

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 24, 2024

Adding salt to pepper a structured security assessment over a humanoid robot
A Structured Security Assessment over a Humanoid Robot

Giaretta, Alberto; De Donno, Michele; Dragoni, Nicola

Published in:
Proceedings of 13th International Conference on Availability, Reliability and Security,

Link to article, DOI:
10.1145/3230833.3232807

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Giaretta, A., De Donno, M., & Dragoni, N. (2018). Adding salt to pepper a structured security assessment over a
humanoid robot: A Structured Security Assessment over a Humanoid Robot. In Proceedings of 13th
International Conference on Availability, Reliability and Security, Article 3232807 Association for Computing
Machinery. https://doi.org/10.1145/3230833.3232807

https://doi.org/10.1145/3230833.3232807
https://orbit.dtu.dk/en/publications/a0c7988f-8db6-4fa1-bd0d-7f65eba1f75c
https://doi.org/10.1145/3230833.3232807

Adding Salt to Pepper
A Structured Security Assessment over a Humanoid Robot

Alberto Giaretta
Centre for Applied Autonomous

Sensor Systems (AASS)
Örebro University

Sweden
alberto.giaretta@oru.se

Michele De Donno
DTU Compute

Technical University of Denmark
Denmark

mido@dtu.dk

Nicola Dragoni
DTU Compute

Technical University of Denmark
Denmark

Centre for Applied Autonomous
Sensor Systems (AASS)

Örebro University
Sweden

ndra@dtu.dk

ABSTRACT
The rise of connectivity, digitalization, robotics, and artificial intel-
ligence (AI) is rapidly changing our society and shaping its future
development. During this technological and societal revolution,
security has been persistently neglected, yet a hacked robot can
act as an insider threat in organizations, industries, public spaces,
and private homes. In this paper, we perform a structured security
assessment of Pepper, a commercial humanoid robot. Our analysis,
composed by an automated and a manual part, points out a relevant
number of security flaws that can be used to take over and com-
mand the robot. Furthermore, we suggest how these issues could
be fixed, thus, avoided in the future. The very final aim of this work
is to push the rise of the security level of IoT products before they
are sold on the public market.

CCS CONCEPTS
• Security and privacy→ Embedded systems security; Pene-
tration testing; Mobile and wireless security; Vulnerability man-
agement; • Computer systems organization→ Robotics;

KEYWORDS
Security, Internet of Things (IoT), Robot, Penetration Testing, Pep-
per
ACM Reference Format:
Alberto Giaretta, Michele De Donno, and Nicola Dragoni. 2018. Adding
Salt to Pepper: A Structured Security Assessment over a Humanoid Robot.
In Proceedings of International Conference on Availability, Reliability and
Security (ARES 2018). ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3230833.3232807

1 INTRODUCTION
In 1990 an Artificial Intelligence (AI) winter violently hit the field
and took it to its lowest point in history. Since then, AI popularity
and enthusiasm constantly grew, up to the point where AI start-ups
were able to raisemore than $6 billions in 2017, according to Venture

ARES 2018, August 27–30, 2018, Hamburg, Germany
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
International Conference on Availability, Reliability and Security (ARES 2018), https:
//doi.org/10.1145/3230833.3232807.

Scanner [13]. Even though AI permeates many fields without being
acknowledged to be AI (as Nick Bostrom advocated in 2006 [4]),
it is most obviously associated with robotics. We are witnessing
an explosion of domestic robots which, equipped with Internet
of Things (IoT) connectivity, make our lives more convenient and
joyful.

But all that glitters is not gold. While these devices capabilities
and potentialities are stunning, there seems to be a shallow ap-
proach to the security requirements of devices which are meant to
closely interact with human beings and populated environments. A
hacked robot, used for instance in a private home or even worse in a
public space, like an airport, can have tremendous consequences for
the safety of human beings, especially when it is easy to remotely
turn it into a “cyber and physical weapon”, exposing malicious
behaviors.

It is a matter of fact that the Internet of Things security state
has been under the microscope for long time [9], and threats like
Mirai [7, 8] showed that Distributed Denial of Service (DDoS) at-
tacks can impact critical infrastructures and, subsequently, threaten
human beings. Nevertheless, Internet-enabled robots are extremely
powerful IoT devices equipped with a substantial number of sen-
sors, motile capabilities, and often robotic arms that can grab and
handle things. All in all, these characteristics make robotic devices
one of the most critical classes of IoT devices currently sold off the
shelf.

In this paper, we perform a thorough security assessment over
Pepper, a commercial human-shaped social robot by SoftBank Ro-
botics. The assessment is conducted in two main phases: an auto-
mated assessment and a manual one. The results of our experiments
are critical. We were able to steal the user credentials, perform a
privilege escalation, and steal data. Moreover, we found out that it
is possible to physically command the robot without authentication,
use it to spy people and, potentially, even directly harm them.

The security flaws highlighted in this work are another evidence
of the general trend of shallowness undertook by IoT manufactur-
ers with regard to the security of their devices. Indeed, it often
results in the overlook of a number of well-established security
best practices and countermeasures that exposes the final product
to basic, yet very dangerous, security flaws which could be easily
preventable. We have the feeling that commercial robots get on
the market too quickly, evolving from research frameworks to final
products without enough prior security investigation. Thus, our

ar
X

iv
:1

80
5.

04
10

1v
2

 [
cs

.C
R

]
 4

 J
ul

 2
01

8

https://doi.org/10.1145/3230833.3232807
https://doi.org/10.1145/3230833.3232807
https://doi.org/10.1145/3230833.3232807
https://doi.org/10.1145/3230833.3232807

ARES 2018, August 27–30, 2018, Hamburg, Germany Alberto Giaretta et al.

final goal is not only to report our findings, but also to highlight
that such devices should undergo a prudent security evaluation,
before becoming commercial products.

Please note that the findings of this paper are the result of ex-
periments conducted on two samples of Pepper, provided to two
different universities for research purposes. Therefore, we cannot
assert that all the results are applicable to every Pepper on the
market.

Paper Outline. The paper is organized as follows. Section 2 de-
scribes the testbed robot. Section 3 discusses related work. Section 4
and Section 5 respectively present the automated and manual secu-
rity assessments we performed on Pepper, and related outcomes.
Section 6 proposes some mitigations to the discovered vulnerabili-
ties, and how similar issues might be prevented in future products.
Lastly, Section 7 wraps up our investigation and draws the conclu-
sion.

2 WHAT IS PEPPER?
Manufactured by SoftBank Robotics, formerly Aldebaran Robotics,
Pepper is a human-shaped social robot, designed to engage people
and interact with them, not to help with practical duties. Its main
characteristic is the capability to infer basic human emotions and
react accordingly: it will be joyful if the engaged human is happy,
comforting if sad, and so on.

Shown in Figure 1, Pepper strong points are perception and
expression, and to achieve them the manufacturer equipped it with
different sensors. Within its head lie 4 microphones, 2 HD cameras,
a 3D depth sensor, and 3 touch sensors. Also, it has 2 more touch
sensors, one per each hand, and 1 gyroscope in its torso. Last, the
base is equipped with another gyroscope, 2 sonar sensors, 6 laser
sensors, and 3 bumper sensors.

Figure 1: Pepper in one of theÖrebroUniversity robotic labs.

Currently, Pepper is used to welcome and inform people in var-
ious scenarios. In Japan, it is commonly seen in SoftBank Mobile
stores and even in private houses. Allegedly, Nestlé is planning to
equip more than 1000 Nescafé sale points with a Pepper. Further-
more, early in 2017, a restaurant at Oakland Airport chose Pepper
as an information tool and, around mid-February 2018, Lufthansa
deployed it in Munich Terminal 2, as a first test phase aimed to
evaluate whether passengers might accept it or not.

Moreover, Pepper can be operated through Robot Operating
System (ROS) [21], which is one of the most prevalent middlewares
in robotics. Even though it is improperly called an Operating System
(OS), ROS exposes many characteristics typical of OSes, such as
hardware abstraction and low-level device control. Its collection of
libraries and tools greatly simplifies the task of operating a large
variety of robots that deeply diverge from each other from the
hardware point of view.

3 RELATEDWORK
To the best of our knowledge, there is no scientific paper in the
literature discussing a structured security assessment of Pepper, nor
of any other humanoid robot. However, for the sake of completeness,
there are some works worth to mention.

First, the security consultancy company IOActive wrote a white
paper [2] about a number of cyber-attacks performed over a set
of different robots, amongst which Pepper. Their work gives an
overview of the security vulnerabilities they found, and lists some
generic recommendations that could be put in practice to improve
the overall robotics security. Our study corroborates some of their
results but, since they did not specifically focus on a single robot,
their evaluation of Pepper is incomplete and many things are not
analyzed nor reported. Indeed, our structured methodology helped
us to depict a clearer overview about the general security state of
this particular robot.

Other works related to robotics security can be found in the
literature. Clark et al. [3] identify security threats in the robotics
field, classify them based on the respective architectural layer, and
discuss both their impact and possible countermeasures. Other
works [11, 27] highlight and discuss a number of security issues of
ROS (Robot Operating System). As already mentioned in Section 2,
even though ROS is not necessary for Pepper to operate, it is a
widespread middleware in the robotics community and compatible
drivers are already available to command Pepper through ROS. This
entails that ROS vulnerabilities can easily add up to the operated
robot ones, and lead to an even worse situation.

4 AUTOMATED ASSESSMENT
The first step of our security assessment is to perform an automated
analysis of the target. This is a fundamental process to check the
basic security level of any device and it is described in this Section.

First of all, we performed a port scanning. Secondly, we ran
different tools to perform an automatic vulnerabilities scanning. All
the information gathered in this process will be extremely useful in
the subsequent manual phase. The different steps and consequent
results of the automated assessment are described in the rest of the
Section.

4.1 Port Scanning (Nmap)
The aim of a port scanning is to discover the open network ports
on a target, as well as the services bound to each open port. In our
investigation, we used Nmap [17] to run a full port scanning, both
for TCP and UDP ports. As shown in Table 1, the manufacturer
used out-of-date software, released around 2014.

On the one hand, this is a benefit, because older software is
usually more stable than the newest version. On the other hand,

Adding Salt to Pepper ARES 2018, August 27–30, 2018, Hamburg, Germany

Table 1: Nmap port scanning results.

Port Protocol Service Released

9 mDNS DNS-based service dis-
covery

-

22 SSH 2.0 OpenSSH 6.6 2014
80 HTTP nginx 1.4.7 2014
8002 HTTP Tornado httpd 3.1.1 2013
9559 - naoqi -

sticking to old software is a bad practice from a security point of
view, since often the software team does not provide long term
support, nor security updates, for outdated software. Therefore,
in case a new vulnerability is discovered, old software has lower
chances to receive updates, with respect to newer one. The most
obvious example is Heartbleed [10], an implementation flaw found
in dozens of versions of OpenSSL, around 2014. This bug exposed,
for many years, private encryption keys of users to malicious attack-
ers: a patch and new version of OpenSSL were immediately issued,
and everyone was exhorted to immediately update the affected
software.

Although a quick investigation on CVEdetails [15] (the main in-
formation source for software vulnerabilities) shows that no critical
security issues actually exist for the installed software packages,
new vulnerabilities are discovered every day. As aforementioned, a
system not regularly updated is potentially much more vulnerable
to new exploits than a maintained one.

Apart from outdated software listening on standard port services,
the port scanning showed an unusual naoqi service, binded to port
9559. We further investigate the matter in Section 5.5.

4.2 Automated Vulnerabilities Scanning
The aim of an automated vulnerabilities scanning is to discover if
the robot services are vulnerable to well-known security issues. We
used two tools to perform the scanning: OpenVAS [19], a complete
vulnerabilities scanner framework, and OWASP ZAP [18], a web
application vulnerabilities scanner. The results obtained by running
these tools against Pepper are discussed below.

4.2.1 OpenVAS. The result obtained by executing OpenVAS
against Pepper is highlighted in Table 2. The tool raised 3 vulner-
abilities and marked them accordingly to the severity: one as a
medium and two as low.

Table 2: OpenVAS results. Severity scores are assigned by the
tool itself.

Vulnerability Severity

SSH weak encryption algorithms supported MEDIUM
SSH weak MAC algorithms supported LOW
TCP timestamp LOW

The first warning is the troublesome one. Probably due to com-
patibility reasons, the manufacturer left enabled some known weak

ciphers which could lead to third party exploitation. As an exam-
ple, even though arcfour (RC4) is remarkably quick, many issues
have been discovered throughout the years. Its usage led to severe
problems in the past (e.g, RC4 is the main reason why WEP proto-
col turned out to be insecure) and it should not be used anymore,
nowadays.

The second warning is related to the support of weak Message
Authentication Code (MAC) algorithms. Today, some hash algo-
rithms, such as MD5 and the ones producing a 96-bit hash value,
are considered weak and thus not suitable to generate MACs [14].
Indeed, due to their proneness to hash functions collision attacks,
it is possible to exploit them to conduct SSH downgrade attacks
[1]. Therefore, it is recommended to deprecate such algorithms and
rely upon collision-resistant algorithms, such as SHA-2.

The third, and last, warning is a minor issue. Potentially, a mali-
cious third party could estimate the target uptime and infer, with
time, if the system is regularly patched (which often entails a re-
boot). Moreover, an attacker could evaluate whether a Denial of
Service (DoS) attack was successful or not, again, by gathering the
target uptime.

4.2.2 OWASP ZAP. The result obtained by executing OWASP
ZAP against Pepper is highlighted in Table 3. The tool raised 3
warnings and marked them accordingly to the severity: one as a
medium and the other two as low.

Table 3: OWASP ZAP results. Severity scores are assigned by
the tool itself.

Vulnerability Severity

X-Frame-Options Header Not Set MEDIUM
Web Browser XSS Protection Not Enabled LOW
X-Content-Type-Options Header Missing LOW

The first warning implies that users are potentially exposed to
Clickjacking attacks, a category of malicious techniques that trick
users into clicking objects disguised as innocuous, through strate-
gical layering of opaque and transparent layers. As an example, a
transparent layer can be overlapped to a login web page and used
to intercept keystrokes of the users.

The second warning highlights that a simple, yet effective, direc-
tive to protect from XSS (Cross-site scripting) attacks is not enabled
on the web page, which exposes clients to arbitrary execution of
malicious code. This issue, together with the first one, can have
huge impact over the general security status of a web service.

The third warning, again, indicates that users are potentially
exposed to XSS attacks and malicious code execution. The MIME-
Sniffing is a feature that some browsers use to derive the correct data
flow, in case that the contacted web server does not declare correctly
the MIME type. Unfortunately, if the website accepts uploads from
the users without thoroughly checking the data content, this feature
can be exploited by a malicious user. First, the attacker disguises a
.html file as a .jpg one by changing the extension, and uploads it to
the server (.html are usually not allowed, whereas .jpg ones are).
Then, the attacker tricks the victim into opening the .jpg file. Now,

ARES 2018, August 27–30, 2018, Hamburg, Germany Alberto Giaretta et al.

th MIME-Sniffing feature of the victim browser discovers that the
.jpg file is, as a matter of fact, a .html file, therefore the browser
overrides the server MIME type and execute the file as a .html. In
Section 5.3, we will show that one of the Pepper default applications
enables the users to upload arbitrary files.

5 MANUAL ASSESSMENT
In the previous Section we have shown how we performed the
initial security assessment of Pepper and gathered some basic in-
formation. Based on such information, we started looking deeper
into the listening services and the related communication flow. As
tools, we used Ettercap [16] to perform an ARP spoofing attack and
then we analyzed the intercepted traffic through Wireshark [26].
Furthermore, we usedHydra [24] to perform a dictionary bruteforce
attack and SSLsplit [22] as a Man-in-the-Middle (MitM) tool.

For the sake of completeness, we also investigated the system
through a “uname -a” terminal command, which resulted in the
following information: “Linux Pepper 4.0.4-rt1-aldebaran-rt #1 [..]
i686 Intel(R) Atom(TM) CPU E3845 @ 1.91GHz”. After a quick verifi-
cation of the CPU model, we report that Pepper is prone both to
Meltdown and Spectre attacks [12].

5.1 ARP Spoofing and Traffic Analysis
(Ettercap & Wireshark)

Pepper offers to users a nice web page where some administrative
tasks, such as factory reset and password change, can be easily
performed. As soon as we opened the web page, we noticed that
the communication is established over HTTP, rather than HTTPS.
Therefore, we decided to capture the login communication flow to
steal the login credentials. As shown in Figure 2, we were easily
able to retrieve in clear text the user:password pair, where user is
always nao.

Figure 2: Authentication is performed over an unencrypted
HTTP channel, easy to spoof for any attacker.

According to Pepper documentation [23], root login over SSH is
disabled and only nao user can perform a SSH connection, which
is a positive thing from a security perspective. However, end-users
can only set the password for nao profile and no tool suggests, nor
enables, them to change the root password. Besides, root password
is clearly written in the manual, and even easily guessable (i.e., root).
Unluckily, according to the documentation [23], the user:password
pair to log in the web application is the same for SSH. Therefore,
after stealing the credentials, transmitted in clear text over HTTP,
we logged as a normal user (i.e., nao) via SSH and we issued a su
command to perform a privilege escalation. In order to prevent
this privilege escalation is sufficient to modify the root password.

However, since there is no easy tool to change the password, the
end-user should know how to issue a password change command
through terminal, which is often not the case, thus, the chances
that the root password will remain the default one are high.

Moreover, we noticed that the web application does not provide
any logoff feature, and this could be a potential problem. Indeed, in
case that a user logs in from a public/shared workstation, either he
makes sure to clear the browser cache, or he has no other way to
logoff from the website.

As a remark, we want to stress that performing authentication
over an unencrypted communication channel is a wrong and consis-
tently dangerous security practice which should be always avoided,
especially in commercial products.

5.2 SSH Dictionary Bruteforce (Hydra)
Knowing that the username nao is fixed for this device, we investi-
gated whether a bruteforce attack could be performed over SSH or
not. In particular, we assessed if any kind of bruteforce protections
have been deployed, such as IP addresses blacklist, upper bound of
allowed parallel connections, and so on.

In order to assess the presence of countermeasures, we used
Hydra as a dictionary attack tool and we fed it with a 1000 entries
dictionary. To ensure that bruteforce operations were carried on
without glitches, as last entry of the dictionary we appended the
real password, expecting to have a positive result at the end. We
started by executing Hydra with 12 concurrent threads and the
correct password was found in approximately 7 minutes, without
experiencing any limitations. Then, we increased the concurrent
threads to 16, and it took approximately 5 minutes to discover the
password. Thus, we decided to double the threads and, again, we
did not experience any limitations, confirmed by the fact that the
password was found in approximately 2 minutes. Last, we used the
maximum number of threads allowed by a single Hydra instance,
which is 64 threads, and the passwordwas found in exactly 1minute,
as shown in Figure 3.

This experiment clearly shows that no countermeasures to brute-
force attacks have been deployed with Pepper.

For the sake of clarity, we chose to perform a dictionary attack
to have a time-bounded result and assess whether bruteforce at-
tacks are feasible or not. Nevertheless, the lack of countermeasures,
and the consequent feasibility of the attack, holds even for pure
permutation bruteforce attacks.

Figure 3: SSH dictionary bruteforce attackwithHydra. Com-
paring start and end time,Hydrawas able to test 1000 entries
in 1 minute (16 tries per second).

Adding Salt to Pepper ARES 2018, August 27–30, 2018, Hamburg, Germany

5.3 Simple Animated Messages (SAM)
Application

As previously discussed in Section 4.2.2, the necessary condition
to perform a MIME-Sniffing attack is the capability to upload a
malicious script by changing its extension (e.g., from .sh to .jpg). Of
all the default applications provided by Pepper, the Simple Animated
Messages (SAM) application caught our attention. Once the user
accesses the app web page at <ip-address-pepper>/apps/sam/,
he can design a simple choreography that makes Pepper move, say
something through a text-to-speech service, and show a picture on
its on-board tablet. Moreover, the user can save the choreography
and later edit it.

We were particularly interested in the picture upload feature,
therefore we tried to upload a .jpg file and we found out that the file
is temporarily stored in the directory /data/home/nao/.local/
share/SAMService/uploads. Once the user saves the choreogra-
phy, the file ismoved to /data/home/nao/.local/share/SAMServ
ice/backups/<ChorName>, where <ChorName> is the name cho-
sen by the user to save the choreography. Instead, if the user does
not save the choreography, the directory uploads is emptied as
soon as the application is closed.

Then, we tried to upload different files and we quickly figured
out that the application performs no control over the file exten-
sion. As a matter of fact, we were able to upload images, text files
which extensions have been modified to images, and even plain
text files without performing extension editing. We did not perform
a proof-of-concept attack, but it is evident that a malicious attacker
can easily leverage this application to attack the machine of the
administrator.

A possible attack scenario is the following. The attacker could
create a script, save it as a .jpeg file, and substitute the original file
with the forged one. As a result, the on-board tablet of Pepper would
stop to show the intended picture and, in order to fix this unexpected
problem, the administrator could be led to access the SAMweb page.
At this point, given that noMIME-Sniffing protection is enabled, the
browsers running on the administrator machine could interpret the
forged file as a script and subsequently execute malicious arbitrary
code.

5.4 Man-in-the-Middle (SSLsplit)
When it comes to secure communications, one of the critical points
is how certificates are handled during the TLS/SSL handshake. As
shown in [5], wrong implementations of the TLS protocol can ex-
pose the communication to Man-in-the-Middle (MitM) attacks [6].

Analyzing Pepper communications through Wireshark, we no-
ticed a number of encrypted packets, which led us to assess whether
the handshake is carried on correctly or not. In order to do so, we
used SSLsplit as a MitM tool and forged a self-signed certificate as
similar as possible to the original one; after having ARP-spoofed
both Pepper and the local gateway, we tried to feed the fake certifi-
cate to Pepper. These attempts were unsuccessful. Pepper seems to
reject our fake certificates and keeps on refreshing the connection
until it gets the correct certificate. This implies that the certificates
validity is correctly assessed by Pepper and that a MitM attack is
not easily done.

On a side note, ARP spoofing a target without performing a
successful MitM attack usually cuts the target capability to connect
to the Internet. However, after attacking Pepper, its standard ap-
plications kept on functioning even without Internet connection.
Thus, to date, we cannot say exactly what kind of communication
Pepper carries on the Internet, but we know that it does not seem
to be vital for the basic operations of the robot.

5.5 Remote Control without Authentication
As a strong point, Pepper exposes an API that enables users to
program and command it. The APIs are available for a number of
different programming languages, such as Python, C++, and Java.
Users can operate the robot both through programs stored & run on
Pepper itself, and through execution of remote scripts. In the latter
case, Pepper APIs enable users to access all the sensors, cameras,
and microphones included, as well as, all the moving parts it has
been equipped with, no exclusions.

While this functionality has interesting implications, we discov-
ered that it is highly insecure. Indeed, as previously said in Section 4,
Pepper exposes a service on port 9559 which accepts TCP messages
and reacts accordingly. As long as the messages comply to the API,
by-design, Pepper accepts packets from whoever sends them. In
other words, we found out that anyone can write a simple script
that remotely commands Pepper without providing any credential.
Therefore, anyone can use Pepper to do a number of different things
which include, but are not limited to, the following:

• Spy on people through Pepper cameras and microphones;
• Interact with people and ask any kind of question, aiming
to gather some personal information;

• Hurt people by abruptly moving towards them or grabbing
them;

• Shut down and factory reset Pepper, through ALSystem-
Proxy API module.

In a research environment, the fact that no authentication is re-
quired to remotely control the robot could be a reasonable choice to
keep things simple. However, as previously discussed in Section 2,
Pepper is currently deployed in many scenarios where human be-
ings are present and actively interact with it, and anyone can buy
it off the shelf, thus, this security flaw can result in unpleasant
outcomes. Moreover, it confirms once again the alarming trend that
many robot manufacturers [2] are undertaking by not considering
the security as a key point in the design of their products.

6 RESULTS AND COUNTERMEASURES
In this Section, we recap the steps we followed and the results
obtained. In addition, we suggest some ideas to fix the issues we
found and, consequently, to avoid the same problems in future
products. The section follows the same order used in attacking the
robot, from the initial port scanning to the remote control exploit.

6.1 Wrapping Up: Steps and Outcomes
As previously stated, we followed a structured methodology while
conducting this security assessment, and we believe that others
could benefit from the same kind of approach. Shown below, the
steps that we deemed mandatory to have a clear and complete
security overview of the analysed robot.

ARES 2018, August 27–30, 2018, Hamburg, Germany Alberto Giaretta et al.

1. Automated assessments:
1a) Run a port scan software;
1b) Execute automated suites (e.g., OpenVAS).
2. Manual assessments:
2a) Analyse network traffic with Wireshark;
2b) Run bruteforce attacks;
2c) Assess SSL certificates handling;
2d) Manually investigate other interesting characteristics, such

as uncommon open ports.

Following the aforementioned methodology we found a number
of different vulnerabilities, briefly recapped in Table 4. Note that
we manually assigned the severity marks in Table 4, according to
our experience, whereas the scores in Table 2 and Table 3 were
automatically assigned from the respective tools.

The practical implications of Table 4 are critical for a device
capable of doing as many things as Pepper. Stealing the admin
credentials is really easy and, once in, getting root credentials takes
just a command. From there, everything is possible and the only
limit is the attacker skills; for instance an attacker can steal sen-
sitive data or alter the communication flow. Even worse, due to
design choices, a malicious attacker can remotely access to Pep-
per hardware without any kind of authorization. This entails that
anyone could easily spy through Pepper cameras and microphones,
as well as make it perform physical actions that could even harm
human beings. Moreover, Pepper can potentially be used to hack
other devices through its web services.

6.2 Automated Assessment - Countermeasures
The port scanning phase is fundamental to gather relevant informa-
tion about the target: the more information, the more chances for
the attacker to penetrate the system. One interesting way to coun-
teract this technique is by using a software called Portspoof [20],
whose operation mode is counter-intuitive, yet really effective.
Indeed, Portspoof opens all the 65535 TCP ports and returns a
SYN+ACK reply to any incoming request. Moreover, for each TCP
port that does not offer a service, Portspoof emulates a real ser-
vice through fake replies and banners stored in a local database.
As a result of these two combined techniques, port scanning be-
comes much less informative, since the attacker cannot distinguish
between honest and fake services.

Next step, running some automated assessment tools is a good
security practice for a new product. Once it has been done, the
manufacturer can revise the vulnerabilities list and fix them. In
our case, we found out that Pepper instance of OpenSSH supports
weak ciphers, yet it takes a little effort to edit the configuration file
/etc/ssh/sshd_config and remove them. The same goes for the
other warnings, which are clearly due to lack of personalization
during the installation phases. In addition, what usually comes
out from such assessments is that the software that run on similar
devices are seriously outdated and this triggers a reflection. In our
opinion, manufacturers are not only responsible to deliver a well-
functioning product, but also to maintain it through regular security
analyses and consequent updates.

6.3 Manual Assessment - Countermeasures
As already mentioned, the administration panel of Pepper runs
over HTTP, leaking username and password in clear text. Even if it
should be trivial, we consider important to remark, once again, that
whenever sensitive information have to be communicated, HTTPS
instead of HTTP is a must-have best practice. Communicating
sensitive data over an insecure channel, such as HTTP, is strongly
deprecated nowadays.

Beside this, the fact that the root password cannot be easily
changed in Pepper deserves a comment of its own. On the one
hand, it is true that remote root login is denied and an attacker
has to know nao password before escalate privileges. On the other
hand, if the attacker finds out nao password then root escalation
cannot be prevented, since the user is never asked to change the
root password. In recent past, we have seen that the same approach
with credentials led to catastrophic results for the IoT world, with
large-scale malware attacks such as Mirai [8, 8]. Thus, we deem
essential to enforce users to change all their devices passwords, the
first time they power them on.

On a side note, nowadays one of the main problems with the
username/password paradigm is that people have too many ser-
vices and devices to administrate. This growing complexity leads to
adopting weak password and reusing them on different platforms,
which entails a low security level. To face this new challenge, we
envision a future where the user/password paradigm is abandoned
in favor of smarter Access Control (AC) mechanisms, based on
blockchain smart contracts. As an example, UniquID is a blockhain
access management startup, which aims to enable IoT devices to
authenticate and communicate directly with each other, with no
credentials needed, by means of a private blockchain [25].

Speaking about passwords, defending from remote bruteforce
attacks is of paramount importance. There is a couple of easily
applicable countermeasures to bruteforce attacks, as we already
mentioned in Section 5. First of all, IP blacklisting can help to cut
out a single attacker that tries to infiltrate the device, but this is
not sufficient. A motivated attacker, indeed, could use a botnet
and coordinate a massive distributed bruteforce attack, in order
to struck the attack from a large pool of IPs. Therefore, putting in
place an upper bound of simultaneous connections can help, by
strongly slowing down the tries per minute rate.

With respect to the SAM application, even though this is a non-
critical application, it is useful to comment on this issue in order
to address a more general problem. Whenever a user is allowed to
upload a specific kind of file, whether it is a picture or any other
type, the upload function should carefully analyse if the file adheres
to the expected input. Controlling the file extension is not enough,
and failing to filter wrong files can lead to arbitrary execution of
code.

Another thing, manufacturers need to pay particular attention
also to certificates handling, since MitM attacks can be highly dis-
ruptive. Even though our investigation showed that certificates are
apparently handled correctly by Pepper, this is something that the
manufacturer should always verify and ensure for any new product.

Last, but definitely not least, a reflection about the robot remote
operations is mandatory. We cannot define this a security bug, since
an authentication process was not designed from the beginning, but

Adding Salt to Pepper ARES 2018, August 27–30, 2018, Hamburg, Germany

Table 4: Discovered Pepper vulnerabilities. We personally assigned the severity scores, according to our experience.

Vulnerability Practical Consequences Severity

Port scanning is not hindered Easy to assess the attack surface LOW
Software not updated Higher exposition to exploits MEDIUM
Unrestricted file upload (in SAM) Arbitrary code can be executed on the device MEDIUM
Admin web page over HTTP Credentials in clear-text HIGH
No bruteforce countermeasures High exposure to password cracking HIGH
Root password cannot be easily changed High exposure to privilege escalation HIGH
Unauthenticated remote control Perform any action without authorization (e.g., take pictures) HIGH

rather an intrinsically insecure feature. Nevertheless, this finding
perfectly reflects the core message that we try to convey in this
paper. Security assessments and features should be inherently part
of a product life-cycle, not a layer that manufacturers impose on a
finite product, in an attempt to make it somehow (in)secure.

To address this critical situation, the whole APIs should be re-
designed in order to achieve good security standards, and it is clear
to see that this would end up being not only expensive but also
time consuming. Once again, the problem is that security is not a
property that the average consumer values when buys commercial
products, since users are generally not technically skilled enough to
evaluate it. Therefore, unless it becomes a characteristic that people
ask when they purchase an IoT device, the only way to enforce
security is through regulations.

With Pepper, it seems that the manufacturer took a device de-
signed to be used as a research framework and made a commercial
product out of it. However, this is not the only case, Cerrudo et
al. [2] showed that other products from different manufacturers
have similar faults, and the authors express exactly our same con-
cerns.

7 CONCLUSION
In this paper, we performed a security assessment over a human-
shaped social robot manufactured by SoftBank Robotics, namely
Pepper. Our assessment, conducted through an automated phase
and a manual one, pointed out a number of security flaws which
are an evidence of the general trend of shallowness that many IoT
manufacturers are undertaking with regard to the security status
of their final products.

The vulnerabilities we discovered enable an attacker to easily
spoof login credentials, steal data stored in the robot, hack other
connected devices that interact with it, and even physically harm
human beings. In particular, we found out that Pepper APIs are in-
herently flawed and accept TCP packets from any unauthenticated
source, assuming that only legitimate users will call the APIs.

This case is a blatant example of our core message: manufactur-
ers should consider security aspects of their products, before selling
them on the market. Until now, traditional IoT devices were very
simple, therefore their security flaws did not raise enough aware-
ness about the consequent risks. Now, we are starting to deal with
devices that cannot only jeopardize the security of human beings,
but also their safety. Thus, overlooking security assessments during
the system design phase can lead to very dangerous consequences,
as well as expensive remedies.

REFERENCES
[1] Karthikeyan Bhargavan and Gaëtan Leurent. 2016. Transcript collision attacks:

Breaking authentication in TLS, IKE, and SSH. In Network and Distributed System
Security Symposium–NDSS 2016.

[2] Cesar Cerrudo and Lucas Apa. 2017. Hacking Robots Before Skynet. IOAc-
tive Website. Retrieved March 10th, 2018 from https://ioactive.com/pdfs/
Hacking-Robots-Before-Skynet.pdf

[3] George W. Clark, Michael V. Doran, and Todd R. Andel. 2017. Cybersecurity
issues in robotics. In 2017 IEEE Conference on Cognitive and Computational Aspects
of Situation Management (CogSIMA). 1–5. https://doi.org/10.1109/COGSIMA.
2017.7929597

[4] CNN. 2006. AI set to exceed human brain power. Retrieved March 10th, 2018
from http://edition.cnn.com/2006/TECH/science/07/24/ai.bostrom/

[5] Mauro Conti, Nicola Dragoni, and Sebastiano Gottardo. 2013. MITHYS: Mind The
Hand You Shake - Protecting Mobile Devices from SSL Usage Vulnerabilities. In
Security and Trust Management, Rafael Accorsi and Silvio Ranise (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 65–81.

[6] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. 2016. A Survey of Man In The
Middle Attacks. IEEE Communications Surveys Tutorials 18, 3 (2016), 2027–2051.

[7] Michele De Donno, Nicola Dragoni, Alberto Giaretta, and Angelo Spognardi. 2017.
Analysis of DDoS-capable IoT Malwares. In Federated Conference on Computer
Science and Information Systems. IEEE, 807–816.

[8] Michele De Donno, Nicola Dragoni, Alberto Giaretta, and Angelo Spognardi. 2018.
DDoS-Capable IoT Malwares: Comparative Analysis and Mirai Investigation.
Security and Communication Networks 2018 (2018), 1–30. https://doi.org/10.1155/
2018/7178164

[9] Nicola Dragoni, Alberto Giaretta, and Manuel Mazzara. 2017. The Internet
of Hackable Things. In Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Paolo Ciancarini, Stanislav Litvinov, An-
gelo Messina, Alberto Sillitti, and Giancarlo Succi (Eds.). Springer International
Publishing, 129–140.

[10] Zakir Durumeric, James Kasten, David Adrian, J Alex Halderman, Michael Bailey,
Frank Li, Nicolas Weaver, Johanna Amann, Jethro Beekman, Mathias Payer, et al.
2014. The Matter of Heartbleed. In Proceedings of the 2014 Conference on Internet
Measurement Conference. ACM, 475–488.

[11] Se-Yeon Jeong, I-Ju Choi, Yeong-Jin Kim, Yong-Min Shin, Jeong-Hun Han, Goo-
Hong Jung, and Kyoung-Gon Kim. 2017. A Study on ROS Vulnerabilities and
Countermeasure. In Proceedings of the Companion of the 2017 ACM/IEEE Inter-
national Conference on Human-Robot Interaction (HRI ’17). ACM, New York, NY,
USA, 147–148. https://doi.org/10.1145/3029798.3038437

[12] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, StefanMangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2018.
Spectre Attacks: Exploiting Speculative Execution. arXiv preprint arXiv:1801.01203
(2018).

[13] Medium. 2017. Artificial Intelligence Funding Trends - Q3 2017. Re-
trieved March 10th, 2018 from https://medium.com/@VentureScanner/
artificial-intelligence-funding-trends-q3-2017-4e8a9b80fe53

[14] CERT website. 2008. Vulnerability Note VU#836068 - MD5 vulnerable to collision
attacks. Retrieved June 25th, 2018 from https://www.kb.cert.org/vuls/id/836068

[15] CVEdetails Website. [n.d.]. CVE Details. Retrieved March 10th, 2018 from
https://www.cvedetails.com/

[16] Ettercap Website. [n.d.]. Ettercap Home Page. Retrieved March 10th, 2018 from
http://www.ettercap-project.org/index.html

[17] Nmap Website. [n.d.]. Nmap: the Network Mapper. Retrieved March 10th, 2018
from https://nmap.org/

[18] OWASP Website. 2018. OWASP Zed Attack Proxy Project. Retrieved March
10th, 2018 from https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_
Project

https://ioactive.com/pdfs/Hacking-Robots-Before-Skynet.pdf
https://ioactive.com/pdfs/Hacking-Robots-Before-Skynet.pdf
https://doi.org/10.1109/COGSIMA.2017.7929597
https://doi.org/10.1109/COGSIMA.2017.7929597
http://edition.cnn.com/2006/TECH/science/07/24/ai.bostrom/
https://doi.org/10.1155/2018/7178164
https://doi.org/10.1155/2018/7178164
https://doi.org/10.1145/3029798.3038437
https://medium.com/@VentureScanner/artificial-intelligence-funding-trends-q3-2017-4e8a9b80fe53
https://medium.com/@VentureScanner/artificial-intelligence-funding-trends-q3-2017-4e8a9b80fe53
https://www.kb.cert.org/vuls/id/836068
https://www.cvedetails.com/
http://www.ettercap-project.org/index.html
https://nmap.org/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

ARES 2018, August 27–30, 2018, Hamburg, Germany Alberto Giaretta et al.

[19] OpenVAS Website. [n.d.]. OpenVAS. Retrieved March 10th, 2018 from http:
//www.openvas.org/

[20] Portspoof Website. 2012. About Portspoof. Retrieved March 10th, 2018 from
http://drk1wi.github.io/portspoof/

[21] ROS Website. [n.d.]. About ROS. Retrieved March 10th, 2018 from http:
//www.ros.org/about-ros/

[22] SSLsplit Website. 2018. SSLsplit - transparent SSL/TLS interception. Retrieved
June 25th, 2018 from http://www.roe.ch/SSLsplit

[23] SoftBank Website. [n.d.]. NAOqi OS - Getting started. Retrieved March 10th,
2018 from http://doc.aldebaran.com/2-5/dev/tools/opennao.html

[24] THC Hydra Website. [n.d.]. THC Hydra. Retrieved June 25th, 2018 from
http://sectools.org/tool/hydra/

[25] UniquID Website. [n.d.]. UniquID Inc. - Blockchain Identity Access Management.
Retrieved March 10th, 2018 from http://uniquid.com/

[26] Wireshark Website. [n.d.]. Wireshark - Learn Wireshark. Retrieved March 10th,
2018 from https://www.wireshark.org/#learnWS

[27] Ruffin White, I. Henrik Christensen, and Morgan Quigley. 2016. SROS: Secur-
ing ROS over the wire, in the graph, and through the kernel. arXiv preprint
arXiv:1611.07060 (2016). https://arxiv.org/abs/1611.07060

http://www.openvas.org/
http://www.openvas.org/
http://drk1wi.github.io/portspoof/
http://www.ros.org/about-ros/
http://www.ros.org/about-ros/
http://www.roe.ch/SSLsplit
http://doc.aldebaran.com/2-5/dev/tools/opennao.html
http://sectools.org/tool/hydra/
http://uniquid.com/
https://www.wireshark.org/#learnWS
https://arxiv.org/abs/1611.07060

	Abstract
	1 Introduction
	2 What is Pepper?
	3 Related Work
	4 Automated Assessment
	4.1 Port Scanning (Nmap)
	4.2 Automated Vulnerabilities Scanning

	5 Manual Assessment
	5.1 ARP Spoofing and Traffic Analysis (Ettercap & Wireshark)
	5.2 SSH Dictionary Bruteforce (Hydra)
	5.3 Simple Animated Messages (SAM) Application
	5.4 Man-in-the-Middle (SSLsplit)
	5.5 Remote Control without Authentication

	6 Results and Countermeasures
	6.1 Wrapping Up: Steps and Outcomes
	6.2 Automated Assessment - Countermeasures
	6.3 Manual Assessment - Countermeasures

	7 Conclusion
	References

