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Thanks to the digital preservation of cultural heritage material, multimedia tools, e.g. based on automatic visual processing,
enable to considerably ease the work of scholars in the humanities and help them to perform quantitative analysis of their
data. In this context, this paper assesses three different Convolutional Neural Network (CNN) architectures along with
three learning approaches to train them for hieroglyph classification, which is a very challenging task due to the limited
availability of segmented ancient Maya glyphs. More precisely, the first approach, the baseline, relies on pretrained networks
as feature extractor. The second one investigates a transfer learning method by fine-tuning a pretrained network for our glyph
classification task. The third approach considers directly training networks from scratch with our glyph data. The merits
of three different network architectures are compared: a generic sequential model (i.e. LeNet), a sketch-specific sequential
network (i.e. Sketch-a-Net), and the recent Residual Networks. The sketch-specific model trained from scratch outperforms
other models and training strategies. Even for a challenging 150-class classification task, this model achieves 70.3% average
accuracy and proves itself promising in case of small amount of cultural heritage shape data. Furthermore, we visualize the
discriminative parts of glyphs with the recent Grad-CAM method, and demonstrate that the discriminative parts learned by
the model agrees in general with the expert annotation of the glyph specificity (diagnostic features). Finally, as a step towards
systematic evaluation of these visualizations, we conduct a perceptual crowdsourcing study. Specifically, we analyze the
interpretability of the representations from Sketch-a-Net and ResNet-50. Overall, our paper takes two important steps towards
providing tools to scholars in the digital humanities: increased performance for automation, and improved interpretability of
algorithms.
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1 INTRODUCTION
This paper focuses on learning shape representations for ancient Maya hieroglyph classification task. In docu-
ment analysis of historical and artistic materials, visual similarity-based recognition is important for helping
experts to assess shapes quantitatively and to annotate documents easily. Encoding shapes into discriminative
representations is essential for visual similarity tasks. As traditional shape descriptors, e.g. [24] have limits for
degraded characters in old manuscripts (see Fig. 1) or sparse shapes such as sketches, learning robust shape
representations from data is of great interest to multimedia research.
In parallel, recent advancements with deep Convolutional Neural Networks (CNNs) for recognition tasks in

computer vision, speech, and multimedia have proven the usefulness of these methods [22]. However, applying
such techniques when dealing with small amounts of data is challenging. In this paper, as the first research
question, we study how to utilize CNNs for Maya glyph classification. By relying on the data of the three
remaining Maya Codices produced in our recent study [3], we investigate three different strategies to learn such
a representation: using a pretrained CNN as a feature extractor, doing transfer learning (i.e. fine-tuning) from a
pretrained CNN, and learning a CNN from scratch.
Deep representations are shown as strong baselines for various visual recognition tasks [6, 9, 35, 37]. The

second research question addressed in this paper is which deep CNN architecture to choose for Maya glyph
classification. Assuming that Maya shapes painted on codices share commonalities with hand-drawn sketches
and everyday objects in natural images, first, we evaluate the deep representations learned on natural images and
on sketches as baseline methods for our task. Specifically, we study Sketch-a-Net [43] pretrained on Sketch-250
dataset [10], VGG-16 [37] and ResNet-50 [13] pretrained on ImageNet dataset [7]. Secondly, we investigate
transferring the knowledge learned on a large-scale dataset to our specific problem by fine-tuning a pretrained
CNN as in [42]. This approach was shown to be useful in a variety of multimedia applications [1, 6, 40], and is
particularly valuable when the data collection is not scalable, either due to the involved cost and time, ethical
and security reasons (i.e. medical data), or simply because of extinct data sources (i.e. scripts from the ancient
civilizations). We show that in spite of the larger discrepancy between the source (ImageNet) and target (glyph)
data, VGG-16 outperforms Sketch-a-Net by 8.9% to 14.8% in average classification accuracy. In particular, we
show 2.4 to 14.4% absolute performance improvement by fine-tuning the VGG-16 model, compared to the feature
extraction baseline results. Thirdly, we train CNNs from scratch with the glyph data. Usually, training a CNN
from scratch requires a large amount of data. However, recent work on batch normalization (BN) [19] and
dropout regularization [15], along with oversampling via data augmentation (i.e. applying random geometric
transformations to the data) enable training a CNN for small- to medium-scale data while reducing data imbalance

Fig. 1. Examples of ancient Maya codical glyphs (10 classes).
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[14] and overfitting issues. This way, we achieve improved results with Sketch-a-Net compared to the fine-tuning
approach, demonstrating that nowadays network training may not necessarily require large amount of data to be
effective.
The third research question is posed as whether the CNNs are able to catch the diagnostic parts of Maya

glyphs. To analyze the interpretability of the learned deep visual representations, we visualize the discriminative
parts of glyphs according to the trained CNNs via gradient backpropagation [36] and Grad-CAM [34] methods.
We show that the trained models have a great interpretability potential, as the discriminative parts of glyphs
overlap with the expert descriptions in a 5-glyph case study. Additionally, we discuss the potential of Grad-CAM
method in glyph localization in a cluttered setting, i.e. glyph-blocks. Finally, to assess the GradCAM visualizations
thoroughly, we conduct a perceptual crowdsourcing study. The fourth research question assessed in this study is
which CNN spots diagnostic parts of glyphs better according to non-experts. In this study, non-experts rate the
visualizations from two models, namely Sketch-a-Net and ResNet-50, both individually and relatively for 100
glyphs. From these ratings, we observe that non-experts generally favor the better-focused visualizations from
Sketch-a-Net.
We summarize our research questions below.

RQ1. How to utilize deep CNNs on Maya glyph classification?
RQ2. Which deep CNN architecture to choose for Maya glyph classification?
RQ3. Can CNNs catch diagnostic parts of Maya glyphs?
RQ4. If so, which CNN spots diagnostic parts of glyphs better according to the crowdworkers’ perception?

Our contributions are as follows:
(1) We study different ways to train a CNN for small-scale data, namely feature extraction from pretrained

networks, fine-tuning pretrained networks, and training from scratch for the recognition of ancient Maya
glyphs, a data source between history and art;

(2) We systematically assess a variety of CNN models from old to recent ones, i.e. LeNet [23], Sketch-a-Net
[43], VGG [37], ResNet [13], and designed for different purposes (natural image vs. sketch classification);

(3) We examine the discriminative parts of ancient glyphs learned by the network using gradient-based visual
explanations. This can provide an interesting interpretability capacity, which is important for domain
experts.

(4) We conduct a perceptual crowdsourcing study to assess the interpretability capacity of two models, namely
Sketch-a-Net and ResNet, by the help of GradCAM [34] visualization method.

Overall, our paper presents promising shape representation learning approaches for limited cultural heritage
data as well as giving insights on the interpretability of these representations. These two points are important in
the context of providing automated and interpretable tools to scholars in Digital Humanities.

The paper is organized as follows. Section 2 briefly presents related works. Section 3 describes the data. Section 4
summarizes the methodology. Section 5 presents the classification results (RQ1 & RQ2). Section 5.4 discusses
the interpretability of the trained CNN models (RQ3), and presents our perceptual crowdsourcing study (RQ4).
Finally, Section 6 concludes the paper.

2 RELATED WORK
This section discusses common architectures and training strategies with CNNs (i.e. analysis of pretrained CNN
features, fine-tuning or training deep CNNs from scratch); previous glyph and sketch recognition studies; and
visualization and interpretation of the learned representations.

CNN architectures. For handwritten digit classification, LeCun et al. proposed a sequential, i.e. feed-forward,
network (LeNet) with three convolutional layers followed by a nonlinearity activation (e.g. sigmoid), and sub-
sampling (e.g. max pooling) [23]. Krizhevsky et al. built upon the LeNet architecture, and proposed the AlexNet
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[21] that has five convolutional layers with non-saturating rectified linear unit (ReLU) activations for object
classification on ImageNet data [7]. Vanishing/exploding gradients during error backpropagation through this
deep net were handled by the ReLU activations. Additionally, the dropout strategy [15] helped to prevent overfit-
ting during training of the AlexNet. VGG networks illustrated the limits of deep sequential networks without
any special design [37]. Simonyan et al. showed that such a network with 16 layers (VGG-16) outperforms the
AlexNet.

More recently, graph-based architectures have emerged in CNN design such as GoogleNet with inception mod-
ules [39], and residual networks (ResNets) with identity mapping connections [13]. One important commonality
of these models is heavy-usage of Batch Normalization (BN) [19] which enables to train very deep networks in
a considerably short amount of time with improved performance, since BN reduces covariate shift in the data
during training.
Transfer learning and training with CNNs. Motivated by the common visual structures learned by CNNs

in the first layers, several transfer learning approaches reutilized and analyzed the effectiveness of pretrained
CNN representations on different datasets [6, 9, 35, 37]. The penultimate activations of a CNN, specifically
AlexNet [9, 35] and VGG [37] trained on ImageNet data, are shown as strong baselines for visual recognition tasks.
Similarly, for character recognition tasks e.g. uppercase Latin letter classification, Cireşan et al. [6] indicated that
existing pretrained nets (trained on digits or Chinese characters) can be utilized as feature extractors.

Alternatively, these pretrained networks can be fine-tuned, i.e. trained such that only the weights of last several
layers are modified, to be adapted to different tasks. Fine-tuning helps the training process start from a more
relevant point and results in improved performance and faster training compared to random initialization [6].
Cireşan et al. [6] showed that even for the challenging task of 1000 Chinese character classification, fine-tuning
the last convolutional and fully-connected layers of a pretrained net for uppercase Latin letters outperforms a
randomly initialized and trained network (8.4% vs. 20.8% test error rate respectively). Furthermore, Yosinski et al.
[42] showed that fine-tuning the last convolutional layers helps the network to learn representations that are more
specific to the target dataset. Authors discuss that fine-tuning more number of layers (from last fully-connected
layer towards input layer) might be essential as the nature of the target dataset becomes more different than the
initial source dataset used for pretraining.
Training a CNN from scratch is one of the typical approaches in case of dissimilar data with particular

characteristics, e.g. our glyph data. Even though the impact of pretraining is emphasized above, there are recent
normalization techniques that reduce or eliminate the necessity of pretraining. Batch Normalization (BN) [19]
is one of the most common approaches. BN showed considerable performance and efficiency improvements in
CNN training [19]. Thus, when training a CNN from scratch in this paper, we initialized the network weights
with Glorot initialization [12], and utilized BN after each convolutional layer.

Glyph and sketch recognition. For Maya glyph recognition, several shape representations have built upon
traditional knowledge-driven descriptors [18, 30]. These representations are based on bag-of-words (BoW) that
output the frequency histograms of local shape descriptors. As shown in a similar study on Egyptian glyphs [11],
HOOSC [30] is a competitive candidate among other traditional shape descriptors.

Petroglyph, in other words rock-art, analysis [8, 28, 31–33, 46] is another related topic to our glyph recognition
task. For petroglyph segmentation that can be considered as foreground/background classification of pixels,
Seidl et al. [31] studied various combinations of traditional textural features. Specifically, third order Gray-Level
Co-occurrence Matrix (GLCM) and Local Binary Patterns (LBP) were shown to outperform color or dense-SIFT
features in a late classification fusion setting [31]. In a recent 3D petroglyph segmentation study, Poier et al. [28]
reported that fully-connected CNNs produced better segmentation results thanks to capturing the spatial context
better than random forests. Poier et al. [28] also noted that the contribution of traditional color and textural
features to final segmentation maps was negligible, therefore only depth maps and orthophotos generated from
the point clouds were used as input to the classifiers.
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Table 1. Comparison of contributions in the related work for glyph and sketch recognition.

Paper Task Method Dataset Visual
Interpretation

[30]
Monumental
Maya glyph
retrieval

HOOSC with
bag-of-words

24-class monumental
Maya glyph dataset [30] No

[18]
Monumental
Maya glyph
classification

HOOSC
10-class monumental
Maya glyphs
(subset of [30])

No

[11]
Egyptian
glyph
classification

HOG, HOOSC, HOOSS,
Shape Context, Self-Similarity
(with bag-of-words or spatial
or single matching)

Egyptian
individual
glyphs [11]

No

[2]
Monumental
Maya glyph
classification

HOOSC with bag-of-words
10-class monumental
Maya glyphs
(subset of [30])

No

[2] Sketch
classification

Single-hidden-layer
Sparse Autoencoders

250-class
sketch dataset [10] No

[43] Sketch
classification

Ensemble of five
multi-scale
Sketch-a-Nets

250-class
sketch dataset [10] No

[29]
Codical Maya
glyph-block
retrieval

HOOSC with bag of words,
pretrained features
from VGG network

Codical Maya
glyph-blocks No

[3]
Codical Maya
glyph
classification

HOG,
HOOSC with bag of words,
pretrained features from
Sketch-a-Net, VGG-16, ResNet-50
with original set of samples

Codical Maya
glyphs [3] No

[4]
Codical Maya
glyph
classification

HOOSC with bag of words,
pretrained features from
Sketch-a-Net and VGG-16,
training Sketch-a-Net from scratch
with original set of samples
by applying class weights into loss function

Codical Maya
glyphs [3] No

This paper
Codical Maya
glyph
classification

Pretrained features from
Sketch-a-Net, VGG-16, and ResNet-50
finetuning the last convolutional block
of Sketch-a-Net, VGG-16, and ResNet-50,
training LeNet, Sketch-a-Net,
ResNet-18, and ResNet-50 from scratch
with oversampled balanced set of samples

Codical Maya
glyphs [3] Yes

In the context of Maya glyph classification, for encoding shapes with neural networks, a single-layer sparse
autoencoder (SA), which encodes the same local regions as HOOSC, was shown to be competitive for 10-class
monumental glyphs [2]. However, this shallow representation was not representative enough for other tasks,
i.e. sketch classification task proposed in [10]. Due to the scarcity of the strokes in thin sketch drawings and
the high variety of the drawings, the BoW frequencies of the simple edge encodings in the shallow SA were
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harder to capture than relatively-thicker glyph strokes. The authors of [2] discuss that deeper convolutional
networks trained with more data might capture more complex and more discriminative shape representations
for this case. Complementary to this finding, Yu et al.[43] proposed “Sketch-a-Net” that is a modified version of
AlexNet [21] with fewer feature maps, yet larger first layer convolution kernels. Yu et al. demonstrated that a joint
classification decision from a set of Sketch-a-Nets (trained with data in multiple scales and multiple temporal
channels) beats human performance on the 250-class sketch dataset of [10].

In the context of Maya glyph-block retrieval, Roman-Rangel et al. [29] showed that the middle layer activations
(conv5) of VGG outperform the penultimate layer activations (fc-7), and the bag-of-words representation of a
traditional shape descriptor (HOOSC). This is a motivating point for learning the representations for Maya glyphs,
and taking advantage from existing pretrained networks. Similarly, in our recent study [3], we presented the
conv-5 activations of VGG-16 as a promising shape representation baseline on the challenging Maya Codical
glyph dataset. In a related study [4], we evaluated the HOOSC-BoW representation along with the activations of
two pretrained networks, namely VGG-16 and Sketch-a-Net, on this Maya Codical glyph dataset. The data-driven
pretrained CNN representations outperformed the knowledge-driven HOOSC-BoW representation by a large
margin. Furthermore, we trained a Sketch-a-Net from scratch with glyphs, and demonstrated that average class
accuracies gave insights on the training process. We applied class weights in the loss function for the CNN not
to overfit to the classes with many samples during training. This approach resulted in slight improvement in
average class accuracies. Finally, to improve the performance of classes with few samples, we hinted that using
oversampled balanced sets were essential.
In this paper, we substantially extend our work in [4] on the oversampled balanced sets of the Maya Codical

glyph dataset. Specifically, we perform a more comprehensive study with different networks including the recent
Residual Networks. Furthermore, we also experiment with another transfer learning approach by fine-tuning
the pretrained networks. Additionally, we assess if the representations learned by the networks are indeed
discriminative and interpretable by visualizing the network activations.
Interpreting CNN representations. To understand the representations learned by CNNs, Zeiler et al. discuss

how to visualize them via deconvolutional layers [44]. They also present a method called occlusion maps such
that a sliding window in the image is occluded and the predicted label of the image by the CNN model is checked
to see whether that region is diagnostic and important to identify the correct label.
Simonyan et al. presented a simple gradient backpropagation approach for identifying the salient points of

the objects with a single forward pass [36]. Compared to occlusion maps, it is computationally more efficient.
However, this approach does not point out to full object extent in general. Therefore, the authors use the output
salient points from this approach as input to a classical background/foreground segmentation method for object
segmentation in natural images. In our case, the segmentation of glyphs from a glyph-block with classical
approaches is especially challenging, since neither color nor texture are discriminative for glyphs.

Zhou et al. introduced class activation maps (CAM) [45] for capturing the extensions of objects and not only few
salient points of objects. The CAM approach requires to introduce an average pooling layer to model structure. To
avoid that, Grad-CAM [34] has been proposed as a generalization of CAM. As such, it does not require modifying
the CNN model to visualize the activation maps, and it can be applied to any type of neural networks, even to
pretrained ones without the need of re-training.
Beyond classification, interpretability is fundamental for domain experts, who need to understand what the

method does and match it with their own knowledge. Therefore, we adopt the Grad-CAM approach for illustrating
the discriminative parts of the glyphs for the trained models. We also illustrate the gradient backpropagation
approach and discuss the interpretability of the learned representations by the CNN models. Finally, we ask the
non-experts to rate the Grad-CAM visualizations of two models in terms of their level of interpretability. To
the best of our knowledge, our study, specifically interpreting the CNN decisions for glyph classification and
subjective assessment of the CNN visualizations, is novel in Digital Humanities and Archaeology context.
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3 DATA
To familiarize the reader with the studied data, this section first introduces the ancient Maya script, and then
gives the details of the segmented Maya glyphs dataset used in the experiments.

3.1 Maya Writing System
The Maya writing system is quite visual, and is composed of complex logograms and syllabograms as opposed to
stroke-based or continuous scripts of other languages [41]. In a recent catalog, Macri and Looper categorizes Maya
glyphs into semantic groups such as animals, body parts, and faces [25]. Other categories are not straightforward
to interpret as everyday objects, however they are also classified with some visual hints like square contour, with
or without inner symmetry, elongated shapes, or variable number of components.

As with natural objects, samples from Maya glyph categories may exhibit high within-class variance and low
between-class differences. Due to the historical period, place changes, and artistic reasons, Maya glyphs from one
category may look relatively different to the exception of some specific “diagnostic” parts [17]. Similarly, between
two similar-looking classes, the difference may be quite subtle, like changing diagnostic local parts such as eyes
or teeth in human or animal head signs. Nevertheless, learning global patterns like shape contours (rectangular,
head-shape, elongated) or local patterns (small circles, eyes, teeth) across classes, as CNN are truly capable of
achieving, would benefit the recognition task.

3.2 Crowdsourced Maya Glyph Segments
In [3], a Maya Codical dataset was curated by crowdsourcing segmenting each glyph from glyph-blocks in
ancient codices that survived until today (Dresden, Paris, Madrid). As these codices are from the post-classical
era, within-class variance is relatively lower than the one for the monumental glyphs coming from different
historical periods. However, it is possible to observe stylistic differences. The dataset is quite challenging as the
number of samples per class is low, due to the lack of data.
Furthermore, the visual differences can be quite subtle. Fig. 1 illustrates samples from the ten classes with

the highest number of samples per class. For example, the only visual difference between the first two and the
last two glyphs in the top row is the orientation. These examples demonstrate that the classification task is not
straightforward, even in the 10-class case with medium-scale data.

4 METHODOLOGY
To tackle the challenging glyph recognition task from the Maya codices, we used the deep CNNs that are able to
learn powerful representations for various computer vision tasks. In the scope of our first and second research
questions, we experimented with different training strategies and CNN architectures. In the scope of our third
and fourth research questions, we worked on understanding and qualitatively assessing the representations that
are learned by CNNs on glyph classification task. Thus, we followed two main steps in our methodology: (1)
training a deep CNN to learn glyph representations, and (2) evaluating the visualizations of the discriminative
glyph parts in a crowdsourcing task.

4.1 Learning Glyph Representations (RQ1 & RQ2)
To learn discriminative glyph representations, we considered three approaches (i) assessing features learned by a
pretrained network, (ii) transferring knowledge from an existing network through fine-tuning, (iii) full network
training. Fig.2 illustrates our data-driven approaches. The first two cases are a good alternative to the third one
when dealing with the challenge of small amount of data, as in our case.

4.1.1 Pretrained Features. Method. Given a pretrained network, and following [16], we use the output of the
last convolutional or residual block from all glyph images in the training set as training features of a one-layer
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Input 

Deep Convolutional Neural Network CNN activations
Glyph 
class 

probabilities
Shallow CNN

(a) Assessing pretrained CNN features.

Input 

Deep Convolutional Neural Network

Last 
conv. 
block

Glyph 
class 

probabilities
Shallow CNN

Fine-tune

(b) Fine-tuning the last convolutional block.

Input 

Deep Convolutional Neural Network
Glyph 
class 

probabilities

Train

(c) Full network training.

Fig. 2. Three data-driven methods for supervised glyph classification. In each method, only the highlighted part of a CNN
model was trained.

convolutional network (denoted as B). As depicted in Fig. 3a, this shallow network is composed of 1x1 convolution
layer with 512 feature maps followed by batch normalization, ReLU nonlinearity, dropout, and a softmax classifier.
Compared to the alternative approach of fine-tuning the fully-connected (FC) block of the pretrained net with
our own data, this is much less costly.
Considered Networks. As pretrained networks, we chose the VGG-16 [37] and ResNet-50 (R50) [13] pretrained
on ImageNet dataset, and the Sketch-a-Net (SaN) [43] pretrained on 250-class binary sketches [10].
As Simonyan et al. [37] showed that their deep CNN with 16 layers (VGG-16) performs similar to the one

with 19 layers (VGG-19), we utilized VGG-16 in our experiments. We also experimented with the state-of-the-art
residual network that uses BN layers and residual connections. On the other hand, the SaN is an altered version
of the AlexNet for handling the sparse strokes with larger convolution kernels in the first layers. As there are
fewer feature maps in the convolutional layers, this network has around 8.5M parameters compared to the 60M
parameters of the original AlexNet.
For the VGG-16 and R50 models, we utilized existing pretrained models. However, due to the modifications

we applied in the network, we trained the single-scale version of SaN from scratch. It is a 3-channel version
of SaN for the populated colored versions of the sketch images (namely, sketch-RGB dataset) with three static
background colors that are used to populate glyph images in [3]. One important difference of our re-trained
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Fig. 3. (a) Shallow CNN model (B) that is used in Section 4.1.1, (b) Modified Sketch-a-Net model.

SaN is the BN [19] after each convolutional layer (see Fig. 3b). BN is shown to reduce covariate shift in the data
during training, improve performance, and shorten the training time considerably. Furthermore, we utilized the
Adam adaptive gradient update scheme [20] instead of stochastic gradient descent (SGD), which was shown by
Kingma et al. [20] to outperform other adaptive SGD-based optimizers, as the gradients get sparser at the end of
the optimization. With these configurations, we obtained 71.4% average test accuracy for 9750 colored sketches
from the 250 classes (a random 1/6th split of the 60K data, as another 1/6th is used for validation and the rest
2/3th is used for training).

The feature dimensions extracted from the pretrained nets are 2048 for the R50 (just before the fully-connected
layer), 512 × 7 × 7 = 25088 for the VGG-16 (output of the 5th block), and 512 for the SaN (output of the 6th block).
4.1.2 Network Adaptation. This method consists in jointly fine-tuning the last block of the pretrained net

along with the weights of the shallow network B. More precisely, we replace the dense (fully-connected) layer
at the end of the original network with the shallow network described in the Section 4.1.1. After freezing the
weights in the original network up to the last block, we train the whole “stitched” model altogether with the glyph
images. Specifically, the 6th block in the Sketch-a-Net (SaN) pretrained model (see Fig. 3b), the 5th convolutional
block in the VGG-16, and the 5th residual block in ResNet50 (R50) are fine-tuned.

For the shallow network at the top, we start from the weights trained as in Section 4.1.1, allowing the optimizer
to start from a more relevant initialization than a random one. Additionally, the optimizer learning rate is set
smaller than in Section 4.1.1, to prevent large gradient updates and disrupt the pretrained weights within the last
convolutional block.
This fine-tuned network is denoted as F.
4.1.3 CNN training. We also investigated training of CNNs from scratch. Given our amount of data, networks

with fewer parameters are preferable. As first choice, we utilized the classic LeNet model, however with ReLU
activations, additional batch normalization after convolutional layers, and dropout strategy. This modified LeNet
model has 44M parameters to learn. Secondly, the sketch-specific SaN with additional BN layers was trained.
Our third choice is the recent residual networks. Considering the number of parameters, we decided to train two
versions of the ResNet with 18- and 50-layers (11M and 25M parameters respectively).

Another commonly-adopted option would be to train an inception network. Although the inception-v4 model
has similar number of parameters, it has outperformed the R50 on Imagenet data for top-1 accuracy [38]. However,
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Canzani et al. [5] have shown that the contribution of number of parameters to top-1 accuracy is higher for the
R18 and R50 models compared to the inception-v4 model. This implies that the information density stored in the
neurons of these residual networks are higher than the inception-v4 model. This accuracy vs. parameter analysis
is especially important for training a CNN from scratch with small- to medium-scale data. Therefore, we omit the
inception-v4 model comparison here.

4.2 Visualizing Discriminative Glyph Parts (RQ3 & RQ4)
4.2.1 Visualization with CNNs. To understand the learned CNN representations, we utilized both gradient

backpropagation [36] and Grad-CAM [34]. With these methods, we visualized where the salient and the dis-
criminative parts of the glyphs are for the model. Another use-case of such a class-activation visualization is to
localize the glyphs in glyph-blocks (cluttered scenes) given the model trained on the desired glyph class.
Salient point visualization. After a single forward pass of the input through the network, partial derivatives of
predicted class score w.r.t. pixel intensities are backpropagated and visualized [36]. This corresponds to visualizing
the importance of input pixels such that the predicted class score gets influenced the most in case of a change in
the input intensities.
CAM. Class Activation Mapping [45] is defined on a CNN that ends with a block of “convolutional layer →
global average pooling layer → softmax layer”. Hence, this visualization approach requires re-training of the
weights after changing the CNN architecture, i.e. by replacing the layers after the last convolutional layer with
Global Average Pooling (GAP) and a softmax layer. Then, the class score is obtained by a forward pass of the
activations from the last convolutional layer:

yc =
∑
k

wc 1
Z

∑
i

∑
j

Ak
i j , (1)

The localization map Lc ∈ Ru×v for class c with input widthu and heightv is computed as a linear combination
of k feature map activations Ak and the re-trained weightswc

k between the Global Average Pooling layer and the
softmax layer:

Lc =
∑
k

wc
kA

k . (2)

Grad-CAM. Being a generalization of CAM (except the final ReLU operation), GradCAM does not require a
change in the CNN architecture and it is applicable to other neural network architectures as well [34].

Fig. 4 illustrates the GradCAM method. Essentially, first, the backpropagated gradients ∂yc

∂Aki j
are global-average-

pooled and the importance weights αck of feature map activations Ak are obtained:

αck =
1
Z

∑
i

∑
j

∂yc

∂Ak
i j

, (3)

These weights correspond to the re-trained weightswc
k in CAM approach. Secondly, the linear combination

of these weights and the feature map activations Ak are computed. Finally, this linear combination is passed
through a ReLU activation so that only positive activation-gradient combinations are considered.

Lc = ReLU

(∑
k

αckA
k

)
. (4)
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Fig. 4. Illustration of the GradCAM method.

In our case, to pay attention only to the most characteristic glyph parts, as a final operation, we eliminated the
weak activation-gradient combinations (lower than 0.5) in the localization map.

4.2.2 Qualitative Crowdsourcing Analysis on CNN Visualizations. To assess the interpretability of the CNN
representations qualitatively, we performed a preliminary crowdsourcing study. Specifically, this study is a
perceptual comparative analysis of the visual representations of a sketch-specific netowrk (Sketch-a-Net) and a
residual network (ResNet-50). These representations were trained on 50 classes of individual glyphs that were
obtained via the crowdsourcing process described in our recent study [3].
As opposed to crowdsourcing studies with every-day objects in natural images, we have the challenge of

non-experts not having a predefined concept of glyph categories. Thus, in our task design, we prepared detailed
instructions and provided supervision to non-experts. Our focus is on whether non-experts’ perception is at all
aligned with the automatic discriminative models. We also address the research question of which CNN produces
more appealing visual explanations according to the crowd (a sketch-driven network or a residual network).

Task Design. The main challenge of our crowdsourcing task is the non-familiarity of the data. Thus, in the task
design, we provided supervision to non-experts in two ways. Considering that humans are good at generalizing
from few samples, we provided a couple of examples that belong to the same class as the target glyph. As
illustrated in the top parts of Fig. 6, in these examples, we also marked their possible diagnostic parts. Furthermore,
as we hypothesize that people are good at relative analysis, we provided examples from other classes as well.
In the task instructions, as shown in Fig. 5, we provided an example from the 50 classes used in training the
CNN models. In the instructions, we also provided detailed explanation of the ratings and what they visually
correspond to. The task itself is composed of two parts. In the first part, the annotator observes a visualization of
the CNN output and rates it in a scale of 7 ranging from “very poor” to “very good”. We ask the annotator to
rate each of the networks’ visualizations separately. In the second part, we show the visualizations from the two
networks on the same glyph image, and ask the annotator to rate them relative to each other.
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(a) (b)

Fig. 5. Instructions of the crowdsourcing task: (a) introductory part, (b) task-specific part and the summary.

(a) First task: Individual rating.

(b) Second task: Relative rating.

Fig. 6. Two parts of the crowdsourcing task: (a) individual rating of a CNN visualization, (b) relative rating of two CNN
visualizations against each other.
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Table 2. Number of glyphs for the classification tasks.

Number of classes
10 50 100 150

Number
of

samples

min 211 50 20 5
mean 255.7 132.66 81.19 57.74
median 235 101 50 27
total 2557 6633 8119 8661

5 EXPERIMENTAL SETTINGS AND RESULTS
In this section, first, we provide the experimental settings and then discuss the results for the two main steps in
our methodology (glyph classification with CNNs in the scope of RQ1 & RQ2 and qualitative assessment of the
visual CNN representations in a crowdsourcing task in the scope of RQ3 & RQ4).

5.1 Experimental Settings for Classification (RQ1 & RQ2)
Data.We use the dataset introduced in [3] and shared by the authors, which consists of Maya glyph segments
curated via crowdsourcing. The authors point out that data imbalance is one of the challenges of the dataset.
Accordingly, they prepared several classification cases (easy to difficult) with different number of classes and
number of samples per class. Table 2 presents the available minimum, mean, and maximum number of segments
for these cases. Note that these glyph segments are populated with four background colors (3 static 1, 1 dynamic
RGB color) afterwards. In this paper, we are using all available samples in the selected 150 classes instead. Different
from the original paper, where the authors undersample the data for creating a balanced set [3], we oversample
the existing examples such that each class has 1000 training, 300 validation, and 300 testing samples. Therefore
these oversampled sets are a mix of original data and synthetic data, as the newly-added synthetic samples are
obtained by applying random geometric transformations as detailed below.

Data preparation and augmentation. For all the experiments, we use the oversampled data created with random
geometric data augmentation, comprising rotation (within [−15, 15] degrees), vertical and horizontal translation
(+/−0.1× image width), and zooming (scale within [0.8, 1.2]). We applied only these traditional transformations
in order not to alter the the nature of the data. In method 1, we only rely on this already-augmented and
oversampled examples. However, during fine-tuning (method 2) and training the CNNs from scratch, we re-apply
this augmentation on-the-fly on the already-oversampled data, while constructing the batches with random
sampling. Similar to the original papers, the image width is set to 224 pixels when using the VGG-16, ResNet, and
LeNet models; whereas, for the SaN case, it is set to 225 pixels.
Tasks and performance measures. We focus on four tasks: 10-, 50-, 100-, and 150-class glyph classification.

Note that the 10, 50, and 100 classes are chosen from the 150-class set such that they have the most number of
samples per class. We report the average test accuracy (top-1) along with the top-5 accuracy (i.e. we consider
the prediction as true positive if the true class is among the top-5 predicted classes). Test accuracy is defined as
follows: tp+tn

Ndataset
, where tp denotes the number of true positives, tn denotes the number of true negatives, and

Ndataset is the number of all samples in the dataset.
Training. For training the shallow net over pretrained features and training the CNNs from scratch, Adam

optimizer is used with the learning rate 10−5 and 10−4 respectively. For fine-tuning, Stochastic Gradient Descent
(SGD) with momentum (0.9) is used. The learning rate is set to 10−4, and is reduced with a factor of 0.2 in case the
validation loss is not decreasing for 10 epochs. We applied model check-pointing (keeping track of the parameters
that result in highest validation accuracy during the optimization) during all the training cases. For pretrained
1Chosen RGB colors are (180, 160, 135) for Dresden Codex, (220, 200, 175) for Madrid Codex, and (210, 185, 160) for Paris Codex.
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net training and fine-tuning, the maximum number of epochs is set to 500 empirically, whereas for training from
scratch, we followed an early-stopping approach with a patience factor of 20 epochs, i.e. terminating training if
validation loss does not decrease for 20 epochs.

5.2 Experimental Settings for Crowdsourcing (RQ3 & RQ4)
Data. In this preliminary study, we limited our dataset to 10 glyphs from 10 classes. We computed the Grad-CAM
results of two networks for these randomly-chosen 100 glyphs. To make the visualizations more selective, we
eliminated the weak activations in these mappings (empirical threshold is set as 0.5 in the range of [0, 1]).
In an attempt to understand the visualizations on this set of chosen glyphs, as a preliminary check, we

performed a pixelwise comparison between these visualizations and the manually-marked groundtruth masks.
We observed that the pruned ResNet-50 visualizations overlap with the groundtruth masks in all cases, whereas
the Sketch-a-Net visualizations overlap with the groundtruth masks for 98 out of the 100 glyphs. Furthermore,
the ResNet-50 visualizations were more diffused with higher average recall (0.754 vs. 0.582) and lower average
precision values (0.255 vs. 0.431).
Over this set of chosen glyphs, to make the perceptual task easier for non-expert observers, we used double-

colored visualizations. In these visualization, yellow color can be considered to correspond to “important” and
red color to “very important” parts. Below, we give the details of our crowdsourcing task design.
Task Settings. Using the Crowdflower terminology introduced in [3], we set 4 tasks in a page, and paid an

annotator 10 USD cents per page. We collected annotations from 10 annotators per task. We set 10 test questions
to be used in quiz mode. Quiz mode enables to eliminate spammers or low-performing annotators. In total, we
collected 1000 annotations (10 for each of the 100 glyphs).

5.3 Classification Results (RQ1 & RQ2)
We experimented with three main training strategies, and with a range of different models as follows: 1) training
a shallow neural network with the pretrained features, 2) fine-tuning the last block of Sketch-a-Net with batch
normalization pretrained on RGB populated sketch images (SaN-B or SAN-F); VGG-16 net pretrained on ImageNet
(VGG-B or VGG-F); ResNet-50 pretrained on ImageNet (R50-B or R50-F); or 3) training from scratch LeNet with
batch normalization (L-S); Sketch-a-Net with batch normalization (SaN-S); ResNet-18 (R18-S); and ResNet-50
(R50-S).

Table 3 presents the results obtained with these methods. Except for the 10-class case of the SaN models, we
observe 2.0 to 28.6% absolute improvement in top-1 average accuracies of the fine-tuned F models compared to
the corresponding pretrained B models. Especially, R50 benefits highly from fine-tuning. The most notable point
in Table 3 is the outperforming performances of the SaN and R50 models trained from scratch. These models
perform consistently better than their corresponding fine-tuned models.
For training from scratch, with classic sequential networks, the SaN model that is deeper and has fewer

parameters than LeNet, always performs better (10.4 to 24.3%). However, performances of the residual nets are
similar, and the marginal differences do not allow us to conclude that the shallower net with fewer parameters
always perform better with this special network design (as the identity mapping residual connections help the
network behave as if it had dynamic depth).

Table 4 emphasizes our contribution in this paper that we achieved with oversampled training sets. For brevity,
we only presented the results from Sketch-a-Nets that were trained from scratch with different configurations.
Compared to the configurations in [4] that used original training set, we achieved a significant improvement in
average class accuracies on the original test sets (last row of Table 4). Thanks to using oversampled balanced
training sets, the batch generation during training was fair to all the classes, and even the classes with few samples
contributed to the optimization process equally. This resulted in much higher average class-based accuracies.
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Table 3. Average test top-1 (T-1) and top-5 (T-5) accuracies. Models: L: LeNet, SaN: Sketch-a-Net, R: ResNet, VGG-16.
Conditions: B: pre-trained, F: fine-tunning, S: learned from scratch. Best performances in B, F, and S are in bold.

Number of classes
10 50 100 150

Model T-1 T-5 T-1 T-5 T-1 T-5 T-1 T-5
SaN-B 81.5 98.0 65.2 85.8 50.5 71.2 42.3 62.7
VGG-B 87.9 99.1 77.1 91.9 62.4 81.3 52.8 74.0
R50-B 77.8 96.4 54.3 79.0 50.3 75.0 31.8 52.8
SaN-F 81.0 98.5 70.9 90.1 58.7 80.3 50.2 72.7
VGG-F 89.9 98.9 85.4 95.9 73.5 89.2 64.5 83.5
R50-F 87.0 99.3 79.4 93.9 70.5 87.7 60.4 78.9
L-S 81.4 98.2 70.1 89.4 52.2 74.9 46.0 68.0

SaN-S 91.0 99.8 87.8 95.9 75.1 90.1 70.3 85.4
R18-S 88.0 99.6 87.3 96.9 78.6 94.3 68.6 85.5
R50-S 89.1 99.6 85.1 96.6 79.2 95.3 67.4 84.6

Table 4. Average sample-based top-1 (T-1) accuracies, and average class-based accuracies (CA) for the original test set.

Number of classes
10 50 100 150

Method T-1 CA T-1 CA T-1 CA T-1 CA
SaN-S trained with original set [4] 91.7 77.1 89.1 51.9 86.7 26.9 84.2 16.0
SaN-S trained with original set and class weights [4] 90.7 75.7 89.7 52.4 87.2 26.8 84.8 17.7
SaN-S trained with oversampled set (this paper) 91.1 91.1 89.0 88.9 87.0 83.8 84.4 73.6

With this motivation, as hinted at the end of the discussion in [4], we decided to conduct all the experiments
with oversampled balanced sets as reported in Table 3.

Fig. 7 shows the individual class accuracies (average test top-1) compared to the ratio of the original training
samples for 150-class Sketch-a-Net trained from scratch. The blue line in the plot indicates the ratio of the number
of original training samples in a class to the number of oversampled training samples in a class. (This ratio was
presented as a percentage to be in the same scale with the accuracy -red line-.)

Fig. 7. The ratio of original training samples vs. average top-1 class accuracies for the SaN-S model for the 150 classes.
Despite the performance fluctuations among classes, top 50 most frequent glyph classes exhibit a high performance trend,
showing the importance of original training data size.
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Table 5. Visual examples of the classes whose performances got affected the most when the 50-class SaN-S or 150-class
SaN-S models were used.

Class
T-1 acc. with
SaN-S trained
on 50 classes

T-1 acc. with
SaN-S trained
on 150 classes

Similar
classes in

150 class-set

003

95.3 78.3

004 008

XE1

82.7 72.3

XE3 XE7

1SD

31.3 70.0

1SC

This plot demonstrates a lot of fluctuations in the class accuracies. We hypothesize this is due to the nature of
the data, as some classes have small within-class variation and large between-class variation, so that they can be
classified well even with small amount of training samples. The maximum number of training samples is 900.
Despite the fluctuations, we can observe the trend of increasing accuracy, especially when the number of original
training samples is more than 96 (i.e. at least 10.67% of the populated 900 samples are original samples). This
trend is more visible from the class index 94 and on.
Another question is how the performance on the existing classes get affected when a model is trained with

additional classes and in general more data. We inspected the class accuracies of the 50 classes from the 50-class
and 150-class SaN-S models. We observed that the performance for 9 classes dropped 10% or more, however
the performance for 14 classes improved when trained within 150 classes. As expected, in the 150-class set, the
classes in the 50-class set get more competitors that share local features. In the discussion that follows, we refer
to signs using the Macri-Looper catalog naming system [25]. For instance, as illustrated in Table 5, due to the
inclusion of other numerical signs, the performance of class 003 (literally 3 as three horizontal thick dots) drops.
Similarly, sign XE1’s performance drops due to more similar-looking classes coming to play such as signs XE3
and XE7 (all have dots and vertical parallel lines inside a square thick contour). Another notable difference is the
38% increase in the performance of sign 1SD whereas its competitor sign 1SC’s performance drops by 17%. This
might be due to the inclusion of more classes, which forces the network to spot more subtle differences, or due
to the inclusion of more head-signs (increasing in number from 4 to 29) so that the network becomes better at
spotting "eyes" and distinguishing them from any other random circle (sign 1SD looks like a profile head sign
with a prominent eye and mouth, whereas sign 1SC has two components: a head-like circle with three small
inner circles, and a body with inner details similar to 1SD).
Summary of trends. From our experiments, we conclude that 1) VGG-16 seems to have more robust pretrained

representations than the ResNet-50 features; 2) fine-tuning improves the results compared to the pretrained
feature classification baseline; 3) oversampling is essential for handling imbalanced small-scale glyph datasets; 4)
batch normalization and dropout enables training a CNN from scratch with medium-scale oversampled data, and
outperforms fine-tuning results with a sketch-specific net.
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Table 6. Diagnostic features of five Maya signs, commented by epigrapher experts. We present the discriminative parts
inferred by the 50-class SaN-S model. The heatmaps are visualized via the guided backpropagation approach and the
Grad-CAM method (red is for high, blue is for low response). Column 6 and 7 present the examples of weak localization of
corresponding glyphs in the glyph-blocks. (+) indicates a correct correspondence (examples in column 6), and (-) indicates a
wrong, uninformative, or partial-correspondence (column 7).

T
class

MV
class

Diagnostic
Feature

Salient
Points Grad-CAM Grad-CAM

in a block (+)
Grad-CAM
in a block (-)

Class
Acc. (%)

001 HE6

An outer C-shaped frame,
two circles,

the "teeth" attached to
inner line of the frame.

96.7

017 ZUJ

A hook inside the central circle,
two to four vertical parallel lines
coming up from the central circle.

96.0

023 1G1

Two notches/discontinuity
at the bottom of its outer shape,

inner thin line whose
two ends face downwards,

the "teeth" elements attached to
the inner line.

85.0

025 AA1

Parallel elongated lines,
framed by a thicker general outline. 96.3

061 32D

General outline resembling a necklace
that is composed of

a precious stone in the middle,
and twines on both sides of it.

88.3

5.4 Visualization and Interpretation Results (RQ3 & RQ4)
Table 6 illustrates samples from the Thompson (T) and Macri-Vail (MV) catalogs, as well as available expert
comments about the diagnostic features of five glyph categories. We demonstrate the salient points obtained via
[36], and the Grad-CAM heatmaps that correspond to the discriminative part of the glyph sample according to the
trained model (i.e. the SaN trained from scratch with 50-classes); red means high and blue means low response. We
also present the class accuracies of these specific classes obtained with this model. Besides, we present Grad-CAM
responses of these glyph categories in the glyph-blocks for both positive (+); and uninformative, negative, or
partial-correspondence (-) cases.

Table 6 shows that Grad-CAM is successful at capturing discriminative features for the shown glyphs, and it is
also able to localize them in glyph-blocks, but fails in several cases as the negative examples show. As reported
by others, gradient backpropagation is less informative than Grad-CAM.
Fig. 8 depicts examples of discriminative part heatmaps obtained via Grad-CAM according to the predicted

class for the HE6 class (first glyph in Table 6). The top row illustrates successful visualizations that match the
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Fig. 8. Success (top row) and failure examples (bottom row) of activations of discriminative parts for sign HE6 with the
50-class SaN-S model. Positive activation from the model for each input image is illustrated as a colored intensity map
(referred as heatmap) over the input image. In this map, blue indicates a weak, yellow indicates a medium-level, and red
indicates a strong positive activation. The heatmaps are visualized via Grad-CAM based on the predicted class (“P”) by the
model for the given input image. If the model made a false prediction, the true class of the glyph image is also indicated (as
“T”). The class labels are given in Macri-Vail catalog codes.

Fig. 9. The SCC (top row) and SCD examples (bottom row) and the activations of discriminative parts for the 50-class SaN-S
model. The heatmaps are visualized via Grad-CAM method based on the true class (“T”).

expert comments, whereas the bottom row shows failures of Grad-CAM. Note that all the top row examples are
classified correctly, even the second example which is a different variant of the glyph and is not dominant in the
training set. On the other hand, in the bottom row, we observe that the absence or different disposition of the
two diagnostic dots end up in misclassification or not-so-well-localized heatmaps.

In the recent Macri-Vail Maya sign catalog [26], the SCC sign that means “death or dead” is described as “head
with closed eye”, whereas the SCD sign that corresponds to “death god” is described as “skull” or “skull with
eyeballs”. Fig. 9 depicts heatmaps of the true class activations of these glyphs (top row for SCC, bottom row for
SCD). Notably, for the SCD examples, we observe that the attention of the CNN representation is on the “eyeball”,
yet for the SCC examples the nose and the teeth around the mouth are also highlighted. This is most likely due
to the existence of other categories that showcase the “closed eye with eyelashes” as the main specificity.
Overall, we see that the use of Grad-CAM is promising to visualize diagnostic features of glyphs. How to

systematize the evaluation of the visual explanations produced by deep networks is investigated in a preliminary
crowdsourcing study. We describe the analysis of the crowdsourcing results in the next subsection.
Analysis of Crowdsourced Ratings. To understand the preference of crowdworkers among the visualizations
of the studied two CNNs, we, first, analyzed the distributions of individual ratings from Task 1 (shown in Fig. 10a)
with the Kolmogorov-Smirnov (KS) 2-sample test [27]. KS 2-sample test rejects the null hypothesis that samples
come from the same distribution based on comparing the p-value with the significance level α [27]. In our case,
KS test rejected the null hypothesis at significance level α = 0.005. This result suggested that the crowdworkers
did not perceive the heatmaps from the two CNN models as the same.
Secondly, we analyzed the aggregated individual ratings of the glyph instances. To obtain these aggregated

ratings, we simply averaged all the individual ratings from 10 annotators that were assigned to the annotation of
that glyph. Complementary to the point above, in Fig. 10b, we observed that the percentage of the glyphs that is
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Table 7. Aggregated results of interpretability crowdsourcing analysis on the pilot set for the first 5 classes. Blue frames
indicate the crowdworkers’ preference in relative ratings.

Class Diagnostic Part SaN
vis.

RN50
vis.

SaN
did better

(over
10 glyphs)

RN50
did better

(over
10 glyphs)

1B1 8 1

Filled (black) markings on two sides of the central
circle

1G1 1 9

Two discontinuities at the bottom of outer contour,
“teeth” attached to the inner thin line

1S2 7 3

Dots at the bottom of the glyph, dented top part of
the glyph, and a curvy end if exists

AA1 8 1

A series of parallel elongated lines

HE6 8 1

Two hollow circles, hollow “teeth” attached to the
inner thin line (in case of thick outer frame)
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Table 8. Aggregated results of interpretability crowdsourcing analysis on the pilot set (continued for the rest of the 10 classes).
Blue frames indicate the crowdworkers’ preference in relative ratings.

Class Diagnostic Part
SaN
vis.

RN50
vis.

SaN
did better

(over
10 glyphs)

RN50
did better

(over
10 glyphs)

SCC 9 0

Closed “eye” with “eyelashes”

XE2 7 3

Filled (black) full circle at the inner top, uniform-sized
dots surrounding the filled circle, parallel vertical lines
attached to the bottom of glyph

YS1 3 6

Inner filled (black) circle with a curvy “tail”, inner
consecutive dots

ZC1 3 7

“Grape”-like set of small inner circles, one or more “x”
signs, hollow “teeth” with half-circular dots around
them

ZU1 4 6

One hollow circle with following dots, hollow “teeth”
attached to the inner thin line
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(a) Task 1. Individual ratings. (b) Task 1. Aggregated individual ratings.

(c) Task 2. Relative ratings.

Fig. 10. The distributions of (a) individual ratings, (b) individual ratings aggregated per glyph, and (c) relative ratings in the
pilot crowdsourcing study on interpretability of CNN representations.

rated as positive (rating 5, 6 or 7) in the overall aggregated ratings are higher for the Sketch-a-Net visualizations
(21 + 5 = 26 %) than for the Residual Network visualizations (13 %).

Thirdly, to check the relative ratings from Task 2, we aggregated the relative ratings of 10 annotators per glyph
in a weighted manner. The “much better” options (extreme end of the scale) get 2 votes whereas “slightly better”
options get 1 vote. Overall, among the 100-glyphs, the crowdworkers favored the Sketch-a-Net visualizations
over the ResNet-50 visualizations for 52 glyphs. ResNet-50 visualizations were favored for 41 glyphs. There was a
tie for 7 glyphs. The last two columns of Table 7-8 show these distributions across classes. From these class-based
results, we observed that the ResNet-50 visualizations were found more appealing for the categories with several
diagnostic parts (i.e. ZC1, YS1, ZU1, and 1G1). In these categories, the diagnostic parts cover almost the whole
glyph. Since the ResNet-50 heatmaps, in general, highlight more regions than the Sketch-a-Net heatmaps, we
considered this finding plausible.

Finally, in Table 9, we listed a few of the insightful comments from the crowdworkers. These comments help
to understand what kind of rating criteria were used by the crowdworkers.

6 CONCLUSION
Our paper addressed four research questions. For RQ1, we studied three training approaches with CNNs for a
challenging Maya codical glyph dataset. To address RQ2, we assessed representations learned in several existing
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Table 9. Some of the comments from the crowdworkers on the interpretability of the two CNN visualizations (Sketch-a-Net
-SaN- vs. ResNet50 -RN-) about the glyph diagnostic parts. In the comments, Robot A and B refer to the SaN and RN models,
respectively. In the relative ratings, 0, 1, or 2 indicates ”about the same,“ ”slightly better,“ ”much better,“ respectively.

Class Crowdworker Comment
Ind.
rating
(SaN)

Ind.
rating
(RN)

Rel.
rating

1B1 (top in
Table 7)

Robot A was more specific in highlighting the most significant parts of
the glyph, while robot B highlighted most of the glyph

6 4 SaN_2

AA1 A seems to be a bit over the area, but compared to B it’s much better. 6 3 SaN_2
AA1 A is perfect, covers the background a bit, but it’s perfect. 7 6 SaN_2
SCC Robot A almost had a full match but also marked a little background.

Robot B had a full match but it also marked too much background.
6 5 SaN_2

XE2 The A focuses on a single point of the figure but still is better than the B 5 4 SaN_1
XE2 Robot A was confident most of one feature of the glyph, while Robot B

misses most (not all) of the same feature.
3 2 SaN_2

ZC1 The robot B emphasized more precise parts than the robot A 3 6 RN_1
ZU1 B is slightly better as it covers more of the diagnostic areas whereas A is

only about half of B.
3 5 RN_1

ZU1 B it’s just a random mark in the middle, A seems to be more accurate. 5 3 SaN_1
ZU1 Robot A: Confident only at the edge of diagnostic part. Robot B: High-

lighted background and other parts mostly
6 4 SaN_2

ZU1 (top in
Table 8)

Robot A was almost perfect while the B one hardly touched the diagnostic
parts.

6 4 SaN_2

1S2 Robot A had more than a half of the match and too much background.
Robot B had a little match and also matched a little background.

5 4 SaN_1

1G1 (top in
Table 7)

Robot A missed one important part, and robot B marked big area of
unimportant part, so it is equal.

5 5 0

1G1 Robot B confident only at the edge of diagnostic part, Robot A missed
some of diagnostic part

5 7 RN_1

1G1 Figure A, although not so much encompassing, focuses on the crucial
points of the form

5 4 SaN_1

1B1 Robot B was confident about the two features of the glyph, while Robot
A was confident about only one.

5 6 RN_2

pretrained networks, specifically Sketch-a-Net, VGG-16, and ResNet-50, finetuning the last blocks of these
pretrained nets, and training the sequential and residual CNN variants from scratch (LeNet, SaN, R18, and R50).

As answers to RQ1 and RQ2, we showed that transfer learning via fine-tuning of the last convolutional layer
improved the classification performances considerably, compared to evaluating the pretrained representations
directly. Moreover, we observed that VGG-16 pretrained network is more robust than the recent R50 for assessing
the data with different nature (as is the case of glyphs). That said, training a sequential sketch-specific network
with few parameters from scratch with batch normalization, balanced oversampling, and dropout regularization
outperformed the other training strategies and the recent residual models. Note that this model achieved over
70% average top-1, and over 85% average top-5 accuracy in the 150-class case. This finding is quite promising for
all the other visual shape recognition tasks with limited amount of data.

Furthermore, to address RQ3, we visualized the discriminative parts of glyphs via guided gradient backpropaga-
tion and Grad-CAM methods, and showed that the trained model has a great potential as the discriminative parts
of glyphs matched with the expert descriptions in a 5-glyph case study. To our knowledge, this is the first time
that expert knowledge in ancient Maya epigraphy is reflected in a fully data-driven machine inference process, i.e.
that does not use hand-crafted shape descriptors. Additionally, we showed the potential of the Grad-CAMmethod
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in glyph localization in a cluttered setting, i.e. glyph-blocks. Finally, to address RQ4, we investigated on how to
assess and exploit CNN visual outputs in a comparative study. According to this study, sketch-specific network
(SaN) visualizations were found more focused and appealing compared to the more-diffused visualizations of the
residual network (ResNet-50). The ResNet-50 visualizations were favored only in the case of the glyph categories
that require a large region to diagnose. Therefore, we conclude that overall the crowdworkers perceived the SaN
visualizations more precise and insightful than the ResNet-50 visualizations in order to locate the diagnostic
parts of the glyphs.
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