
Correlation Power Analysis on the PRESENT Block Cipher on an
Embedded Device

Owen Lo
Edinburgh Napier University

United Kingdom
o.lo@napier.ac.uk

William J Buchanan
Edinburgh Napier University

United Kingdom
b.buchanan@napier.ac.uk

Douglas Carson
Keysight Technologies

United Kingdom
douglas_carson@keysight.com

ABSTRACT
Traditional cryptographic techniques have proven to work well on
most modern computing devices but they are unsuitable for devices
(e.g. IoT devices) where memory, power consumption or processing
power is limited. Thus, there has been an increasing amount of work
on the design and implementation of lightweight cryptographic
algorithms to provide a solution for running cryptography on low
resource devices. One particular cryptographic algorithm designed
specifically to be used on low resource devices is the PRESENT
algorithm. Although the design of PRESENT provides a small mem-
ory footprint alongside low power consumption our results show
it is susceptible to information leakage when power analysis is
performed against a device running this algorithm. In this paper,
we present our methodology and results on performing correlation
power analysis against this light weight block cipher. Our chosen
device under test is an Arduino Uno which was programmed to
run the Add Round Key and S-Box functions of PRESENT during
the first round of encryptions. Results demonstrate that the Add
Round Key function is susceptible to information leakage but a
high number of false-positives were observed. Greater success was
obtained when targeting the S-Box of the PRESENT algorithm and
we were able to derive the first 8 bytes of the key.

CCS CONCEPTS
• Security and privacy → Cryptanalysis and other attacks;
Side-channel analysis and countermeasures; •Computer sys-
tems organization → Embedded hardware; Embedded software;

KEYWORDS
Side channel attacks, power analysis, cryptography, PRESENT, In-
ternet of Things

ACM Reference Format:
Owen Lo, William J Buchanan, and Douglas Carson. 2018. Correlation
Power Analysis on the PRESENT Block Cipher on an Embedded Device. In
ARES 2018: International Conference on Availability, Reliability and Security,
August 27–30, 2018, Hamburg, Germany. Hamburg, Germany, 6 pages. https:
//doi.org/10.1145/3230833.3232801

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES 2018, August 27–30, 2018, Hamburg, Germany
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6448-5/18/08. . . $15.00
https://doi.org/10.1145/3230833.3232801

1 INTRODUCTION
Traditional cryptographic methods such as AES (symmetric cryp-
tography), RSA (asymmetric cryptography) and SHA-256 (hashing
functions) have proven to work well on most modern computing
devices but they are unsuitable for devices where memory, power
consumption or processing power is limited. Thus, there has been
an increasing amount of work on the design and implementation
of lightweight cryptographic algorithms to provide a solution for
running cryptography on low resource devices.

In the context of this paper, our focus is on the side channel
security of the PRESENT block cipher [1]. PRESENT is one of two
block ciphers which is deemed suitable for lightweight cryptogra-
phy within ISO/IEC 29192-2:2012 [5] (the other being CLEFIA [12]
which is outwith the scope of this paper). Although the design of
the PRESENT algorithm provides a small memory footprint along-
side low power consumption our results show it is susceptible to
information leakage when power analysis is performed against a
device running this algorithm. We demonstrate that certain func-
tions of the algorithm may be targeted (Add Round Key and S-Box)
and, via a correlation based power analysis attack, we were able to
derive 8 out of the 10 byte key used in the PRESENT algorithm. We
first begin by giving overview of the PRESENT block cipher.

2 PRESENT ALGORITHM OVERVIEW
PRESENT is a block cipher based algorithm. It was designed as a
lightweight algorithm for use in devices where energy consumption
and/or memory is limited (e.g. IoT devices). The block length (i.e.
the data that is to be encrypted or decrypted) is 64 bits while the
key size may be 80 bits or 128 bits. The designers of PRESENT have
stated that they do not expect the 128 bit key to be used in practical
implementations [1] thus our focus is on the 80 bit key variant of
this algorithm.

In total, the PRESENT algorithm requires 31 rounds of opera-
tion (Figure 1) to encrypt or decrypt a single block of data. The
core functions which are conducted in each round of operation
include: Key Scheduling, Add Round Key, S-Box Substitution and
Permutation. During encryption, the Add Round Key function is
first applied to our input (i.e. block of data to be encrypted) where
the plaintext values are XOR’d against the first 64 bits of the key
value. Next, the S-Box Substitution function is applied whereby
each value from the Add Round Key result is replaced with a ’substi-
tute’ value. Afterwards, the Permutation function is used to further
reorder the data. The output of this is then fed into the next round,
which follows the same process, but this time our input is from the
previous round, and the key values used are computed by the key
scheduling function. The reverse of this process is carried out if
decryption of data is conducted.

https://doi.org/10.1145/3230833.3232801
https://doi.org/10.1145/3230833.3232801
https://doi.org/10.1145/3230833.3232801

ARES 2018, August 27–30, 2018, Hamburg, Germany Owen Lo, William J Buchanan, and Douglas Carson

plaintext key register

sBoxLayer

pLayer

ciphertext

update

addRoundKey

addRoundKey

x
 3

1
 r

o
u

n
d

s

Figure 1: PRESENT Algorithm Description [1]

Our power analysis attack is focused on the first round of encryp-
tion during the Add Round Key and S-Box Substitution steps thus
the next subsection provides further details on these two functions.
Readers are advised to refer to the original paper [1] for full details
on the design of this algorithm.

2.1 Add Round Key
Recall that the standard implementation of the PRESENT algorithm
will consists of 64 bit block lengths and an 80 bit key. During the
Add Round Key operation, an XOR operation is applied between
the first 64 bits of the key and the 64 bit block. During the first
round of operation, the key used will be the 80 bit value defined
by the user while the rounds which follow will use the key values
defined by the Key Scheduling function.

The Add Round Key function is represented in (1) where bj is our
64 bit block defined in the range of b63...b0 while k is our current
round key thus ki = ki63...k

i
0 for 1 ≤ i ≤ 32.

bj → bj ⊕ kij (1)

2.2 S-Box Substitution
Table 1 depicts the S-Box used by the PRESENT algorithm. It is a
4 bit to 4 bit S-Box. In other words, b63...b0 from the Add Round
Key output is split into sixteen 4 bit values and used as the lookup
against the S-Box. The block value is then replaced with the looked
up S-Box value. To provide an applied example, if the input is
hexadecimal value 0 the S-Box output would be C .

Table 1: PRESENT 4 Bit S-Box [1]

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

3 DESIGN & IMPLEMENTATION
Building upon previous work in side channel attacks, we conduct
power analysis attacks on PRESENT to determine whether the keys
used by this algorithm is susceptible to leakage. In summary, power
analysis aims to reveal information leakage (e.g. the secret key) of
a device under test by analysing the characteristics of the devices
power consumption during cryptographic operations.

Two well known techniques in power analysis are differential
power analysis (DPA) and correlation power analysis (CPA). DPA
attacks involve finding significant differences between sets of power
traces relative to a secret key guess while CPA involves modeling
the hyopthesised power model of each key guess. The correct secret
key guess will exhibit significant difference in the power traces for
DPA while the greatest level of correlation between the model and
real life power trace indicates the correct key in CPA. For further
background and information on the concepts behind power analysis,
readers are advised to refer to the works of [2, 7, 8].

In the scope of this work, we chose to use Correlation Power
Analysis (CPA) and focused on two areas of the PRESENT algo-
rithm to attack: Add Round Key and S-Box Output. In each attack,
we model the power output of the chosen function against a key
guess using a HammingWeight Model. The modelled power output
are then compared against our real-life power traces using linear
correlation. The PRESENT algorithm’s functions are implemented
on an Arduino Uno.

3.1 Experiment Setup
The following equipment and tools were used in the experiments
carried out:

• Arduino Uno - The device under test which runs the Add
Round Key and S-Box step of PRESENT algorithm. The soft-
ware implementation of this code is described in Section 3.3
and 3.4.

• Keysight MSOX4104A - The oscilloscope used to gather
power traces as the Arduino Uno runs the PRESENT encryp-
tion functions.

• Keysight N2894A & 1160A Probe - Passive oscilloscope
probes used for monitoring the power consumption and trig-
ger on the Arduino Uno respectively. The capture workflow
we applied is described in the next subsection in greater
detail.

• Apple Macbook Pro - 3.1 GHz Intel i7 based laptop used
for communication and retrieving data from the Arduino
Uno and oscilloscope respectively.

3.2 Data Capture Workflow
Figure 2 depicts the data capture work flow in conducting power
analysis on the PRESENT algorithm running on the Arduino Uno.

(1) We issue a command to begin the encryption functions
(i.e. the Add Round Key and S-Box Output on Round 1 of
PRESENT algorithm) on the Arduino Uno. Known plaintext
values are used for encryption purposes in this attack.

(2) Each time the Arduino Uno runs the PRESENT encryption
functions the oscilloscope captures the waveform.

(3) Each instance of data capture consists of 5 averaged wave-
forms against a known plaintext value. This waveform is
sent to the laptop for processing later.

(4) Once 256 plaintext values (i.e. 00, 00, 00, 00, 00, 00, 00, 00
to FF, FF, FF, FF, FF, FF, FF, FF in hexadecimal) have been
enumerated we can process the captured waveforms and
perform a Hamming Weight based CPA attack on the Add
Round Key and S-Box output functions.

Correlation Power Analysis on the PRESENT Block Cipher on an Embedded Device ARES 2018, August 27–30, 2018, Hamburg, Germany

Figure 2: Data Capture Workflow

The next subsection proves details on how we implemented the
Add Round Key and S-Box output for the Arduino Uno and CPA
attack respectively.

3.3 Add Round Key Implementation
Our implementation of Add Round Key and S-Box substitution
on the Arduino Uno was based on code originally derived from
[6, 11]. To validate the correctness of code, test vectors provided
by [1] and [13] were used. Version 1.8.1 of the Arduino Integrated
Development Environment (IDE) was used for writing the code
and the default settings were used during compilation and program
upload.

The Add Round Key implementation, as programmed on the
Arduino Uno, is shown in the code snippet below.

s t a t e [0] = p l a i n [0] ^ key [0] ;
s t a t e [1] = p l a i n [1] ^ key [1] ;
s t a t e [2] = p l a i n [2] ^ key [2] ;
s t a t e [3] = p l a i n [3] ^ key [3] ;
s t a t e [4] = p l a i n [4] ^ key [4] ;
s t a t e [5] = p l a i n [5] ^ key [5] ;
s t a t e [6] = p l a i n [6] ^ key [6] ;
s t a t e [7] = p l a i n [7] ^ key [7] ;

The variable state0...state7 is the state which will be captured
after each Add Round Key operation. The variables plain0...plain7
and key0...key7 are the 64 bit plain text values to be encrypted and
the first 64 bits of the key used for encryption respectively.

3.4 S-Box Output Implementation
Our S-Box output implementation, as programmed on the Arduino
Uno, is shown in the code snippet below:

f o r (i n t i = 0 ; i < 8 ; i ++)
{
s t a t e [i] = sbox [s t a t e [i] >> 4] << 4 |

sbox [s t a t e [i] & 0xF] ;
}

The variables state0...state7 are the state which will be captured
after each S-Box substitution. Note that the state values used in the
S-Box lookup are derived from the previous Add Round Key step.
The first part of the code:

sbox [s t a t e [i] >> 4] << 4

performs a S-Box lookup against the first 4 most significant bits
of statei while:

sbox [s t a t e [i] & 0xF]

performs a lookup on the 4 least significant bits. The bitwise
OR operator | is used to combine the two results into a single 8 bit
value as output.

3.5 Implementation of CPA Attack using
Hamming Weight

The Hamming Weight algorithm is used to model the expected
power output during the Add Round Key and S-Box output of the
PRESENT algorithm against a key guess. In essence, the Hamming
weight of our implementation is simply the count of the number
of bits set to true in a hypothesised power output. Thus, if our
hypothesised output is hexadecimal value AB then the Hamming
Weight would be 5 units since AB is represented as 1010 1011 in
binary.

Performing a CPA attack on the PRESENT algorithm’s Add
Round Key and S-Box output functions follow the same concepts.
First, we use Hamming Weight to model the hypothesised power
consumption of the state output based on a key guess. Thus, for
Add Round Key, we model our power consumption based on (2) by
computing the Hamming Weight of the output of statei where i is
in the range 0 to 7 and plaini is known to the attacker.

statei = plaini ⊕ keyGuessi (2)

For the S-Box output, we model our power consumption of the
state output as shown in (3) where state0...3i is the first 4 most sig-
nificant bits produced during the Add Round Key step and state4...7i
are the 4 least significant bits.

statei = sbox[state0...3i |state4...7i] (3)
Once a model of each key guess (256 in total for each function)

has been produced, and the power traces have been captured on
on the device whilst the relevant PRESENT encryption functions
were running, we may compare our hypothesised power trace
against the real-life power traces to determine which key guesses
are correct. We chose to apply Pearson’s Correlation Coefficient
to find correlation between our model and real-life power traces.
Pearson’s Correlation Coefficient is represented in (4) whereW
represents our real-life power traces values while P is our predicted
Hamming weight values against a key guess. A correct key guess
may demonstrate strong linear correlation while an incorrect key
guess should demonstrate no correlation.

p(W , P) = Cov(W , P)√
Var (W)

√
Var (P)

(4)

We present out results in the section which follows.

ARES 2018, August 27–30, 2018, Hamburg, Germany Owen Lo, William J Buchanan, and Douglas Carson

Table 2: plain ⊕ Key Lookup (4 by 4 bit)

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 0 1 2 3 4 5 6 7 8 9 A B C D E F
1 1 0 3 2 5 4 7 6 9 8 B A D C F E
2 2 3 0 1 6 7 4 5 A B 8 9 E F C D
3 3 2 1 0 7 6 5 4 B A 9 8 F E D C
4 4 5 6 7 0 1 2 3 C D E F 8 9 A B
5 5 4 7 6 1 0 3 2 D C F E 9 8 B A
6 6 7 4 5 2 3 0 1 E F C D A B 8 9
7 7 6 5 4 3 2 1 0 F E D C B A 9 8
8 8 9 A B C D E F 0 1 2 3 4 5 6 7
9 9 8 B A D C F E 1 0 3 2 5 4 7 6
A A B 8 9 E F C D 2 3 0 1 6 7 4 5
B B A 9 8 F E D C 3 2 1 0 7 6 5 4
C C D E F 8 9 A B 4 5 6 7 0 1 2 3
D D C F E 9 8 B A 5 4 7 6 1 0 3 2
E E F C D A B 8 9 6 7 4 5 2 3 0 1
F F E D C B A 9 8 7 6 5 4 3 2 1 0

4 RESULTS
Figure 3 provides an example result of the key guess produced
when attacking the Add Round Key function while Figure 4 gives
an example result of attacking the S-Box output. In both instances,
the key used in the algorithm was: AB, CA, F2, 23, 31, 5A, 6A, CD, EF,
1F. The ’peakutils’ [10] library was used to automate the detection
of significant negative linear correlation coefficients in our results
(i.e.key guesses which exhibited strong correlation between model
and real-life power traces).

Out of a total of 8 possible keys, CPA attack against the Add
Round Key function was able to reveal six correct keys. CPA attack
against the S-Box output was successful for the first 8 bytes of the
key.

4.1 Discussion
With the Add Round Key function, we note that although CPA has
the potential to derive correct key guesses we found that repeated
experiments in power analysis focused on this function would not
produce reliable results. The attack against the Add Round Key
function is susceptible to false-positives due to the linear nature
of XOR. This is most evident when comparing columns 0 and F in
the lookup tables for Add Round Key (Table 2) and S-box (Table 3)
when 4 bits are applied to each function. With Add Round Key the
majority of results are incremental (relative to its neighbour) while
S-Box has more variation due to it’s non-linear design [1]. Thus,
CPA attacks on Add Round Key has the potential for separate key
guesses to produce a Hamming weight value which is only 1 bit
different from its neighbouring value which are more difficult to
distinguish when comparing the models against our real-life power
traces.

On the other hand, we found success with the CPA attack against
the S-Box output of the PRESENT algorithm. In the experiments
we observed, all 8 (out of 10 in total) keys in the algorithm were
correctly guessed by our Hamming Weight power model. We ad-
dress a theoretical example of how an attacker may derive the final
2 bytes of the PRESENT algorithms private key in the subsection
which follows.

Table 3: sbox[plain ⊕ Key] Lookup (4 by 4 bit)

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 C 5 6 B 9 0 A D 3 E F 8 4 7 1 2
1 5 C B 6 0 9 D A E 3 8 F 7 4 2 1
2 6 B C 5 A D 9 0 F 8 3 E 1 2 4 7
3 B 6 5 C D A 0 9 8 F E 3 2 1 7 4
4 9 0 A D C 5 6 B 4 7 1 2 3 E F 8
5 0 9 D A 5 C B 6 7 4 2 1 E 3 8 F
6 A D 9 0 6 B C 5 1 2 4 7 F 8 3 E
7 D A 0 9 B 6 5 C 2 1 7 4 8 F E 3
8 3 E F 8 4 7 1 2 C 5 6 B 9 0 A D
9 E 3 8 F 7 4 2 1 5 C B 6 0 9 D A
A F 8 3 E 1 2 4 7 6 B C 5 A D 9 0
B 8 F E 3 2 1 7 4 B 6 5 C D A 0 9
C 4 7 1 2 3 E F 8 9 0 A D C 5 6 B
D 7 4 2 1 E 3 8 F 0 9 D A 5 C B 6
E 1 2 4 7 F 8 3 E A D 9 0 6 B C 5
F 2 1 7 4 8 F E 3 D A 0 9 B 6 5 C

4.2 The Final 2 Bytes of Key
Recall that PRESENT is a 80 bit key block cipher. Under the as-
sumption that an attacker is capable of deducing the first 8 bytes
of the key, potential exists to perform a brute force attack on the
final 2 byte key. Naturally a response which indicates success to
the attacker will be necessary in order for this brute force attack to
work.

In an ideal scenario, one may be able to correctly brute force the
remaining key in the scope of seconds since the our key space is
2562. In otherwords, only 65,536 guesses in total would be necessary.
In a simulated environment, wewere able to successfully brute force
the final 2 bytes of the key (hexadecimal values EF and 1F) in 166
µs based on a average of 1000 iterations.

5 RELATEDWORKS
Related works on side channel attacks against the PRESENT al-
gorithm first include Cube Based attacks as demonstrated by [15]
and [16]. Cube based attacks aims to represent certain outputs of a
cryptographic algorithm as low-degree polynomial. Theoretically,
by providing certain inputs to the polynomial one has the capabil-
ity of deriving the secret key of the algorithm. Our work differs
from cube based attacks as we aim to monitor the power consump-
tion of a device to reveal information leakage rather than apply a
cryptanalysis technique.

More recently, [3] demonstrated the capability of performing
a Differential Power Analysis (DPA) attack on the S-Box of the
PRESENT algorithm. Our technique differs since we use CPA in
place of DPA. Additionally, as power analysis against the AES algo-
rithm has shown [9], although DPA is certainly a valid technique it
appears quite susceptible to noise and interference thus increasing
the probability of false-positives and incorrect results.

Most closely aligned to our work is [14] who demonstrate the
capability of using CPA via a Hamming Distance model to target
the hardware implementation of the PRESENT algorithm. Our work
differs here since our attack is against a software implementation
of PRESENT and we chose to use a Hamming weight model instead.
Finally, the work of [4] has also demonstrated capabilities of CPA
attack on PRESENT however, their work is based on theoretical

Correlation Power Analysis on the PRESENT Block Cipher on an Embedded Device ARES 2018, August 27–30, 2018, Hamburg, Germany

Figure 3: CPA Attack on Add Round Key

Figure 4: CPA Attack on S-Box Output

models rather than the algorithm running on physical hardware
(an Arduino Uno in our case).

6 CONCLUSION
In this paper, we have demonstrated the capabilities of performing
CPA on the PRESENT algorithm. Our targets include the Add Round
Key and S-Box functions of the algorithm during the first round
of encryption. Although information leakage is susceptible with
Add Round Key the linear nature of this function produces a high
number of false-positives. On the other hand, we found that the

S-Box is a more ideal target and 8 (out of the 10 in total) keys of the
PRESENT algorithm were successfully retrieved when attacking
this function.

In our concluding remarks, we acknowledge a few limitations
in this paper: 1) the attack has been conducted against a software
implementation of PRESENT rather than a hardware implementa-
tion; 2) our attack was conducted under the assumption that the
implementation of PRESENT stores its state values as 8 bit states
(it is possible to store the states as 4 bit values instead); and 3)
experiments were conducted in a controlled white-box testing en-
vironment using an Arduino Uno rather than a consumer ready

ARES 2018, August 27–30, 2018, Hamburg, Germany Owen Lo, William J Buchanan, and Douglas Carson

device. Each of these limitations should be considered for future
work. In particular, we believe that further research should be con-
ducted in IoT devices which make use of light weight cryptography
to ensure they are well defended against any form of side channel
attack.

ACKNOWLEDGMENTS
This work was supported by the Innovation Centre for Sensor and
Imaging Systems (CENSIS).

REFERENCES
[1] A Bogdanov, L R Knudsen, G Leander, C Paar, A Poschmann, M.J.B Robshaw,

Y Seurin, and C Vikkelsoe. 2007. PRESENT : An Ultra-Lightweight Block Ci-
pher. Springer Berlin Heidelberg (2007), 450–466. DOI:http://dx.doi.org/10.1007/
978-3-540-74735-2

[2] Jean-Sébasticn Coron, Paul Kocher, and David Naccache. 2001. Statistics and
Secret Leakage. In Financial Cryptography: 4th International Conference, FC 2000
Anguilla, British West Indies, February 20–24, 2000 Proceedings, Yair Frankel (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 157–173. DOI:http://dx.doi.org/
10.1007/3-540-45472-1_12

[3] Xiaoyi Duan, Qi Cui, Sixiang Wang, Huawei Fang, and Gaojian She. 2016. Differ-
ential power analysis attack and efficient countermeasures on PRESENT. In Pro-
ceedings of 2016 8th IEEE International Conference on Communication Software and
Networks, ICCSN 2016. 8–12. DOI:http://dx.doi.org/10.1109/ICCSN.2016.7586627

[4] Annelie Heuser, Stjepan Picek, Sylvain Guilley, and Nele Mentens. 2014. Side-
channel Analysis of Lightweight Ciphers : Does Lightweight Equal Easy ? (2014),
1–14.

[5] ISO. 2012. ISO/IEC 29192-2:2012 Information technology - Security techniques -
Lightweight cryptography - Part 2: Block ciphers. (2012). https://www.iso.org/
standard/56552.html

[6] Dirk Klose. 2008. C PRESENT Implementation (8 Bit). (2008). http:
//www.lightweightcrypto.org/downloads/implementations/PRESENT8-bit_
implementation.rar

[7] Paul Kocher, Joshua Ja, and Benjamin Jun. 2011. Differential Power Analysis.
Journal of Cryptographic Engineering (2011), 1–10. DOI:http://dx.doi.org/10.1007/
3-540-48405-1_25

[8] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.
In Advances in Cryptology — CRYPTO’ 99: 19th Annual International Cryptol-
ogy Conference Santa Barbara, California, USA, August 15–19, 1999 Proceedings,
Michael Wiener (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 388–397.
DOI:http://dx.doi.org/10.1007/3-540-48405-1_25

[9] Owen Lo, William J Buchanan, and Douglas Carson. 2016. Power analysis attacks
on the AES-128 S-box using differential power analysis (DPA) and correlation
power analysis (CPA). Journal of Cyber Security Technology 1, 1 (2016), 1–20.
DOI:http://dx.doi.org/10.1080/23742917.2016.1231523

[10] Lucas Hermann Negri. 2018. PeakUtils. (2018). https://pypi.python.org/pypi/
PeakUtils

[11] Christophe Oosterlynck and Philippe Teuwen. 2008. Python PRESENT implemen-
tation. (2008). http://www.lightweightcrypto.org/downloads/implementations/
pypresent.py

[12] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata.
2007. The 128-Bit Blockcipher CLEFIA (Extended Abstract). In Fast Software
Encryption, 14th International Workshop, {FSE} 2007, Luxembourg, Luxembourg,
March 26-28, 2007, Revised Selected Papers. 181–195. DOI:http://dx.doi.org/10.
1007/978-3-540-74619-5_12

[13] Thomas Siebert. 2008. Testvectors for PRESENT. (2008). http://www.
lightweightcrypto.org/downloads/implementations/present21.tgz

[14] Chenxu Wang, Mingyan Yu, Jinxiang Wang, Peihe Jiang, and Xiaochen Tang.
2013. A more practical CPA attack against present hardware implementation.
Proceedings - 2012 IEEE 2nd International Conference on Cloud Computing and
Intelligence Systems, IEEE CCIS 2012 3 (2013), 1248–1253. DOI:http://dx.doi.org/
10.1109/CCIS.2012.6664584

[15] Lin Yang, Meiqin Wang, and Siyuan Qiao. 2009. Side channel cube attack on
PRESENT. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 5888 LNCS, 60525201
(2009), 379–391. DOI:http://dx.doi.org/10.1007/978-3-642-10433-6_25

[16] Xinjie Zhao, Tao Wang, and Shize Guo. 2011. Improved Side Channel Cube
Attacks on PRESENT. 165 (2011), 1–11. http://eprint.iacr.org/2011/165

http://dx.doi.org/10.1007/978-3-540-74735-2
http://dx.doi.org/10.1007/978-3-540-74735-2
http://dx.doi.org/10.1007/3-540-45472-1_12
http://dx.doi.org/10.1007/3-540-45472-1_12
http://dx.doi.org/10.1109/ICCSN.2016.7586627
https://www.iso.org/standard/56552.html
https://www.iso.org/standard/56552.html
http://www.lightweightcrypto.org/downloads/implementations/PRESENT8-bit_implementation.rar
http://www.lightweightcrypto.org/downloads/implementations/PRESENT8-bit_implementation.rar
http://www.lightweightcrypto.org/downloads/implementations/PRESENT8-bit_implementation.rar
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1080/23742917.2016.1231523
https://pypi.python.org/pypi/PeakUtils
https://pypi.python.org/pypi/PeakUtils
http://www.lightweightcrypto.org/downloads/implementations/pypresent.py
http://www.lightweightcrypto.org/downloads/implementations/pypresent.py
http://dx.doi.org/10.1007/978-3-540-74619-5_12
http://dx.doi.org/10.1007/978-3-540-74619-5_12
http://www.lightweightcrypto.org/downloads/implementations/present21.tgz
http://www.lightweightcrypto.org/downloads/implementations/present21.tgz
http://dx.doi.org/10.1109/CCIS.2012.6664584
http://dx.doi.org/10.1109/CCIS.2012.6664584
http://dx.doi.org/10.1007/978-3-642-10433-6_25
http://eprint.iacr.org/2011/165

	Abstract
	1 Introduction
	2 PRESENT Algorithm Overview
	2.1 Add Round Key
	2.2 S-Box Substitution

	3 Design & Implementation
	3.1 Experiment Setup
	3.2 Data Capture Workflow
	3.3 Add Round Key Implementation
	3.4 S-Box Output Implementation
	3.5 Implementation of CPA Attack using Hamming Weight

	4 Results
	4.1 Discussion
	4.2 The Final 2 Bytes of Key

	5 Related Works
	6 Conclusion
	Acknowledgments
	References

