Douglas function. It is also used
as a production function as well as a utility function [46, 47]. The function provides an alternative
model for how well the utility of an attribute makes up for that of another attribute, which is often
used in economics studies [45–47] and has been considered previously for k-regret queries [24].

Definition 5 (CES function). A generalized CES function [47] with d inputs x1, x2, ..., xd is a

mapping X : Rd
+
→ R+,

X(x1, x2, ..., xd) = A(

d
∑

j=1

α jx
ρ
j)

γ
ρ

Here, A > 0, α j ≥ 0, ρ < 1 (ρ , 0), and γ > 0 are the function parameters.

When ρ approaches 0 in the limit, the CES functionwill become a Cobb-Douglas function.When
ρ approaches 1, the CES function is very similar to the linear summation utility function. The case
where ρ > 1 is not considered in the original proposal [51] of the CES utility function. We do not
consider this case either, but this case could be an interesting subject for future work.
AlgorithmMinVar can also processk-regret queries with CES utility functions. To derive bounds

for the maximum regret ratio, we simplify and rewrite the CES function X as a function f as
follows, assuming that A = γ = 1. Making A = 1 can be done by scaling, while the case where
γ , 1 is considered as future work.

f (pi) = (

d
∑

j=1

α j · pi .c
b
j)

1
b

Here, 0 < b < 1 and α j ≥ 0.
It has been shown [24] that the maximum regret ratio for k-regret queries with CES utility

functions is bounded between Ω(
1

bk2
) and O(

1

bk
b
d−1

) when 0 < b < 1 (between Ω(
1

bk2
) and

O(
1

k
1

b(d−1)

) when b > 1). The lower bound also applies to our MinVar algorithm. In what follows,

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:20 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

we derive a tighter upper bond for the case where 0 < b < 1. Note that this bound does not require
the data space to be in (1, 2] in each dimension, and it also applies to the MinWidth algorithm [24].
We first derive a new upper bound for the regret ratio for a single CES utility function f . Again,

the intuition is to use the bucket size to bound the difference between f (p∗) and f (s∗), where p∗

is the optimal point for f and s∗ is the point in the same bucket as p∗ returned by MinVar.

Theorem 3. Let f (pi) = (
∑d

j=1 α j · pi .c
b
j)

1
b be a CES utility function, where 0 < b < 1 and α j ≥ 0.

The regret ratio r_reдretD(S, f) of a set S returned by MinVar satisfies

r_ratioD(S, f) ≤
d

1
b

t + d
1
b

(31)

Proof. Let p∗ be the point in D with the largest utility computed by f , and s∗ be the point in
S that is selected in the same bucket in which p∗ lies. We have:

reдretD(S, f) = max
pi ∈D

f (pi) −max
pi ∈S

f (pi)

≤ f (p∗) − f (s∗)

= (

d
∑

j=1

α j · p
∗
.cbj)

1
b − (

d
∑

j=1

α j · s
∗
.cbj)

1
b

(32)

Since д(x) = x
1
b is convex when 0 < b < 1, we have д(x) − д(y) ≤ (x − y)д′(x). Thus,

reдretD(S, f) ≤ (

d
∑

j=1

α j · p
∗
.cbj −

d
∑

j=1

α j · s
∗
.cbj)

1

b
(

d
∑

j=1

α j · p
∗
.cbj)

1
b
−1

=

1

b

[

d
∑

j=1

α j (p
∗
.cbj − s

∗
.cbj)

]

(

d
∑

j=1

α j · p
∗
.cbj)

1
b
−1

(33)

Consider another functionд(x) = xb , which is concavewhen 0 < b < 1, andд′(x) is monotonically
decreasing (д′′(x) < 0). According to Lagrange’sMeanValue Theorem, theremust exist some value
ξ between two values x and y, such that д(x) − д(y) = xb − yb = (x −y) · д′(ξ) = (x − y) · b · ξb−1.
Further, since д′(x) is monotonically decreasing, b · ξb−1 ≤ b · (min{x ,y})b−1. Thus, we have

p∗.cbj − s
∗
.cbj ≤ |p

∗
.c j − s

∗
.c j | · b · (min{p∗.c j , s

∗
.c j })

b−1

≤
cτj

t
· b · cτj

b−1
=

b

t
cτj

b
(34)

Therefore,

reдretD(S, f) ≤
1

b
(

d
∑

j=1

α j
b

t
cτj

b)(

d
∑

j=1

α j · p
∗
.cbj)

1
b −1

≤
d

t
(max
j∈[1..d]

α jc
τ
j
b)

[

d · max
j∈[1..d]

α jc
τ
j
b

]
1
b −1

=

d
1
b

t
(max
j∈[1..d]

α jc
τ
j
b)

1
b

(35)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:21

Recall that p∗j has the largest utility in dimension j , i.e., p∗j .c j = c
τ
j . This means that α jp

∗
j .c

b
j = α jc

τ
j
b .

Since ∀l ∈ [1..d],αl ≥ 0 and p∗j .cl > 0, we have
∑d

l=1 αl · p
∗
j .cl

b ≥ α jp
∗
j .c

b
j = α jc

τ
j
b . Thus,

reдretD(S, f) ≤
d

1
b

t
(max
j∈[1..d]

d
∑

l=1

αl · p
∗
j .cl

b)
1
b

=

d
1
b

t
max

j∈[1..d]
(

d
∑

l=1

αl · p
∗
j .cl

b
)
1
b

(36)

Let σ =
d

1
b

t
. Then,

reдretD(S, f) ≤ σ max
j∈[1..d]

(

d
∑

l=1

αl · p
∗
j .cl

b)
1
b

1

σ
reдretD(S, f) ≤ max

j∈[1..d]
(

d
∑

l=1

αl · p
∗
j .cl

b
)
1
b

(37)

By the design of the MinVar algorithm, p∗j (j ∈ [1..d − 1]) is in S. Meanwhile, the point with the

largest utility in dimension d in each bucket is also in S, which means that p∗
d
is also in S. Thus,

max
pi ∈S

f (pi) ≥ max
j∈[1..d]

f (p∗j)

= max
j∈[1..d]

(

d
∑

l=1

αl · p
∗
j .cl

b)
1
b

≥
1

σ
reдretD(S, f)

This means
maxpi ∈S f (pi)

reдretD(S, f)
≥

1

σ
. The regret ratio r_reдretD(S, f) is hence bounded by

r_reдretD(S, f) =
reдretD(S, f)

reдretD(S, f) +maxpi ∈S f (pi)

=

1

1 +
maxpi ∈S f (pi)

reдretD (S, f)

≤
1

1 + 1
σ

=

σ

1 + σ
=

d
1
b

t + d
1
b

(38)

�

Therefore, given a set F of CES functions, themaximum regret ratiomr_reдretD(S,F) satisfies:

mr_reдretD(S,F) ≤
d

1
b

t + d
1
b

(39)

We can see from this bound that, when k decreases or d increases, the maximum regret ratio
is expected to increase. For simplicity, we say that this bound grows in a scale of O(1

k
1

d−1

). This

bound is tighter than the bound O(1

bk
b
d−1

) obtained in a previous study [24] since 0 < b < 1.

To give an example, consider a family of CES functions where b = 0.5. Let d = 2 and k = 3,

which means t = 2. The upper bound of the maximum regret ratio d
1
b

t+d
1
b

=
4

2+4 ≈ 66.67%. As k

increases (e.g., to 20), this upper bound will decrease (e.g., to 4
19+4 ≈ 17.39%).

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:22 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

Dimension 1

Dimension 2
p

2

p
1

p
,

+
-

�
.

�
6�

7

�
1

�
9

�
)�

�
�	

��

12

p
1�

Fig. 4. Skyline point selection

7 THE MAXDIF ALGORITHM

MinVar aims to bound the maximum regret ratios rather than to minimize them. Its bucket-based
answer point selection strategy is conservative. To minimize the maximum regret ratios, we pro-
pose a heuristic based second query algorithm namedMaxDif that exploits skyline points [8]. We
first show that the answer set to minimize the maximum regret ratio must be formed by skyline
points. When there are more than k skyline points, we need to select k from them to form an an-
swer set. MaxDif makes this selection following a heuristic for regret ratio minimization. If there
are no more than k skyline points, the entire set of skyline points should be returned as the an-
swer. The answer set can be padded with randomly selected objects from the database to make it
of size-k .
Regret ratio minimization with skyline points. Skyline points are points that are not dom-

inated by any other points. Given two points pi and pj , pi is said to dominate pj if and only if the
coordinate values of pi are no smaller than those of pj in all dimensions, and there is at least one
dimension where the coordinate of pi is larger than that of pj , i.e.,

∀l ∈ [1..d],pi .cl ≥ pj .cl ∧ ∃l ∈ [1..d],pi .cl > pj .cl (40)

In Fig. 4, the hollow dots p1, p2, p3, p4, and p5 are skyline points as they are not dominated, while
the black dots are non-skyline points, i.e., points dominated by some skyline point.
Let P be the set of all skyline points. Its regret over any MUF f , reдretD(P, f), must be 0. This

is because, for any non-skyline point pj ∈ D \ P , the skyline point pi ∈ P dominating pj satisfies
f (pi) ≥ f (pj) for any MUF f by definition, and hence дain(P, f) ≥ дain(D \ P, f). Thus,

reдretD(P, f) = дain(D, f) − дain(P, f)

= дain(D \ P ∪ P, f) − дain(P, f)

= max{дain(D \ P, f),дain(P, f)} − дain(P, f)
= дain(P, f) − дain(P, f)

= 0

(41)

Therefore, the regret ratio of P and the maximum regret ratio of P over a family of MUFs must be 0.

When |P | ≤ k , P is the optimal answer to a k-regret query with MUFs. When |P | > k , a size-k
subset of it must be the optimal answer. The reason is as follows. For any size-k subset S ∈ D, we
can construct a new size-k subset S′ by replacing every non-skyline point pj ∈ S with a skyline
point pi ∈ P that dominates pj . The gain of S′ over any MUF f must be larger than or equal
to that of S. Thus, the maximum regret ratio of S′ must be smaller than or equal to that of S.
Therefore, the optimal answer set that minimizes the maximum regret ratio must be a set that
contains skyline points only, and hence it is a subset of P . This is formulated as the following
theorem.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:23

Theorem 4. Let F = { f | f (pi) =
∏d

j=1 pi .c
α j
j } be a set of MUFs, where α j ≥ 0 and

∑d
j=1 α j ≤ 1.

Suppose that there are k or more skyline points in a databaseD of size n. Then, there is a size-k subset

S∗ ⊆ D that contains only skyline points, and its maximum regret ratio is less than or equal to that

of any other size-k subset S ⊆ D, i.e.,mr_ratioD(S
∗
,F) ≤ mr_ratioD(S,F).

Proof. The proof is straightforward as sketched in the paragraph above. We omit the full proof
for conciseness. �

We note that a similar theorem has been proven [6] in parallel to show that skyline points
minimize the maximum regret ratio for AUFs. Both AUFs and MUFs are monotonically increas-
ing in each dimension, and their parameters are both non-negative. This allows skyline points to
minimize the maximum regret ratio for both types of utility functions.
Selection of k skyline points. Theorem 4 reduces the k-regret query to selecting k skyline

points that together minimize the maximum regret ratio. This can be done by finding the size-k
subset S∗ ⊆ P such that, for any MUFs in F , the maximum regret of S∗ over the gain of P is
minimized. Since P = (P \S∗) ∪S∗, the goal translates to minimizing the maximum ratio of gain
difference between P \ S∗ and S∗ over the gain of P \ S∗ for any MUFs in F . Formally,

S∗ = argmin
S⊆P, |S |=k

max
f ∈F
{
дain(P \ S, f) − дain(S, f)

дain(P \ S, f)
}

= argmin
S⊆P, |S |=k

max
f ∈F
{
maxpi ∈P\S f (pi) −maxpj ∈S f (pj)

maxpi ∈P\S f (pi)
}

(42)

There are

(

|P |

k

)

=

|P |!

k!(|P | − k)!
size-k subsets of skyline points. Finding the optimal size-k subset

from them has been shown to be NP-hard [15]. We use a greedy heuristic to select k skyline points
iteratively to form the answer set S∗. In each iteration, the point p∗ ∈ P is selected such that,
for any MUF f ∈ F , the maximum ratio of difference between дain(P \ {p∗}, f) and f (p∗) over
дain(P \ {p∗}, f) is minimized. Point p∗ is added to S∗ and removed from P before the next point
is selected from P . Formally,

p∗ = argmin
p ∈P

max
f ∈F
{
maxpi ∈P\{p } f (pi) − f (p)

maxpi ∈P\{p } f (pi)
} (43)

As we can see, Equations 42 and 43 are very similar, except that a size-k subset S has been replaced
by a point p.
To compute point p∗, we need to first rewrite Equation 43. We know that

max
pi ∈P\{p }

f (pi) − f (p) = max
pi ∈P\{p }

{ f (pi) − f (p)} (44)

Further,

maxpi ∈P\{p }{ f (pi) − f (p)}

maxpi ∈P\{p } f (pi)
= max

pi ∈P\{p }
{
f (pi) − f (p)

f (pi)
} (45)

Thus,

p∗ = argmin
p ∈P

max
f ∈F
{ max
pi ∈P\{p }

{
f (pi) − f (p)

f (pi)
}} (46)

The two “max” aggregates in the equation above can be swappedwithout affectingp∗. They require
checking all combinations of points in P \ {p} and functions in F . The order of the checking has

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:24 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

no impact on the computation result. Thus,

p∗ = argmin
p ∈P

max
pi ∈P\{p }

{max
f ∈F
{
f (pi) − f (p)

f (pi)
}} (47)

The two aggregates “argmin
p ∈P

” and “ max
pi ∈P\{p }

” in this equation can be handled simply by a two-layer

loop to examine all the points in P .

MaxDif computation.The only problem remaining is to compute the termmax
f ∈F
{
f (pi) − f (p)

f (pi)
}.

This term represents the maximum ratio of dif ference between the utilities of pi and p over the
utility of pi for any MUFs in F . We call it theMaxDif of pi over p, and denote it bymaxdi f (pi ,p).

maxdi f (pi ,p) = max
f ∈F
{
f (pi) − f (p)

f (pi)
} (48)

Without knowing the exact MUFs in F , however, it is infeasible to computemaxdi f (pi ,p). We ad-
dress this problem by computing an upper bound for it instead, which is denoted bymaxdi f ∗(pi ,p):

maxdi f ∗(pi ,p) = max
l ∈[1..d]

ln
pi .cl

p.cl
(49)

We show that maxdi f (pi ,p) ≤ maxdi f ∗(pi ,p) holds by considering
f (pi) − f (p)

f (pi)
for any MUF

f ∈ F . Equation 9 in the proof of the maximum regret ratio upper bound in Section 5.1 suggests:

f (pi) − f (p) ≤

[

d
∑

l=1

αl (lnpi .cl − lnp.cl)

]

d
∏

l=1

pi .c
αl
l

(50)

By definition, f (pi) =
∏d

l=1 pi .c
αl
l
> 0. Thus,

f (pi) − f (p)

f (pi)
≤

d
∑

l=1

αl (lnpi .cl − lnp.cl) (51)

Since lnpi .cl − lnp.cl ≤ maxl ∈[1..d]{lnpi .cl − lnp.cl },

f (pi) − f (p)

f (pi)
≤

d
∑

γ=1

αγ max
l ∈[1..d]

{lnpi .cl − lnp.cl }

=

d
∑

γ=1

αγ max
l ∈[1..d]

ln
pi .cl

p.cl

(52)

We know that
∑d

γ=1 αγ ≤ 1. Thus,

f (pi) − f (p)

f (pi)
≤ max

l ∈[1..d]
ln

pi .cl

p.cl
(53)

The right hand side of the inequality is independent of any MUF f . Thus,

maxdi f (pi ,p) = max
f ∈F
{
f (pi) − f (p)

f (pi)
}

≤ max
l ∈[1..d]

ln
pi .cl

p.cl
=maxdi f ∗(pi ,p)

(54)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:25

We can now replace maxf ∈F{
f (pi)−f (p)

f (pi)
} withmaxdi f ∗(pi ,p) in Equation 47 for computing p∗:

p∗ = argmin
p ∈P

max
pi ∈P\{p }

{maxdi f ∗(pi ,p)} (55)

ALGORITHM 3: MaxDif

Input: D = {p1,p2, ...,pn}: a d-dimensional database; k : the size of the answer set.

Output: S∗: a size-k subset of D.

1 Compute skyline points and store them in P;

2 S∗ ← ∅;

3 for i = 1, 2, ...,d do

4 Find p∗i ∈ P which has the largest utility p∗i .ci in dimension i ;

5 S∗ ← S ∪ {p∗i };

6 P ← P \ {p∗i };

7 while |S| < k and |P | > 0 do

8 p∗ ← FindMinMaxDi f Point(P);

9 S∗ ← S∗ ∪ {p∗};

10 P ← P \ {p∗};

11 S∗ ← S∗ ∪ {k − |S∗ | random points in D \ S∗};

12 return S∗;

ALGORITHM 4: FindMinMaxDifPoint

Input: P: a skyline point set.

Output: p∗: a MinMaxDif point.

1 min← +∞;

2 for p ∈ P do

3 p.md ← −∞;

4 for pi ∈ P \ {p} do

5 if maxdi f ∗(pi ,p) > p.md then

6 p.md ←maxdi f ∗(pi ,p);

7 if p.md <min then

8 p∗ ← p;

9 min← p.md ;

10 return p∗;

The algorithm. We name our query algorithm after the MaxDif metric, i.e., the MaxDif algo-
rithm. As summarized in Algorithm 3, the MaxDif algorithm first computes all the skyline points
and stores them in a set P (Line 1). This can be done by an existing skyline query algorithm
(e.g., [34, 43]) and is not the focus of our study. A straightforward algorithm is a three-layer nested
loop over all the data points and dimensions to look for any non-dominated points. Then, following
MinVar, the algorithm adds the skyline point with the largest coordinate value in each dimension
to the answer set S∗ (Lines 3 to 6). This serves to cover the extreme case where the MUFs have
a weight of 1 in some dimension and 0’s in all other dimensions. The algorithm proceeds to add
point p∗ as defined by Equation 55 into S∗ iteratively (Lines 7 to 10). We call point p∗ aMinMaxDif

point and use a sub-algorithm FindMinMaxDifPoint to compute it. Each MinMaxDif point added

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:26 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

to S∗ is removed from P , and the loop terminates when S∗ has k points or P becomes empty. If
the loop terminates and S∗ does not have k points, we fill up S∗ with randomly selected points
from D (Line 11). Then, the set S∗ is returned (Line 12).
The FindMinMaxPoint algorithm loops through the skyline points in P . For every skyline point

p, we compute the MaxDif value of every skyline point pi ∈ P \ {p} over p. The largest MaxDif
value is recorded as p.md . The skyline point p∗ with the smallest p∗.md value is returned as the
MinMaxDif point. We summarize this process as Algorithm 4.
Algorithm complexity. The MaxDif algorithm needs to compute and store the set of skyline

points P . Leaving out the space for storing the input data, the space complexity of the algorithm
is O(|P | + k). In the worst case, P has the same size as the entire database, and the worst-case
space complexity is O(n + k).
Computing the set P with a straightforward three-layer nested loop takesO(n2d) time (Line 1).

There are more advanced skyline query algorithms [34, 43] but these are beyond the scope of the
paper. Computing the maximum skyline points in the d dimensions (Lines 3 to 6) takes O(|P |d)
time. The MaxDif algorithm then calls FindMinMaxDifPoint for k times (Lines 7 to 10). Find-
MinMaxDifPoint makes a two-layer nested loop pass over P to compute the MinMaxDif point,
where computing the MaxDif value between two points needs to loop through d dimensions.
Thus, the time complexity for the k function calls is O(k |P |2d). The overall time complexity is
O(n2d + |P |d + k |P |2d) = O(n2d + k |P |2d). The worst-case time complexity is O(kn2d).

Discussion. The set S∗ returned by the MaxDif algorithm is a heuristic choice to approach the
theoretically optimal answer set defined by Equation 42. It is based on a boundmaxdi f ∗(pi ,p) and
aims to minimize the maximum regret ratio over the entire set of utility functions in F which is
infinite. In the experiments, we can only test a finite subset F ′ ⊂ F of utility functions. The set
S∗ generated to minimize the maximum regret ratio over F may not minimize that over F ′. The
reason is as follows. Given a finite set of utility functions F ′ ⊂ F , there may be a size-k subset
S that contains all the skyline points that maximize the gains over F ′, and hence minimizes the
maximum regret ratio over F ′. This subset S, however, may not minimize the maximum regret
ratio over the set in F \ F ′. The MaxDif algorithm, which considers both sets of F ′ and F \ F ′

together,may return a different setS∗ . SinceS∗ is different fromS, andSminimizes themaximum
regret ratio over F ′, S∗ may not minimize the maximum regret ratio over F ′. Regardless, as the
experiments in the next section show, S∗ still has consistently small maximum regret ratios over
the set F ′. Further, a larger F ′ may cause only a small increase in the maximum regret ratio of
S∗ as the MaxDif algorithm already considers the infinite set F when generating S∗.

8 EXPERIMENTS

We evaluate the empirical performance of the two proposed algorithms MinVar and MaxDif.

8.1 Se�ings

The algorithms are implemented in C++, and the experiments are run on a computer running the

OS X 10.12 operating system with a 64-bit 2.7 GHz Intel® Quad-Core(TM) i7 CPU and 16 GB RAM.
Both real and synthetic data sets are used in the experiments. The real data sets used are the

NBA1, the Stocks2, and the Weather3 data sets. NBA and Stocks have been used in previous stud-
ies on k-regret queries [36, 37]. After filtering out data points with null fields, we obtain 20,640
data points of 7 dimensions in the NBA data set, including 88 skyline points. The Stocks data set

1http://www.databasebasketball.com
2http://pages.swcp.com/stocks
3https://crudata.uea.ac.uk/cru/data/hrg/tmc/

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:27

Table 3. Experimental Se�ings

Parameter Values Default

Utility function AUF, CES, Cobb-Douglas -
Data set NBA, Stocks, Weather, Random

Anti-correlated, Correlated, Random
Number of utility functions 10k, 50k, 100k, 500k, 1000k 10k

n 10k, 50k, 100k, 500k, 1000k 100k
d 2, 4, 5, 6, 8, 10, 12 5
k 10, 20, 30, 40, 50 20

contains 122,574 data points of 5 dimensions, including 39 skyline points. Weather is a larger data
set, which contains 566,262 data points of 13 dimensions, including 7,947 skyline points. The 13
dimensions of each data point represent the elevation and 12 monthly mean temperature values of
a weather observation point. We use absolute values of the temperature data since we assume pos-
itive utilities. A value of zero is also allowed as it does not affect the correctness of any algorithm
tested.
The synthetic data sets are generated using the anti-correlated data set generator [8], which is a

popular data generator used in skyline query studies [34, 35, 44]. This data generator can generate
points with correlated, anti-correlated, and random coordinate values in different dimensions. Data
points with correlated coordinate values have similar coordinate values in different dimensions.
This means that a data point p with the largest coordinate value in one dimension is likely to have
large coordinate values in other dimensions as well, and p tends to dominate most other points.
Only a small number of points like p are needed to dominate all other points in a data set. Such
a data set has only a small number of skyline points. In contrast, data points with anti-correlated
coordinate values have large coordinate values in some dimensions while small coordinate values
in other dimensions. They tend not to dominate or be dominated by other points, which makes
them likely skyline points. More skyline points exist in such a data set. Data points with random
coordinate values have independent coordinate values in different dimensions. A data set of such
points has a relatively moderate number of skyline points. We generate Correlated, Anti-correlated,
and Random data sets with these different type of points, respectively.
We vary the data set cardinality n from 10,000 to 1,000,000, the dimensionality d from 2 to 12,

and the query parameter k from 10 to 50. Table 3 summarizes the parameters and their values. By
default, we use a Random data set with 100,000 data points of 5 dimensions (d = 5), and k = 20.
Note that both a proposed algorithm MinVar and a baseline algorithm MinWidth [24] divide the

data space into t (d−1) buckets and select a single point from each bucket to be added into the

query answer, where t = ⌊(k − d + 1)
1

d−1 ⌋. With a default d value of 5, t = 1 (i.e., the entire
data space is considered as a bucket) for k up to 19. For such small values of k , the performance
difference between the two algorithms is minimum, which can be seen from the experimental
results in Section 8.2 where the value of k is varied. To observe the performance difference of the
two algorithms, we use a default value of k = 20. We argue that a representative subset of 20 data
points is still manageable by users.
We use three families of utility functions – the generalized Cobb-Douglas functions (denoted by

“Cobb-Douglas”), the CES functions (denoted by “CES”), and the linear summation functions (de-
noted by “AUF”). The involvement of AUFs in the experiments serves to showcase the applicability

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:28 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

of the proposedMinVar andMaxDif algorithms over a wider range of utility functions. MinVar has
the same maximum regret ratio bounds for AUFs as those derived by Nanongkai et al. [32], since
MinVar also uses parameter t to bound the space partitioning, the values of which are no smaller
than those used by Nanongkai et al. MaxDif can also handle k-regret queries with CES functions
or AUFs, but may produce suboptimal query answers. This is because the optimization function of
MaxDif is designed for MUFs which may not minimize the maximum regret ratios for CES func-
tions or AUFs. In each set of experiments, we randomly generate from 10,000 to 1,000,000 sets of

parameters {αi |i ∈ [1..d],αi ∈ [0, 1]} for each family of utility functions, where
∑d

i=1 αi = 1. The
CES function has an extra parameter b. We generate random values of b in the range of [0.1, 0.9].
By default, we use 10,000 utility functions in each utility function family for the testing. We run the
algorithms on the data sets, and report the running time and the maximum regret ratio (denoted
by “MRR”) on the generated utility functions.
Since no algorithms have been proposed in the past for k-regret queries with MUFs, for compar-

ison purposes, we use four baseline algorithmsMinWidth, Angle, AreaGreedy, and MaxDom.Min-
Width, Angle, and AreaGreedy have been proposed for k-regret queries with CES functions [24];
MaxDom has been proposed for top-k representative skyline queries [28]. We compare the maxi-
mum regret ratios of the answer sets generated by these algorithms over Cobb-Douglas functions,
CES functions, and AUFs with those of the answer sets generated by the two proposed algorithms.
Together we test six algorithms in our experiments.

• MinVar is the algorithm proposed in Section 4. We use inc = 0.1%n to control the number
of iterations for which the sub-algorithm FindBreakpoints is run. We find that itrmax = 11
is sufficient to handle the data sets tested. The results obtained are based on this setting.
• MaxDif is the heuristic algorithm proposed in Section 7.
• MinWidth [24] is an algorithm with bounded maximum regret ratios for k-regret queries
with CES functions.
• Angle [24] is a greedy algorithm (with no bounds on the maximum regret ratios) proposed
for k-regret queries with CES functions.
• AreaGreedy [24] is another greedy algorithm (with no bounds on the maximum regret
ratios) proposed for k-regret queries with CES functions.
• MaxDom [28] is a greedy algorithm that returns the k representative skyline points which
dominate the largest number of other points. For fairness, both MaxDom and MaxDif use
the same straightforward algorithm to compute the skyline points, which checks every pair
of points and every dimension for dominance (with early termination once dominance is
detected). Skyline computation time is included in the running time reported.

8.2 Results

Effect of k. We first test the effect of varying k . Figures 5 to 11 show the result where k is var-
ied from 10 to 50 on the three real data sets and three synthetic data sets. In general, we can see
decreasing maximum regret ratios (“MRR” in the figures) as k increases for all algorithms tested.
Meanwhile, the algorithm running times increase. These are expected. A larger k means more
points are returned and a higher probability of satisfying more utility functions, which also take
more time to compute. Note that the computation process and the answer set of each algorithm
are independent of the different types of utility functions. Thus, the running times of the algo-
rithms are independent of the utility function type, and we only report them once for each set
of experiments. The same answer set of each algorithm, however, may have different maximum
regret ratios for different types of utility functions as shown in Fig. 5, which is consistent with our
motivating example in Section 1.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:29

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

10 20 30 40 50

M
R

R

k

(a) MRR (Cobb-Douglas)

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

10 20 30 40 50

M
R

R

k

Angle
AreaGreedy

MaxDif
MaxDom

MinVar
MinWidth

(b) MRR (CES)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

10 20 30 40 50

M
R

R

k

(c) MRR (AUF)

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

k

(d) Running time

Fig. 5. Varying k (NBA)

Performance on real data sets. Figures 5 to 7 show the results on the NBA, Stocks, and Weather
data sets. We see that, between the two algorithmsMinVar (denoted by‘◦’ in the figure; same below)
and MinWidth (‘+’) that have bounded maximum regret ratios, the proposed algorithm MinVar
has maximum regret ratios that are consistently lower than or equal to those of MinWidth. The
advantage is more significant for larger k values (e.g., up to 56% lower for k = 50 with Cobb-
Douglas functions, cf. Fig. 5a), as this allows more buckets to be created, and MinVar is designed
to increase the probability of catching the optimal points by balancing the numbers of points
across different buckets. This advantage comes at the expense of a higher running time than that
of MinWidth. However, we argue that the running time of MinVar is manageable. As Fig. 7 shows,
MinVar can process the Weather data set which has over half a million data points in just 1.3
seconds.We also notice that MinWidth can process this data set in 0.3 seconds while producing the
samemaximum regret ratios. This shows thatMinWidth is a highly competitive baseline algorithm,
and it is not easy to outperform this algorithm in terms of the running time.
For the rest of the algorithms which do not have bounded maximum regret ratios, the proposed

algorithm MaxDif (‘�’) has the most consistent performance in terms of the difference from the
smallest maximum regret ratio achieved by any algorithm tested. The maximum regret ratios of
MaxDif are no more than 0.24 higher than those of any algorithm tested (i.e., for Cobb-Douglas
functions on the Stocks data set where k = 10). MaxDif also has the smallest maximum regret
ratios for the NBA data set where k ≥ 30 and for the Stocks data set where k ≥ 40. For the other
heuristic algorithms, AreaGreedy (‘△’) has maximum regret ratios that can be 0.57 higher than
that of MaxDif and MaxDom (‘×’) on the Stocks data set where k ≥ 40, although it also has the
smallest maximum regret ratios on the Weather data set and for a few k values on the NBA data
set. Similarly, Angle (‘⋄’) and MaxDom also suffer on the Stocks data set, where their maximum

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:30 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

10 20 30 40 50

M
R

R

k

(a) MRR (Cobb-Douglas)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

10 20 30 40 50

M
R

R

k

Angle
AreaGreedy

MaxDif
MaxDom

MinVar
MinWidth

(b) MRR (CES)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

10 20 30 40 50

M
R

R

k

(c) MRR (AUF)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

k

(d) Running time

Fig. 6. Varying k (Stocks)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

13 20 30 40 50

M
R

R

k

(a) MRR (Cobb-Douglas)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

13 20 30 40 50

M
R

R

k

Angle
AreaGreedy

MaxDif
MaxDom

MinVar
MinWidth

(b) MRR (CES)

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

13 20 30 40 50

M
R

R

k

(c) MRR (AUF)

10-1

100

101

102

103

104

13 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

k

(d) Running time

Fig. 7. Varying k (Weather)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:31

regret ratios are up to 0.99 and 0.36 higher than those of MaxDif, respectively. The advantage
of MaxDif is attributed to its point selection strategy. MaxDif adds the skyline point that differs
the least from any of the unselected skyline points into the answer set. By doing so, even if an
unselected skyline point turns out to be optimal for some utility function, the optimality of the
points in the answers set is not too muchworse than that of the optimal point. This point selection
strategy is also the reason why MaxDif may have larger maximum regret ratios than those of the
other proposed algorithm MinVar in some cases (e.g., k = 20 or 30 on the Stocks data set with
Cobb-Douglas or CES functions), where MinVar may happen to select an optimal skyline point or
some non-skyline point close to it, while MaxDif may select a non-optimal skyline point.
In terms of the running time, all the heuristic algorithms are slower thanMinWidth. AreaGreedy

and Angle require multiple scans over the data set to find the points that bound the maximum area
and are the maximum towards different angles, respectively. MaxDif has a time complexity that
is quadratic to the number of skyline points. Its running time is low when the number of skyline
points is small, e.g., below 0.15 seconds for the NBA and Stocks data sets where the number of
skyline points is below 100. This running time could become higher than those of AreaGreedy and
Angle when the number of skyline points becomes larger, e.g., over 500 seconds for the Weather
data set where the number of skyline points is over 7,000. MaxDom checks every skyline point
against all the data points and its running times are constantly higher than those of MaxDif. It
may take over 1,000 seconds to run on the Weather data set.
Performance on skyline points. The proposed algorithm MinVar and three baseline algorithms

MinWidth, Angle, and AreaGreedy are designed to run on the entire data set, but they can also
run on the set of of skyline points. We examine the performance of these four algorithms on
skyline points in this set of experiments. Note that, forMinVar andMinWidth which have bounded
maximum regret ratios, running them on skyline points does not impact their maximum regret
ratio bounds for the following reason.We have shown that, for anyMUF, its corresponding optimal
point must be a skyline point. For any skyline point, a point is selected into the query answer from
the bucket of the skyline point by MinVar and MinWidth. Further, the bucket size for the set of
skyline points P must not exceed that for the entire data setD, since P ⊆ D. Thus, the bucket size
based maximum regret ratio bounds still hold. We omit the full proof since it is straightforward.
Figure 8 shows themaximum regret ratios for Cobb-Douglas utility functions and running times

when the algorithms are run on the skyline points of the three real datasets. We omit the MRR
figures for CES and AUF utility functions, since the comparative performance of the algorithms
running on skyline points with their counterparts running on the entire data set is similar to those
shown in the MRR figures for Cobb-Douglas utility functions in Figs. 5 to 8.
In terms of the maximum regret ratio, we see that MinVar (‘◦’) and MinWidth (‘+’) benefit the

most from running on the skyline points. Their maximum regret ratios are now either the smallest
(Fig. 8c) or very close to the smallest maximum regret ratios produced by any algorithm tested
(Fig. 8a and Fig. 8e). Among these two algorithms, the proposed algorithm MinVar again obtains
smaller maximum regret ratios because it can adaptively shrink the bucket size which leads to
smaller regret ratios. Angle (‘⋄’) and AreaGreedy (‘△’) benefit less. Their maximum regret ratios are
still less stable across different data sets than those of the proposed algorithm MaxDif (‘�’). They
have the largest maximum regret ratios on the Stocks data set where k ≤ 30 (Fig. 8c), although
AreaGreedy also has the smallest maximum regret ratios on theWeather data set (Fig. 8e). Focusing
on the two proposed algorithms MaxDif and MinVar, MaxDif still produces smaller maximum
regret ratios on the NBA data set where 20 ≤ k ≤ 40 (Fig. 8a), while MinVar produces no larger
maximum regret ratios in all other cases. This suggests that, while MaxDif is still an effective

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:32 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

10 20 30 40 50

M
R

R

k

(a) MRR (Cobb-Douglas) - NBA

 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

k

Angle
AreaGreedy

MaxDif
MaxDom

MinVar
MinWidth

(b) Running time - NBA

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

10 20 30 40 50

M
R

R

k

(c) MRR (Cobb-Douglas) - Stocks

 0.14
 0.15
 0.16
 0.17
 0.18
 0.19

 0.2
 0.21
 0.22
 0.23
 0.24
 0.25

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

k

(d) Running time - Stocks

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

10 20 30 40 50

M
R

R

k

(e) MRR (Cobb-Douglas) - Weather

 500

 600

 700

 800

 900

 1000

 1100

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

k

(f) Running time - Weather

Fig. 8. Varying k (skyline points of real data sets)

heuristic based algorithm, MinVar could be very competitive if it could be run on the skyline
points.
The smaller maximum regret ratios come at the cost of larger algorithm running times. Now all

algorithms except MaxDom (‘×’, which needs to run on the entire data set) have roughly the same
running time, which is dominated by the time to compute the skyline points. For example, on the
Weather data set (Fig. 8f), the running times of all algorithms except MaxDom are at about 560
seconds, among which 559.31 seconds are taken to compute the skyline points. Once the skyline
points are computed, even MaxDif which has a quadratic running time on the number of sky-
line points only takes 64.88 seconds (i.e., a total of 624.19 seconds) to compute the query answer,
whereas MinVar only takes 0.28 seconds to compute the query answer (k = 50).

In application scenarios where the data set is dynamic (e.g., online shopping services where
new products keep arriving) and precomputing the skyline points is infeasible, the high cost of

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:33

computing the skyline points would prevent running the algorithms on them. Thus, in the follow-
ing experiments, for MinVar, MinWidth, Angle, and AreaGreedy which do not have to run on the
skyline points, we focus on their performance over the entire dataset.
Performance on synthetic data sets. Similar performance patterns are observed on the three syn-

thetic data sets, as shown in Figs. 9 to 11. MinVar (‘◦’) has maximum regret ratios that are smaller
than or equal to those of MinWidth (‘+’) in almost all cases, except for when k = 50 on the Anti-
correlated data set with CES functions (Fig. 10b). The advantage in the maximum regret ratio is
most significant on the Correlated data set. This can be explained by noting that the Correlated
data set has a more skewed distribution, and MinVar is designed to obtain more balanced buckets
for skewed data. The running times of MinVar are again larger than those of MinWidth, but are
within 0.2 seconds, which is still reasonably small. Following studies [30, 41] on users’ tolerable
waiting times, we consider 2 seconds as the threshold of a “reasonable” running time. MaxDif (‘�’)
has the smallest maximum regret ratios (up to 0.019) and running times (up to 0.030 seconds) on
the Correlated data set except for when k = 10 (cf. Fig. 9). This data set has 26 skyline points,
which can be processed by MaxDif with a high efficiency. MaxDom (‘×’) has the smallest maxi-
mum regret ratios on the Anti-correlated (up to 0.238) and Random data sets (up to 0.146), but its
running times are also the largest (up to 569.3 and 9.8 seconds on the two data sets, respectively).
MaxDif has the second smallest maximum regret ratios on these two data sets (up to 0.326 and 0.224
which are 37.0% and 53.4% higher, respectively) with the exception of AUFs on the Anti-correlated
data set. Note that the optimization goal of MaxDif when selecting the data points is designed for
MUFs, which may not be optimal for CES functions or AUFs. The running times of MaxDif are
lower than those of MaxDom as well. It takes 1.7 seconds (82.7% lower) to process the Random
data set (1,068 skyline points) and 92.7 seconds (83.7% lower) to process the Anti-correlated data
set (12,710 skyline points) when k = 50. For the Anti-correlated data set which has a large num-
ber of skyline points, MinVar (‘◦’) and AreaGready (‘△’) offer the most competitive performance.
Their maximum regret ratios are close to those of MaxDif, while their running times are within
0.1 seconds.
Effect ofd .Next, we test the algorithm scalability over the number of data dimensions. We vary

the number of dimensionsd from 2 to 12with synthetic data. Figure 12 shows the result on Random
data sets. As d increases, the maximum regret ratios increase overall for all the algorithms. This
confirms the bounds obtained and is expected, since the difference in the utilities of the optimal
points in D and S accumulates when there are more dimensions. The increase in the maximum
regret ratio is not linear to the increase in d , and there are fluctuations, e.g., the maximum regret
ratios of MinWidth (‘+’) drops when d increases from 8 to 10 for the CES functions. This is because
adding extra dimensions changes the data distribution, the optimal data points, and the data points
selected into the answer set. Such changes may allow a lower maximum regret ratio for a higher
dimensional data set, e.g., a point with large utilities in the extra dimensions is selected into the
answer set, which compensates the lower utilities in the previous dimensions.
Similar to Fig. 11, on Random data sets, MaxDom (‘×’) produces the smallest maximum regret ra-

tios, while those of MaxDif (‘�’) are the closest. The running times of these two algorithms become
too high when d reaches 8 (33.9 and 137.0 seconds, respectively). For d ≥ 8, AreaGreedy becomes
the most competitive algorithm, as its running time is within 0.1 seconds while its maximum re-
gret ratios are close to those of MaxDif. MinVar (‘◦’) has larger maximum regret ratios than those
of the heuristic algorithms AreaGreedy and (in some cases) Angle (‘⋄’), but again its maximum
regret ratios do not exceed those of MinWidth (‘+’). We note that the advantage of MinVar over
MinWidth in terms of the maximum regret ratio is less significant on this set of experiments with
random data, as MinVar is designed for handling more skewed data.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:34 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

10 20 30 40 50

M
R

R

k

(a) MRR (Cobb-Douglas)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

10 20 30 40 50

M
R

R

k

Angle
AreaGreedy

MaxDif
MaxDom

MinVar
MinWidth

(b) MRR (CES)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

10 20 30 40 50

M
R

R

k

(c) MRR (AUF)

10-2

10-1

100

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

k

(d) Running time

Fig. 9. Varying k (Correlated)

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

10 20 30 40 50

M
R

R

k

(a) MRR (Cobb-Douglas)

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

10 20 30 40 50

M
R

R

k

Angle
AreaGreedy

MaxDif
MaxDom

MinVar
MinWidth

(b) MRR (CES)

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

10 20 30 40 50

M
R

R

k

(c) MRR (AUF)

10-2

10-1

100

101

102

103

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

k

(d) Running time

Fig. 10. Varying k (Anti-correlated)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:35

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

10 20 30 40 50

M
R

R

k

(a) MRR (Cobb-Douglas)

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

10 20 30 40 50

M
R

R

k

Angle
AreaGreedy

MaxDif
MaxDom

MinVar
MinWidth

(b) MRR (CES)

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

10 20 30 40 50

M
R

R

k

(c) MRR (AUF)

10-2

10-1

100

101

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

k

(d) Running time

Fig. 11. Varying k (Random)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

2 4 6 8 10 12

M
R

R

d

(a) MRR (Cobb-Douglas)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

2 4 6 8 10 12

M
R

R

d

Angle
AreaGreedy

MaxDif
MaxDom

MinVar
MinWidth

(b) MRR (CES)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

2 4 6 8 10 12

M
R

R

d

(c) MRR (AUF)

10-3
10-2
10-1
100
101
102
103
104

2 4 6 8 10 12

R
un

ni
ng

 ti
m

e
(s

)

d

(d) Running time

Fig. 12. Varying d (Random)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:36 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

10k 50k 100k 500k 1m

M
R

R

n

(a) MRR (Cobb-Douglas)

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

10k 50k 100k 500k 1m

M
R

R

n

Angle
AreaGreedy

MaxDif
MaxDom

MinVar
MinWidth

(b) MRR (CES)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

10k 50k 100k 500k 1m

M
R

R

n

(c) MRR (AUF)

10-3

10-2

10-1

100

101

102

103

10k 50k 100k 500k 1m

R
un

ni
ng

 ti
m

e
(s

)

n

(d) Running time

Fig. 13. Varying n (Random)

Similar patterns are observed when the algorithms are run on Correlated and Anti-correlated
data sets with different numbers of dimensions. The comparative performance of the algorithms
is similar to those shown in Figs. 9 and 10. On Correlated data sets where the numbers of skyline
points are small, MaxDif and MaxDom are both fast and produce small maximum regret ratios. On
Anti-correlated data sets where the numbers of skyline points are larger, MinVar and AreaGreeday
both have relatively small maximum regret ratios, and they can terminate in a realistic time. We
omit the figures for conciseness. The same applies for the rest of the experiments.
Effect of n. We further vary the data set cardinality from 10,000 to 1,000,000. Figure 13 shows

the result on Random data sets. The comparative performance of the algorithms is again similar
to that shown in Fig. 11. MaxDom (‘×’) has the smallest maximum regret ratios, while its running
time (55.3 seconds) is not competitive for data sets with over half a million data points (1,715
skyline points). MaxDif (‘�’) again has the second smallest maximum regret ratios (except for
the AUFs, for reasons discussed earlier), while it can process 1 million data points (2,090 skyline
points) within 35.6 seconds. When the number of data points reaches half a million, AreaGreedy
(‘△’) again becomes a more competitive heuristic algorithm as its maximum regret ratios are close
to those of MaxDif while its running times are within the 2-second threshold. As for the two
algorithms MinVar (‘◦’) and MinWidth (‘+’) with bounded maximum regret ratios, MinVar again
has consistently non-greater maximum regret ratios, and the running times of both algorithms are
within the 2-second threshold as well.

We also observe that, while the running times of all the algorithms increase with the data set
cardinality, which is natural, the maximum regret ratios do not show a significant increase. This
is because the number of points that yield large utilities for most utility functions increases with

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:37

the data set cardinality, which leads to a higher probability of selecting and inserting one of such
points into the answer set, and hence may produce a smaller maximum regret ratio.

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

10k 50k 100k 500k 1m

M
R

R

utility functions

(a) MRR (Cobb-Douglas)

 0.1
 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

10k 50k 100k 500k 1m

M
R

R

utility functions

(b) MRR (CES)

 0.12
 0.14
 0.16
 0.18
 0.2

 0.22
 0.24
 0.26
 0.28
 0.3

 0.32

10k 50k 100k 500k 1m

M
R

R

utility functions

Angle
AreaGreedy

MaxDif
MaxDom

MinVar
MinWidth

(c) MRR (AUF)

Fig. 14. Varying the number of utility functions (Random)

Effect of the number of utility functions. Figure 14 shows the impact of varying the number
of utility functions used in computing the maximum regret ratio from 10,000 to 1,000,000 (we
generated more utility functions for this set of experiments). Since the algorithms are independent
of any specific utility function, their output and running times do not change when the utility
functions change. Only the maximum regret ratios may change. Thus, we only show the maximum
regret ratios and omit the running times for this set of experiments.
The maximum regret ratios of the algorithms increase with the number of utility functions. This

is because, given the same answer set, when there are more utility functions, the probability of
satisfying all the utility functions drops, and hence the maximum regret ratio may increase. We
see from the figure that, while MaxDom (‘×’) has the smallest maximum regret ratio, its maximum
regret ratio increases the most significantly with the number of utility functions. This is because
MaxDom selects the set of skyline points that dominate the most non-skyline points. It does not
consider the difference in the utilities of the selected and unselected skyline points. This difference
can be large. When there are more utility functions, it is more likely to have an utility function
for which an unselected skyline point has the largest utility, which can cause a large regret ratio
for MaxDom. Our MaxDif algorithm, on the other hand, is more robust to a larger number of
utility functions (for the Cobb-Douglas utility functions), as it already considers the entire family
of infinite multiplicative utility functions when computing the answer set. In particular, for the
Cobb-Douglas utility functions, the maximum regret ratios of MaxDif (‘�’) have been kept steady
at around 0.2 and become closer to those of MaxDom as more utility functions are used. For the

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:38 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

CES and AUF functions, the maximum regret ratios of MaxDif and MaxDom do not become closer
as fast, because the optimization function of MaxDif may not suit CES or AUF functions.

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6

10 20 30 40 50

M
R

R

k

(a) MRR (Cobb-Douglas)

 0.2
 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

10 20 30 40 50

M
R

R

k

itrm=1
itrm=2
itrm=3
itrm=4
itrm=5

(b) MRR (CES)

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

10 20 30 40 50

M
R

R

k

(c) MRR (AUF)

 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0.22

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

k

(d) Running time

Fig. 15. Varying itrm (Random)

Effect of itrm. Parameter itrm in MinVar controls the maximum number of iterations to try out
different numbers of intervals in each dimension. In Fig. 15, we run MinVar by varying itrm from
1 to 5 on the Random data set to study the impact of itrm . We see that the maximum regret ratios
decrease as itrm increases from 1 to 2 but become stable when itrm increases further. This shows
that t + 1 intervals (i.e., second iteration) is sufficient to produce k points to fill up the answer set,
because the buckets are mostly non-empty for the Random data set. Only two iterations are run
even if itrm > 2. Note that when k = 20, the algorithm running times are close for different values

of itrm . This is because t = (k − d + 1)
1

d−1 = 2 when k = 20, which creates td−1 = 16 buckets and
yields 16 points in one iteration. Adding in the four points with the largest coordinates in the first
four dimensions, a total of 20 points are produced, which are sufficient to answer the query. One
iteration is needed even for itrm > 1. Experiments on the other data sets reveal that itrm = 11 is the
largest needed for all data sets tested. This supports the high efficiency of the MinVar algorithm.
Effect of inc. Parameter inc in MinVar controls the increment step size of the sub-algorithm

FindBreakPoints to optimize the interval size given t . We test the impact of inc by varying it from
0.01%n to 1%n. In Fig. 16, we present the results on the Correlated data set, since the data space
partitioning strategy of MinVar targets skewed data where inc has the most impact. We see that
the maximum regret ratios decrease when inc reaches 0.1%n. This is because the decrease in inc

leads to buckets with more similar numbers of data points, which increases the probability of the
optimal points being selected. However, when inc decreases further, the benefit in the maximum
regret ratios diminishes, while the running time keeps increasing as more iterations are needed.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:39

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1
 0.11

10 20 30 40 50

M
R

R

k

(a) MRR (Cobb-Douglas)

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0.11

10 20 30 40 50

M
R

R

k

inc=1%n
inc=0.5%n
inc=0.1%n

inc=0.05%n
inc=0.01%n

(b) MRR (CES)

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1
 0.11

10 20 30 40 50

M
R

R

k

(c) MRR (AUF)

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

k

(d) Running time

Fig. 16. Varying inc (Correlated)

In general, when inc = 0.1%n, the MinVar algorithm achieves the best balance between the
maximum regret ratio and the running time, which has been used by the default in the experiments.
Discussion. From the experiments, we see that MaxDom often produces small maximum regret

ratios. However, MaxDom does not have a bound on the maximum regret ratio. Its maximum regret

ratios grow as more utility functions are used to evaluate the answer set. Further, the running time of

MaxDom is quadratic over the number of data points when the number of skyline points is close to
the number of data points, which soon becomes unrealistic. The two proposed algorithms MaxDif
andMinVar, on the other hand, have comparablemaximum regret ratios, while their running times
are lower. MinVar should be used if a bounded maximum regret ratio is needed. MaxDif does not
have a bound but is designed to obtain small maximum regret ratios. It is robust to a large number
of utility functions (e.g., 1,000,000). MaxDif can produce query answers within 2 seconds when
the number of skyline points is within 1,000 (for 5-dimensional data). MinVar can produce query
answers within 1 second when the number of data points is within 1,000,000 (for 5-dimensional
data). When the data set characteristics are unknown, in order to obtain the best results, a feasible
approach is to run MaxDif and MinVar at the same time. If MaxDif terminates soon enough (e.g.,
in 2 seconds), its answer is returned. Otherwise, the answer produced by MinVar can be used.

9 CONCLUSIONS

We studied k-regret queries with multiplicative utility functions which we showed to be more ex-
pressive in modeling the diminishing marginal rate of substitution than the additive utility func-
tions studied in prior work [32].We presented two algorithmsMinVar andMaxDif for such queries.
MinVar produces query answers with a bounded maximum regret ratio. When applied on k-regret
queries with Cobb-Douglas functions, MinVar achieved a maximum regret ratio not exceeding

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:40 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

O(ln(1 +
1

k
1

d−1

)); when applied on k-regret queries with Constant Elasticity of Substitution func-

tions, MinVar achieved amaximum regret ratio not exceedingO(
1

k
1

d−1

). We also showed that, given

an infinite set of data points, the maximum regret ratio of any algorithm for k-regret queries with

multiplicative utility functions has a lower bound of Ω(
1

k2
). When the data set is finite, the set

of all skyline points has a maximum regret ratio of 0, which should be returned as the answer
set when the number of skyline points does not exceed k . When there are more than k skyline
points, MaxDif computes a size-k subset of skyline points to minimize the maximum regret ratio.
We performed extensive experiments using both real and synthetic data. The results showed that
the regret ratios produced by MinVar and MaxDif are consistently small: MaxDif suits the case
where the number of skyline points is not too large, while MinVar can produce small maximum
regret ratios in real-time as the number of skyline points becomes larger (e.g., over 1,000).
Future work involves exploring the behavior of k-regret queries with various other types of

multiplicative utility functions and parameter settings such as the product of convex (concave)

functions and when
∑d

i=1 αi > 1. It would also be interesting to see how k-regret queries with a
mix of both additive and multiplicative utility functions can be answered with a bounded regret
ratio.

ACKNOWLEDGMENTS

Thiswork is supported in part byAustralian ResearchCouncil (ARC)Discovery ProjectsDP180102050
andDP180103332and theNational Science Foundation under Grant IIS-13-20791.We thankDr. Ash-
win Lall for sharing the code of Angle, AreaGreedy, and MinWidth.

REFERENCES

[1] 2018. http://booking.com. (2018). Accessed: 2018-03-30.

[2] 2018. How many products does Amazon.com sell - January 2018. https://www.scrapehero.com/many-products-

amazon-sell-january-2018/. (2018). Accessed: 2018-03-30.

[3] A. Amir, A. Efrat, P. Indyk, and H. Samet. 2001. Efficient regular data structures and algorithms for dilation, location,

and proximity problems. Algorithmica 30, 2 (2001), 164–187.

[4] C. H. Ang, H. Samet, and C. A. Shaffer. 1990. A new region expansion for quadtrees. IEEE Transactions on Pattern

Analysis and Machine Intelligence 12, 7 (1990), 682–686.

[5] Walid G. Aref and Hanan Samet. 1997. Efficient window block retrieval in quadtree-based spatial databases. Geoin-

formatica 1, 1 (1997), 59–91.

[6] A. Asudeh, A. Nazi, N. Zhang, and G. Das. 2017. Efficient computation of regret-ratio minimizing set: A compact

maxima representative. In SIGMOD. Chicago, USA, 821–834.

[7] E. R. Berndt. 1976. Reconciling alternative estimates of the elasticity of substitution. The Review of Economics and

Statistics 58, 1 (1976), 59–68.

[8] S. Börzsönyi, D. Kossmann, and K. Stocker. 2001. The skyline operator. In ICDE. Heidelberg, Germany, 421–430.

[9] D. Braziunas and C. Boutilier. 2007. Minimax regret based elicitation of generalized additive utilities. In The 23rd

Conference on Uncertainty in Artificial Intelligence. Vancouver, Canada, 25–32.

[10] W. Cao, J. Li, H. Wang, K. Wang, R. Wang, R. C.-W. Wong, and W. Zhan. 2017. K-regret minimizing set: efficient

algorithms and hardness. In ICDT. Venice, Italy, 11:1–11:19.

[11] D. Cass. 1965. Optimum growth in an aggregative model of capital accumulation. The Review of Economic Studies 32,

3 (1965), 233–240.

[12] D.W. Caves and L. R. Christensen. 1980. Global properties of flexible functional forms. The American Economic Review

70, 3 (1980), 422–432.

[13] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang. 2006. On high dimensional skylines. In EDBT.

Munich, Germany, 478–495.

[14] L. Chen, G. Cong, X. Cao, and K.-L. Tan. 2015. Temporal spatial-keyword top-k publish/subscribe. In ICDE. Seoul,

South Korea, 255–266.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

K-Regret �eries Using Multiplicative Utility Functions 1:41

[15] S. Chester, A. Thomo, S Venkatesh, and S. Whitesides. 2014. Computing k-regret minimizing sets. PVLDB 7, 5 (2014),

389–400.

[16] C. W. Cobb and P. H. Douglas. 1928. A theory of production. The American Economic Review 18, 1 (1928), 139–165.

[17] P. A Diamond. 1965. National debt in a neoclassical growth model. The American Economic Review 55, 5 (1965),

1126–1150.

[18] P. A. Diamond, L. J. Helms, and J. A. Mirrlees. 1980. Optimal taxation in a stochastic economy. Journal of Public

Economics 14, 1 (1980), 1–29.

[19] Claudio Esperança and Hanan Samet. 2002. Experience with SAND-Tcl: a scripting tool for spatial databases. Journal

of Visual Languages and Computing 13, 2 (2002), 229–255.

[20] J. Huang, Z. Wen, J. Qi, R. Zhang, J. Chen, and Z. He. 2011. Top-k most influential locations selection. In CIKM.

Glasgow, United Kingdom, 2377–2380.

[21] I. F. Ilyas, G. Beskales, and M. A. Soliman. 2008. A survey of top-k query processing techniques in relational database

systems. ACM Computing Surveys 40, 4 (2008), 11:1–11:58.

[22] M. N. Katehakis and A. F. Veinott. 1987. The multi-armed bandit problem: decomposition and computation. Mathe-

matics of Operations Research 12, 2 (1987), 262–268.

[23] R. L. Keeney and H. Raiffa. 1993. Decisions with multiple objectives: preferences and value trade-offs. Cambridge

University Press, Cambridge, United Kingdom.

[24] T. Kessler Faulkner, W. Brackenbury, and A. Lall. 2015. K -regret queries with nonlinear utilities. PVLDB 8, 13 (2015),

2098–2109.

[25] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski. 2008. Skyline query processing for incomplete data. In ICDE. Cancún,

México, 556–565.

[26] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski. 2010. Skyline query processing for uncertain data. In CIKM. Toronto,

Canada, 1293–1296.

[27] K. Ligett and G. Piliouras. 2011. Beating the best Nash without regret. SIGecom Exchanges 10, 1 (2011), 23–26.

[28] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. 2007. Selecting stars: The k most representative skyline operator. In ICDE.

Istanbul, Turkey, 86–95.

[29] E. Miller. 2008. An assessment of CES and Cobb-Douglas production functions. Congressional Budget Office (2008).

[30] Robert B. Miller. 1968. Response time in man-computer conversational transactions. In Proceedings of AFIPS Fall Joint

Computer Conference. 267–277.

[31] D. Nanongkai, A. Lall, A. D. Sarma, and K. Makino. 2012. Interactive regret minimization. In SIGMOD. Scottsdale,

USA, 109–120.

[32] D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu. 2010. Regret-minimizing representative databases. PVLDB

3, 1-2 (2010), 1114–1124.

[33] S. Nutanong, E. H. Jacox, and H. Samet. 2011. An incremental Hausdorff distance calculation algorithm. PVLDB 4, 8

(2011), 506–517.

[34] D. Papadias, Y. Tao, G. Fu, and B. Seeger. 2003. An optimal and progressive algorithm for skyline queries. In SIGMOD.

San Diego, USA, 467–478.

[35] J. Pei, B. Jiang, X. Lin, and Y. Yuan. 2007. Probabilistic skylines on uncertain data. In VLDB. Vienna, Austria, 15–26.

[36] P. Peng and R. C.-W. Wong. 2014. Geometry approach for k-regret query. In ICDE. Chicago, USA, 772–783.

[37] P. Peng and R. C.-W. Wong. 2015. K-hit query: top-k query with probabilistic utility function. In SIGMOD. Melbourne,

Australia, 577–592.

[38] H. Samet. 2006. Foundations of multidimensional and metric data structures. Morgan-Kaufmann, San Francisco. (Trans-

lated to Chinese ISBN 978-7-302-22784-7).

[39] Hanan Samet, Houman Alborzi, František Brabec, Claudio Esperança, Gísli R. Hjaltason, Frank Morgan, and Egemen

Tanin. 2003. Use of the SAND spatial browser for digital government applications. Commun. ACM 46, 1 (2003), 61–64.

[40] H. Samet, C. A. Shaffer, R. C. Nelson, Y. G. Huang, and A. Rosenfeld. 1987. Recent developments in linear quadtree-

based geographic information systems. Image Vision Comput. 5, 3 (1987), 187–197.

[41] B. Shneiderman. 1984. Response time and display rate in human performance with computers. Comput. Surveys 16,

3 (1984), 265–285.

[42] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. 2008. Probabilistic top-k and ranking-aggregate queries. ACM Transac-

tions on Database Systems 33, 3 (2008), 13:1–13:54.

[43] K.-L. Tan, P.-K. Eng, and B. C. Ooi. 2001. Efficient progressive skyline computation. In VLDB. Roma, Italy, 301–310.

[44] Y. Tao, L. Ding, X. Lin, and J. Pei. 2009. Distance-based representative skyline. In ICDE. Shanghai, China, 892–903.

[45] H. Uzawa. 1962. Production functions with constant elasticities of substitution. The Review of Economic Studies 29, 4

(1962), 291–299.

[46] H. R. Varian. 1992. Microeconomic analysis. Norton & Company, New York, USA.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:42 Jianzhong Qi, Fei Zuo, Hanan Samet, and Jia Cheng Yao

[47] A. D. Vîlcu and G. E. Vîlcu. 2011. On some geometric properties of the generalized CES production functions. Applied

Mathematics and Computation 218, 1 (2011), 124–129.

[48] G. E. Vîlcu. 2011. A geometric perspective on the generalized Cobb-Douglas production functions. Applied Mathe-

matics Letters 24, 5 (2011), 777–783.

[49] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen. 2012. Joint top-k spatial keyword query processing. IEEE Transactions

on Knowledge and Data Engineering 24, 10 (2012), 1889–1903.

[50] T. Xia, D. Zhang, and Y. Tao. 2008. On skylining with flexible dominance relation. In ICDE. Cancún, México, 1397–

1399.

[51] A. Zabalza. 1983. The Ces utility function, non-linear budget constraints and labour supply. Results on female partic-

ipation and hours. The Economic Journal 93, 370 (1983), 312–330.

[52] S. Zeighami and R. C.-W. Wong. 2016. Minimizing average regret ratio in database. In SIGMOD. San Francisco, USA,

2265–2266.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The MinVar Algorithm
	5 Maximum Regret Ratio Bounds
	5.1 Upper Bound
	5.2 Lower Bound

	6 Case Studies
	6.1 The K-Regret Query with Cobb-Douglas Functions
	6.2 The K-Regret Query with CES Functions

	7 The MaxDif Algorithm
	8 Experiments
	8.1 Settings
	8.2 Results

	9 Conclusions
	Acknowledgments
	References

