
Evaluation of Machine Learning-based Anomaly Detection
Algorithms on an Industrial Modbus/TCP Data Set

Simon Duque Anton, Suneetha Kanoor, Daniel Fraunholz, and Hans Dieter Schotten
Intelligent Networks Research Group

German Research Center for Artificial Intelligence
Kaiserslautern, Germany

{simon.duque_anton,suneetha.kanoor,daniel.fraunholz,hans_dieter.schotten}@dfki.de

ABSTRACT
In the context of the Industrial Internet of Things, communication
technology, originally used in home and office environments, is
introduced into industrial applications. Commercial off-the-shelf
products, as well as unified and well-established communication
protocols make this technology easy to integrate and use. Further-
more, productivity is increased in comparison to classic industrial
control by making systems easier to manage, set up and configure.
Unfortunately, most attack surfaces of home and office environ-
ments are introduced into industrial applications as well, which
usually have very few security mechanisms in place. Over the last
years, several technologies tackling that issue have been researched.
In this work, machine learning-based anomaly detection algorithms
are employed to find malicious traffic in a synthetically generated
data set of Modbus/TCP communication of a fictitious industrial
scenario. The applied algorithms are Support Vector Machine (SVM),
Random Forest, k-nearest neighbour and k-means clustering. Due
to the synthetic data set, supervised learning is possible. Support
Vector Machine and k-nearest neighbour perform well with different
data sets, while k-nearest neighbour and k-means clustering do not
perform satisfactorily.

This is a preprint of a work published in the Proceedings of
the 13th International Conference on Availability, Reliability and
Security (ARES 2018). Please cite as follows:

S. D. Duque Anton, S. Kanoor, D. Fraunholz, and H. D. Schotten:
“Evaluation of Machine Learning-based Anomaly Detection Algo-
rithms on an Industrial Modbus/TCP Data Set.” In: Proceedings of
the 13th International Conference on Availability, Reliability and
Security (ARES 2018), ACM, 2018, pp. 41:1–41:9.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES 2018, August 27–30, 2018, Hamburg, Germany
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6448-5/18/08.
https://doi.org/10.1145/3230833.3232818

KEYWORDS
Modbus, Machine Learning, Anomaly Detection, Industrial, IT-
Security

ACM Reference Format:
Simon Duque Anton, Suneetha Kanoor, Daniel Fraunholz, and Hans Di-
eter Schotten. 2018. Evaluation of Machine Learning-based Anomaly De-
tection Algorithms on an Industrial Modbus/TCP Data Set. In ARES 2018:
International Conference on Availability, Reliability and Security, August 27–
30, 2018, Hamburg, Germany. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3230833.3232818

1 INTRODUCTION
Since the appearance of industrial control in the 1970’s, industry
has been looking for ways to improve production. At first, hard-
wired sensors and actuators were employed, followed by so-called
Supervisory Control And Data Acquisition (SCADA) systems in
the 1980’s and ‘90’s. With the emerging computational and com-
munication technology, the automation pyramid, as depicted in
figure 1, arose. It categorised the industrial networks according to

Figure 1: Automation Pyramid

their function: Resource and production planning was done on the
two topmost layers, four and five. SCADA systems are located at
the third layer. Programmable Logic Controller (PLC)s can be found
on the second layer, while sensors and actuators are placed on the
first layer. This has been possible mainly due to Commercial Off The
Shelve (COTS) products that are interchangeable and configurable.
Many of the newly introduced network protocols either base on
the Ethernet-protocol on layer 2 of the Open System Interconnec-
tion (OSI)-model, such as EtherCAT [14] and Modbus [29, 30], or
even on the Transmission Control Protocol (TCP)/Internet Proto-
col (IP)-stack on layers 3 and 4 of said OSI-model. An abundance
of proprietary and open-source communication protocols, tailored

ar
X

iv
:1

90
5.

11
75

7v
1

 [
cs

.C
R

]
 2

8
M

ay
 2

01
9

https://doi.org/10.1145/3230833.3232818
https://doi.org/10.1145/3230833.3232818
https://doi.org/10.1145/3230833.3232818

ARES 2018, August 27–30, 2018, Hamburg, Germany S. Duque Anton et al.

to the needs of industrial applications, was developed. Prominent,
TCP/IP-based examples are Modbus/TCP [28, 29], ProfiNET [35]
and OPC Unified Architecture (UA) [34]. After integrating commu-
nication protocols, based on the OSI-model, and introducing re-
programmable industrial computers, so-called PLCs, industrial and
automation networks are being opened to insecure networks. The
arising Industrial Internet of Things (IIoT) requires interconnec-
tivity of networks, accessibility and availability of resources, also
outside of trust boundaries. A common assumption of early SCADA-
implementations was that networks were physically separated from
public networks [21], breaking the trust boundaries creates a multi-
tude of novel threats and attack vectors [11, 21, 52]. Attackers have
identified industrial networks as valuable targets. Widespread bot-
nets provide easy opportunities to probe and capture unprotected
Internet of Things (IoT)-devices [16]. This novel threat landscape
necessitates new approaches for intrusion detection and attack pre-
vention. Machine learning technologies, and methods of artificial
intelligence have proven that they provide vast capacities for solv-
ing problems that were hard to solve otherwise.

The remainder of this work is structured as follows: Related
work in artificial intelligence and machine learning for intrusion
detection in industrial networks is presented in section 2. After that,
the employed data set is presented in section 3. First,Modbus/TCP is
presented as a protocol. Second, the data set is evaluated, and third,
features are derived. The algorithms for anomaly detection and
their application on the data set is described in section 4. Results
are discussed in section 5. Finally, a conclusion is drawn in section 6.

2 RELATEDWORK
Intrusion detection in office Information Technology (IT) environ-
ments is a well-researched and well-established area. Tools, such
as Bro [36] and Snort [43], are commonly used and maintained by
a widespread user base. They allow for easy integration of custom
rules and make efficient firewalls and systems for detecting attack-
ers and intrusions. The same holds for data sets of host and network
traffic. There are numerous data sets to train and test Intrusion De-
tection System (IDS) appliances and machine learning methods,
one of the most famous being the ‘99 KDD Cup data set [48]. As
this work focuses on industrial applications of anomaly detection,
IDSs for office applications, as well as data sets with home- and
office-based network traffic are not considered here.

One of the most important aspects in the development of novel
intrusion detection approaches is a sound data set to test the system
and verify the findings. As mentioned, there is an abundance of
such data sets for home and office network traffic, while industrial
network traffic is still relatively rare. One recent data set is pre-
sented by Lemay and Fernandez [24]. They propose an architecture
for a traffic simulation environment, based on commonly usedMod-
busTCP tools and sandbox environments. They also published a
data set into which malicious traffic has been introduced. This data
set was analysed in this work in order to evaluate the effectiveness
of machine learning for industrial intrusion detection. Other than
that, Wang et al. propose a simulation environment for SCADA
security analysis [50]. Their framework allows setting up OPC UA

components, including sensors and actuators, in a simulation in
order to test and verify security solutions. Furthermore, Siaterlis
et al. propose a testbed for the effects of cyber attacks on Cyber
Physical System (CPS) [42]. The testbed is based on an Emulab [45]
emulation environment and is capable of monitoring the impact
of an attack on a production system. Genge et al. follow a similar
approach [18]. They present an adaptable testbed that is capable
of emulating different industrial production scenarios. These sce-
narios can then be attacked with real malware and the effects can
be evaluated. Their testbed is based on Emulab [45] as well, with
a real-time connection simulator Simulink [26]. Seidl designend
a Python [15]-environment that simulates user-defined industrial
behaviour called VirtuaPlant [41]. This simulation can then be in-
troduced to attacks and malware.

In addition to simulation environments, there are also data sets
available in order to train intrusion and anomaly detection algo-
rithms.Morris and Gao present several files containing sets of indus-
trial control system traffic [31, 32]. As malicious traffic is introduced
into these data, algorithms can be trained to detect traffic of mal-
ware.

Apart from the issue of obtaining sound and plausible data, there
is an abundance of algorithms for anomaly detection that could
be employed in order to detect intrusions. Intrusion detection as
a concept, including a formal model, was originally presented by
Denning in 1987 in the context of the growing influence of computer
systems and networks [9]. The applications of anomaly detection
mechanisms for network intrusion detection are discussed in sev-
eral surveys [4, 22]; Yang et al. give a brief introduction of these
techniques for the domain of SCADA systems [51]. Meshram and
Haas published a roadmap of machine learning based anomaly
detection in industrial networks, containing a simulation environ-
ment, as well as a semantic description of content [27]. Kleinman
and Wool present a model of the Siemens S7 protocol for intrusion
detection and forensics [23]. Critical infrastructures and industrial
environments are considered in the work of Hadziosmanovic et
al. [20]. A framework that detects malicious and undesired actions
is presented. Deriving features that can be used to distinguish valid
from malicious traffic is the first step in applying an intrusion de-
tection algorithm.Mantere et al. look into the derivation of features
from IP traffic in an industrial environment [25]. Deterministic
properties of industrial control systems, as well as the usability of
this feature for anomaly detection in an industrial environment, is
researched by Hadeli et al. [19].

3 DISSECTING THE DATA SET
In this section, the data set is described. First, a general introduction
to the Modbus protocol is given in subsection 3.1. After that, the
data set used in the course of this work, presented by Lemay and
Fernandez [24], is described in subsection 3.2. Finally, the features
that have been extracted and derived are presented in subsection 3.3.

Machine Learning for Anomaly Detection onModbus/TCP Data ARES 2018, August 27–30, 2018, Hamburg, Germany

3.1 An Introduction to Modbus
Modbus is a communication protocol for serial communication
among PLCs and Remote Terminal Units (RTUs). It has been devel-
oped in 1979 by Schneider-Electric, formerly known asModicon [40].
It has become a de-facto standard communication protocol for in-
dustrial communication [10]. There are several versions of Modbus
available, the most noteworthy are listed in table 1. In Modbus/TCP,

Table 1: An Overview of the Most UsedModbus Versions

Version Description
Modbus RTU Serial communication via RS-232 connector to

connect PLCs with RTUs
Modbus ASCII Same connector as above, but instead of binary

coding, ASCII-encoded characters are used
Modbus TCP/IP Communication based on the TCP/IP protocol stack

Same as above, but including a checksum in the
Modbus over TCP/IP payload, in addition to error correction mechanisms

provided by layers 1 to 4 of the OSI model

communication is encapsulated in a TCP/IP packet, as shown in
figures 2 and 3. They are transmitted via ethernet, which follows the
structure depicted in figure 4. All dark gray fields were employed
as features in this work. Most Modbus/TCP messages contain com-

Figure 2: TCP Frame Structure

Figure 3: IP Frame Structure

Figure 4: Ethernet Frame Structure

mands regarding reading and writing coils or registers. In analogy
to analogue control automation, one bit registers are called coils.
Multi-bit registers are called registers.Modbus slaves poll their com-
munication and either set the data as new input for their registers
or load information into a register for a master to read it. They then
respond to the request.

3.2 Description of the Data Set
Lemay and Fernandez simulated a controller network, consisting
of a number of Master Terminal Unit (MTU) and of a number of
controllers. The controllers control a simulated physical system
with a 12 000 Volt power source, as well as main- and sub-branch
cut-off breakers. In this scenario, different data collections have
been performed. An exhaustive description can be found in their
work [24]. Regular polling and manual operation are part of these
data sets, as these actions occur in productive systems in this form.
After collection, malicious activities, generated by state of the art
penetration testing tools such as metasploit [37], are introduced.

This is one of the most prevalent drawbacks of the employed
data set: according to Morris and Gao there are several different
groups of Modbus-based attacks [31]. Unfortunately, none of these
is introduced into this data set. Instead, attacks that are are also
common in home and office-based penetration testing are intro-
duced. Unfortunately, this does not mimic a wide range of attacks
that could be employed against industrial applications. It does, how-
ever, mimic the timing behaviour and the rate of packets per time
unit, which is a good distinguishing factor for attacks.

In this work, three data sets, henceforth called DS1 to DS3, were
used for testing the algorithms:

• DS1: Moving_two_files_Modbus_6RTU : Regular traffic be-
tween one MTU and six RTU during three minute interval,
3 319 packets captured, contains 75 malicious instances

• DS2: Send_a_fake_command_Modbus_6RTU_with_operate:
Regular traffic between one MTU and six RTU during 10
minute interval, 11 166 packets captured, contains 10 mali-
cious instances

• DS3: A combination of eight data sets, four of which do and
four of which do not contain malicious activitiy, 365 906
packets overall, contains 206 malicious instances

DS3 addresses a common problem in real-world intrusion de-
tection with machine learning: In order to train the algorithm, a
normal condition of the system has to be derived, deviations from
which have to be recognized as anomalies. A common practice is to
monitor the behaviour of the productive system for a certain time
under the assumptions that it does not contain malicious traffic.
There are two issues, however. First, in productive systems, you
can never be sure that there is no malicious traffic. It is just highly
unlikely. Second, the recognition of anomalies based on normal
behaviour can be difficult, as the user usually does not know the
characteristics that have most impact on the algorithm. The effect
of these limitations are evaluated in this work by mixing differ-
ent kinds of traffic, even traffic with no malicious content. Due
to the synthetic nature of this traffic, one can be sure that it is
non-malicious.

ARES 2018, August 27–30, 2018, Hamburg, Germany S. Duque Anton et al.

3.3 Feature Extraction
The first step in anomaly detection and data mining is the determi-
nation of relevant features. These features can be used to describe
the data instances with respect to a given goal; the goal in the given
case is to determine instances that differ significantly from the
common, productive behaviour. Hence, features that are suited to
describe the normal behaviour of the system are needed. In general,
there are two different kinds of features: Basic and derived features.
Basic features are already present within the data. In the given case,
they are contained within the protocol headers. Network traffic, for
example, contains source and destination addresses, lengths, time
stamps and other features. An exhaustive list containing the 14 ba-
sic features of this data set can be found in table 2. Two features are
derived from the ethernet header as shown in figure 4, four features
each are obtained from TCP and IP header, as shown in figures 2
and 3, two features from User Datagram Protocol (UDP) headers
respectively and two features from the capturing tool, namely ar-
rival time and information about broken packets. Derived features

Table 2: The Basic Features Considered in this Work

Feature Description
frame.number Sequential number of packet
frame.time Arrival time of packet with millisecond accuracy
eth.src Ethernet source address (MAC)
eth.dst Ethernet destination address (MAC)
ip.src IP source address
ip.dst IP destination address
ip.proto Transport Layer protocol
frame.len Length of IP-packet in bytes
tcp.flags Control bits of TCP-packet
tcp.srcport Port number of source in TCP connection
tcp.dstport Port number of destination TCP connection
udp.srcport Port number of source UDP connection
udp.dstport Port number of destination UDP connection
tcp.analysis.lost_segment A label set if there is a lost segment

result from the combination of basic features and can often only be
derived from sequences of packets, e.g. the number of packets per
time unit. Given the time stamp and the number of bytes of each
packet, for example, the transmitted amount of bytes per second
can be calculated. A list of nine derived features generated from
this data set can be found in table 3. The impact of each feature on

Table 3: The Derived Features Considered in this Work

Feature Description
frame.time.min Time of frame in minutes
packets_per_minute Number of packets per minute
frame.time.sec Time of frame in seconds
packets_per_sec Number of packets per second
packets_per_ip.dst Number of packets per unique destination-IP
stats.packets_per_proto Number of packets per protocol
max_packets Maximum number of packets per second
min_packets Minimum number of packets per second
mean_packets Mean number of packets per second

the prediction can be calculated. In order to do so, the decrease of
accuracy of the prediction is evaluated. The higher the decrease,

the more important the feature. Another metric for the importance
of a feature is the decrease in Gini index. The Gini index describes
the pureness of a data set, split according to a given feature [38].
The higher the decrease in Gini index, the more a feature is suited
to split a data set into anomalous and non-anomalous.

The packets_per_second, mean_packets and max_packets are the
features with the highest impact on the result for data sets DS1 and
DS2 as shown in figures 5 and 6. The fact that all of them are derived
features underlines the importance of feature engineering. Due

Figure 5: Importance of Features for svm in DS1

Figure 6: Importance of Features for svm in DS2

to the characteristic of DS3, consisting of different kinds of traffic,
another feature importance occurs, as depicted in figure 7. The TCP

Figure 7: Importance of Features for svm in DS3

destination port are of importance in differentiating, as well as the
number of pakets per protocol and per destination IP. Furthermore,
the TCP source port distribution and the mean number of packets
per second are important. In this scenario, some basic features are of
high importance for the anomaly detection. A sound understanding
of the scenario and application area therefore is of the essence.

Machine Learning for Anomaly Detection onModbus/TCP Data ARES 2018, August 27–30, 2018, Hamburg, Germany

4 ANOMALY DETECTION IN MODBUS DATA
In this section, the application of four different machine learning
algorithms, namely Support Vector Machines (SVM), Random Forrest,
k-nearest neighbour and k-means clustering, is described. Those al-
gorithms are used to find outliers in the three data sets DS1, DS2
and DS3, described in subsection 3.2, using the features presented
in subsection 3.3. At first, the data sets are split into 70% and 30%,
as well as 80% and 20% respectively for cross-validation. The split
values used depend on the quality of the cross-validation, the one
providing better results is chosen. In this work, an 80%/20% has
only been chosen for the k-nearest neighbour as described in sub-
section 4.4. The larger part is used to train the algorithm. Due to
the labels, the prediction of an algorithm can be compared with the
label in order to determine whether the prediction was correct or
not. After training, the remaining part is used for testing. In this
phase, the algorithm isn’t adjusted anymore. Still, the predictions
are compared to the labels in order to determine metrics that de-
scribe the quality of an outlier detection algorithm.

Outlier detection can be seen as a binary classifier: An instance
is either normal or anomalous. There are several metrics available
to determine the performance of a binary classifier. For intrusion
detection in industrial, but also in home and office networks, not
only the number of detected attacks is relevant. Due to the high
amount of traffic, false positives have severe effects. For one, they
need a lot of time to investigate. Furthermore, they can, on a psy-
chological level, have administrators become careless in cases of
alarms as they expect them to be false positives, the so called alarm
fatigue [5]. Finally, the amount of normal traffic in networks usually
outnumbers the amount of malicious traffic by magnitudes. That
means wrongly classifying 0.1% of malicious and of normal traffic
still results in vastly different numbers of alarms. In this work, we
used two metrics to describe the performance of the algorithms:
The accuracy [33], as well as the f-measure [49]. The f-measure, or
F1-score, is calculated as described in equation 1.

F1 = 2 · precision · recall
precision + recall

(1)

precision =
tp

tp + fp
(2)

recall =
tp

tp + fn
(3)

t stands for a correct classification of the algorithm, f for an
incorrect one. An index p indicates that the algorithm classified it
as positive, an index of n indicates a classification as negative. The
F1-score provides information about the relation of precision and
recall, as defined in equations 2 and 3. Precision and recall describe
the relation of all true positive classifications to all that have been
classified as positive, respectively to all events that are positive. If
both values are perfect, the F1-score amounts to one; at worst, it
reaches 0. The accuracy is calculated according to equation 4.

accuracy =
tp + tn

tp + fp + tn + fn
(4)

Accuracy gives information about the relation of correct clas-
sifications in relation to all classifications. First, a naive approach

to find outliers is described in subsection 4.1. In subsections 4.2
to 4.5, the algorithms are applied to the three data sets DS1, DS2
and DS3 and their performance is evaluated with the given metrics.
The results are then discussed in section 5.

4.1 Naive Approach
In some data sets, exploratory data analysis can lead to the discovery
of singular or a group of features that can be used to distinguish be-
tween normal and anomalous data. In DS1, there are three features
of the derived features as explained in table 3 capable of splitting
the data set perfectly. These features with the according values are
listed in table 4. This makes the application of machine learning

Table 4: Features Capable of Perfectly Splitting DS1

Feature Norm. Values [Packets/s] Anom. Values [Packets/s]
packets_per_sec 162, 164 3-9, 41
max_packets 72 208, 235, 401
mean_packets 58,28, 58,48 105-150

algorithms obsolete, all of the applied algorithms have to compete
against a perfect score. It is noteworthy, however, that these are
derived and not basic features. So at least a thorough understanding
and sound feature engineering are necessary in order to be able to
make sense of the data.

For DS2 and DS3, no such features exist. DS2 is too large with
too few anomalous instances, so that each feature of an anomalous
event takes the same value on at least one other normal event. DS3
is even more difficult, as several data traces are mixed. This leads
to more heterogeneous feature distributions, making it impossible
to classify it by exploratory data analysis.

4.2 Support Vector Machines
SVM were first introduced by Boser et al. in 1992 [6]. The idea is
to create a divider between two groups in such a way that each
instance has the most possible distance from the divider. This is
called a large margin classifier. In SVM , data points are described
by tuples as shown in equation 5 [8].

(xi ,yi), i = 1, ...,m,y ∈ {−1, 1} (5)

x is a vector describing a data point in an n-dimensional feature
space. y describes the attribution to one of the two classes. m is
the number of data points. After training data, the attribution is
performed by the signum-function, as shown in equation 6. w is
the normal vector of the separator hyperplane, b is the offset from
the hyperplane.

yi = sдn(w,xi − b) (6)

Generally, when applying SVM , there are two different cases:
Either the set of instances can or can not be divided by a linear geo-
metric figure. If no linear division of the set of instances is possible,
the so-called kernel trick is applied [8]. In using the kernel trick, the
input space is mapped non-linearly into a higher dimensional fea-
ture space, where the algorithm can create a linear divider. In this

ARES 2018, August 27–30, 2018, Hamburg, Germany S. Duque Anton et al.

work, the e1071-library [46] of the R programming language [44]
has been used with a linear kernel.

DS1: SVM performs exceedingly well with this data set. The
relation of true and predicted labels can be found in table 5. SVM

Table 5: Predictions and Correct Labels ofDS1 by Using SVM

Label\Prediction Normal Anomalous
Normal 1 097 0
Anomalous 0 22

is capable of predicting each instance of the test data set correctly,
leading to an accuracy, as well as F1-score of 1, as shown in line 1
of table 6.

Table 6: Accuracy and F1-score of SVM

Dataset Accuracy F1-score
DS1 1,0 1,0
DS2 1,0 1,0
DS3 0,999 936 0,999 968

DS2: SVM performs exceedingly well with this data set as well.
The relation of true and predicted labels can be found in table 8.
SVM is capable of predicting each instance of the test data set

Table 7: Predictions and Correct Labels ofDS2 by Using SVM

Label\Prediction Normal Anomalous
Normal 3 364 0
Anomalous 0 3

correctly, leading to an accuracy, as well as F1-score of 1, as shown
in line 2 of table 6.

DS3: For this data set, SVM still performs relatively well. The
relation of true and predicted labels can be found in table 8. SVM

Table 8: Predictions and Correct Labels ofDS2 by Using SVM

Label\Prediction Normal Anomalous
Normal 109 702 4
Anomalous 3 63

is capable of predicting most instances of the data set correctly,
indicated by accuracy and F1-score as shown in line 3 of table 6.

4.3 Random Forrest
A collection of Decision Trees is called a Random Forest [7]. It con-
sists of a root node, internal nodes, so-called split nodes and leaf
nodes. Each leaf node corresponds to a class predicted by the Ran-
dom Forest. All Decision Trees have been grown during a training
phase. The final decision is made by a majority voting. Random
Forests are robust to noise and overfitting, a common problem in
machine learning. It happens when an algorithm puts too much

importance on singular features so that instances of one class with
less expressive characteristic of this feature are no longer classi-
fied correctly. Furthermore, they converge quickly. In this work, 2
000 trees were used, created by rpart [1] and randomForest [47] in
R [44].

DS1: The Random Forest algorithm performs well on this data
set, as shown in table 9. It reaches a perfect score, as depicted in
line 1 of table 10.

Table 9: Predictions and Correct Labels ofDS1 by UsingRan-
dom Forest

Label\Prediction Normal Anomalous
Normal 973 0
Anomalous 0 23

Table 10: Accuracy and F1-score of Random Forest

Dataset Accuracy F1-score
DS1 1,0 1,0
DS2 0,999 701 0,999 851
DS3 0,999 973 0,999 986

DS2: For this data set, the Random Forest algorithm obtains the
worst results of all data sets. The results are shown in table 11. But
since the number of anomalous instances in comparison to the size
of the data set is tiny, the relatively poor results, shown in line 2 of
table 10, derive from the metrics and the weighting of its factors.

Table 11: Predictions and Correct Labels of DS2 by Using
Random Forest

Label\Prediction Normal Anomalous
Normal 3 347 1
Anomalous 0 2

DS3: In this data set, the Random Forest algorithm performs very
well again, the results are shown in table 12. No false negatives
occur. It even outperforms the SVM, as shown in line 3 of table 10.

Table 12: Predictions and Correct Labels of DS3 by Using
Random Forest

Label\Prediction Normal Anomalous
Normal 109 710 3
Anomalous 0 59

Machine Learning for Anomaly Detection onModbus/TCP Data ARES 2018, August 27–30, 2018, Hamburg, Germany

4.4 k-nearest Neighbour
This algorithm is a non-parametric classification and regression al-
gorithm [3]. In classification, the affiliation of an event to a group is
calculated by determining the set of the k nearest neighbours, com-
monly by calculating the Euclidean distance in an n-dimensional
feature space as shown in equation 7. The event under evaluation is
classified as part of the group with which it has the most common
neighbours among its k nearest ones.

D =

√√ n∑
i=1

(xi −wi)2 (7)

As discussed before, this is the only algorithmwhere the 80%/20%
split led to an increased cross-validation result.

DS1: The performance of the k-nearest neighbour algorithm on
this data set is poor. The relatively high false positive rate, as shown
in table 13, leads to bad overall performance, as shown in line 1 of
table 14.

Table 13: Predictions and Correct Labels of DS1 by Using k-
nearest Neighbour

Label\Prediction Normal Anomalous
Normal 678 0
Anomalous 2 9

Table 14: Accuracy and F1-score of k-nearest Neighbour

Dataset Accuracy F1-score
DS1 0,997 097 0,998 527
DS2 0,999 118 0,999 559
DS3 0,999 412 0,999 706

DS2: Even though the k-nearest neighbour algorithm performs
better on this data set, it is still not satisfying. The algorithm classi-
fies any event as normal, as shown in table 15. the small amount of
anomalous events still leads to a medium performance evaluation,
as shown in line 2 of table 14.

Table 15: Predictions and Correct Labels of DS2 by Using k-
nearest Neighbour

Label\Prediction Normal Anomalous
Normal 2 265 0
Anomalous 2 0

DS3: As in applying the k-nearest neighbour algorithm to DS2, it
classifies each instance of DS3 as normal as well. This is shown in
table 16. The according metrics can be found in line 3 of table 14.

Table 16: Predictions and Correct Labels of DS3 by Using k-
nearest Neighbour

Label\Prediction Normal Anomalous
Normal 73 140 0
Anomalous 43 0

4.5 k-means Clustering
In k-means clustering [2], the probability of an object belonging to
a group is calculated. This probability is commonly calculated as
the Euclidean distance, as introduced in equation 7, of a point in an
n-dimensional feature space from the center of a cluster. In applying
the k-means-algorithm those distances are minimized with an error
function as shown in equation 8.

E =
k∑
j=1

∑
il ∈Cj

|il −w j |2

j ∈ {1, ...,k}, l ∈ {1, ...,n}

(8)

k is the number of clusters, that needs to be defined a priori.
In this work, two clusters were used, one to describe normal, the
other to describe anomalous behaviour. n is the number of events
or elements in the feature space and C is the cluster. In contrast to
the above algorithms, there cannot be a comparison between label
and prediction. Instead, each of the two clusters has to be given a
label in order to determine the quality. In this work, clusters were
chosen as if a users did not have labels to support decision making,
which is also the choice that minimises the error. This means that
the cluster containing the larger portion of elements is seen as
the cluster with label “normal”. Furthermore, k-means clustering is
the only algorithm considered in this work that is non-supervised,
meaning it does not need training.

The biggest advantage of non-supervised machine learning al-
gorithms is omitting the need to find a valid training data set. On
the other hand, if they are applied to unlabeled data, it is hard to
determine their performance.

DS1: In applying k-means clustering to this data set, all normal
events are grouped in one cluster. Most of the anomalous events,
however, are clustered there as well, as shown in table 17. The
according accuracy and F1-score can be found in line 1 of table 18.

Table 17: Predictions and Clusters of DS1 by Using k-means
Clustering

Cluster\Label Normal Anomalous
Cluster 1 0 12
Cluster 2 3 244 63

DS2: The k-means clustering-algorithm distributes the “normal”-
labeled events in both clusters, in a comparable amount (about 5 000
vs. 6 200) as shown in table 19. This leads to significantly reduced
performance metrics, listed in line 2 of table 18. Furthermore, all
anomalous events are grouped in the larger cluster, classifying them
as normal.

ARES 2018, August 27–30, 2018, Hamburg, Germany S. Duque Anton et al.

Table 18: Accuracy and F1-score of k-means Clustering

Dataset Accuracy F1-score
DS1 0,981 018 0,990 383
DS2 0,556 242 0,714 853
DS3 0,633 624 0,775 728

Table 19: Predictions and Clusters of DS2 by Using k-means
Clustering

Clusters\Label Normal Anomalous
Clusters 1 4 945 0
Clusters 2 6 211 10

DS3: As in applying k-means clustering to DS2, all events labeled
“anomalous” in this data set are grouped in the same cluster as most
of the events labeled “normal”. This effect is depicted in table 20.
Since there are about 2 000 times as many normal events as anoma-
lous, the performance metrics are slightly improved in comparison
to the above use case, as listed in line 3 of table 20.

Table 20: Predictions and Clusters of DS3 by Using k-means
Clustering

Clusters\Label Normal Anomalous
Clusters 1 231 847 206
Clusters 2 133 853 0

5 RESULTS AND DISCUSSION
DS1 can be seen as a sort of necessary condition: since it is per-
fectly separatable based on a three derived features, as described
in subsection 4.1, the algorithms should lead to a perfect result as
well. Only SVM and Random Forest did so. Both of them performed
very well on the other two data sets as well, SVM outperformed
Random Forest on DS2, and vice versa on DS3. k-nearest neighbour
and k-means clustering performed significantly worse. In machine
learning, F1-scores and accuracy scores of around 0,999 9 are usually
required in order to consider the performance of a given algorithm
good. While k-nearest neighbour is sometimes close to these values,
k-means clustering leads to results far from satisfying. Maybe, opti-
mizing the number of clusters, e.g. by calculating and maximising
the silhouette coefficients [39], would improve the performance.

In their work, Lemay and Fernandez state that the regularity of
their traffic would make it easy for machine learning-based anom-
aly detection algorithms to find the attacks. This is especially true
for DS1. They also provide data sets covert channel attacks that are
more subtle [24]. To increase the difficulty for the algorithms, and
to mimic the changing nature of real industrial applications, we
mixed several data sets in DS3. Still, Random Forest and SVM were
able to find an impressive number of attacks.

Furthermore, it should be noted that all of the features used for
detection are ethernet- and TCP/IP-based. The Modbus protocol-
based characteristics did not have any direct influence on the detec-
tion mechanisms. However, the regularity and the structure of the
traffic differs significantly from home- and office-based network
traffic. This means that industrial traffic is different in character and
thus different in detecting by algorithm, even if no protocol-specific
attributes are employed.

6 CONCLUSION AND OUTLOOK
In this work, it is shown that somemachine learning-based anomaly
detection algorithms, in this case namely SVM and Random Forest,
perform well in detecting network traffic anomalies in industrial
networks. Since both of them are supervised methods, however,
training data is needed. This data can be provided by simulators, as
the one of Lemay and Fernandez, that was analysed in this work.
The difficulty lies in generating sound, valid data that matches the
industrial environment in which the anomaly detection algorithm
shall be applied.

There are several possibilities for extension of the presented
methods. Data from different sources can be gathered, combined
and used to enhance the results [13]. The introduction of context
information into the anomaly detection process is promising and
capable of increasing the performance [12]. Furthermore, the em-
ployment of deception technologies as sensors for anomaly detection
could be used to enhance the insight aboutmalicious behaviour [17].

One of the most prevalent necessities is the generation of data
with attacks that are specific to industrial applications in general,
and especially to Modbus. The analysis performed in this work
merely employs network-based features that, in the same form,
exist in home and office appliances. The only major difference is
the timing pattern that is strongly correlated to attacks.

ACKNOWLEDGMENTS
This work has been supported by the Federal Ministry of Education
and Research of the Federal Republic of Germany (Foerderkennze-
ichen KIS4ITS0001, IUNO). The authors alone are responsible for
the content of the paper.

REFERENCES
[1] 2018. Package rpart.
[2] Khaled Alsabti, Sanjay Ranka, and Vineet Singh. 1997. An efficient k-means

clustering algorithm. Electrical Engineering and Computer Science (January 1997).
[3] N. S. Altman. 1992. An Introduction to Kernel and Nearest-Neighbor Nonpara-

metric Regression. The American Statistician 46, 3 (August 1992), 175–185.
[4] Monowar H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. 2014. Network

Anomaly Detection: Methods, Systems and Tools. IEEE Communications Surveys
& Tutorials 16, 1 (2014), 303–336. https://doi.org/10.1109/SURV.2013.052213.00046

[5] James Bliss, Richard D. Gilson, and John E. Deaton. 1995. Human probability
matching behaviour in response to alarms of varying reliability. Ergonomics 38,
11 (December 1995). https://doi.org/10.1080/00140139508925269

[6] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. 1992. A Training
Algorithm for Optimal Margin Classifiers. In Proceedings of the Fifth Annual
Workshop on Computational Learning Theory (COLT ’92). ACM, New York, NY,
USA, 144–152. https://doi.org/10.1145/130385.130401

[7] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (Octoober 2001),
5–32. https://doi.org/10.1023/A:1010933404324

[8] Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks. Ma-
chine Learning 20, 3 (September 1995), 273–297. https://doi.org/10.1023/A:

https://doi.org/10.1109/SURV.2013.052213.00046
https://doi.org/10.1080/00140139508925269
https://doi.org/10.1145/130385.130401
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1023/A:1022627411411

Machine Learning for Anomaly Detection onModbus/TCP Data ARES 2018, August 27–30, 2018, Hamburg, Germany

1022627411411
[9] Dorothy E. Denning. 1987. An Intrusion-Detection Model. IEEE Transactions on

Software Engineering SE-13, 2 (Feburary 1987), 222–232.
[10] Bill Drury. 2009. Control Techniques Drives and Controls Handbook (2nd ed.).

Institution of Engineering and Technology.
[11] Simon Duque Anton, Daniel Fraunholz, Christoph Lipps, Frederic Pohl, Marc

Zimmermann, and Hans Dieter Schotten. 2017. Two Decades of SCADA Exploita-
tion: A Brief History. In IEEE Conference on Applications, Information and Network
Security (AINS). IEEE Conference on Applications, Information and Network Security
(AINS-2017), November 13-14, Miri, Sarawak, Malaysia. IEEE Computer Science
Chapter Malaysia, IEEE Press. https://doi.org/10.1109/AINS.2017.8270432

[12] Simon Duque Anton, Daniel Fraunholz, Stephan Teuber, and Hans Dieter Schot-
ten. 2017. A Question of Context: Enhancing Intrusion Detection by Providing
Context Information. In 13th Conference of Telecommunication, Media and Internet
Techno-Economics (CTTE-17). Aalborg University Copenhagen, IEEE.

[13] Simon Duque Anton, Daniel Fraunholz, Janis Zemitis, Frederic Pohl, and Hans Di-
eter Schotten. 2017. Highly Scalable and Flexible Model for Effective Aggregation
of Context-based Data in Generic IIoT Scenarios. In 9th Central European Work-
shop on Services and their Composition. Central European Workshop on Services
and their Composition (ZEUS-2017), February 13-14, Lugano, Switzerland, Oliver
Kopp, JÃűrg Lenhard, and Cesare Pautasso (Eds.). CEUR Workshop Proceedings,
51–58.

[14] EtherCAT Technology Group. 1991. EtherCAT - The Ethernet Fieldbus. (1991).
https://www.ethercat.org/default.htm

[15] Python Software Foundation. [n. d.]. Python. ([n. d.]). https://www.python.org/
[16] Daniel Fraunholz, Daniel Krohmer, Simon Duque Anton, and Hans Dieter Schot-

ten. 2017. Investigation of Cyber Crime Conducted by Abusing Weak or Default
Passwords with a Medium Interaction Honeypot. In International Conference On
Cyber Security And Protection Of Digital Services(Cyber Security-17). IEEE.

[17] Daniel Fraunholz, Marc Zimmermann, and Hans Dieter Schotten. 2017. Towards
Deployment Strategies for Deception Systems. Advances in Science, Technology
and Engineering Systems Journal (ASTESJ) Special Issue on Recent Advances in
Engineering Systems 2017 (July 2017), 1272–1279.

[18] Bela Genge, Christos Siaterlis, Igor Nai Fovino, and Marcelo Masera. 2012. A
Cyber-Physical Experimentation Environment for the Security Analysis of Net-
worked Industrial Control Systems. Computers & Electrical Engineering 38, 5
(September 2012), 1146–1161. https://doi.org/10.1016/j.compeleceng.2012.06.015

[19] Hadeli Hadeli, Ragnar Schierholz, Markus Braendle, and Christian Tuduce. 2009.
Leveraging determinism in industrial control systems for advanced anomaly
detection and reliable security configuration. In 2009 IEEE Conference on Emerging
Technologies Factory Automation. 1–8. https://doi.org/10.1109/ETFA.2009.5347134

[20] Dina Hadziosmanovic, Damiano Bolzoni, Pieter Hartel, and Sandro Etalle. 2011.
MELISSA: Towards Automated Detection of Undesirable User Actions in Critical
Infrastructures. IEEE Computer Society, 41–48. https://doi.org/10.1109/EC2ND.
2011.10

[21] Vinay M. Igure, Sean A. Laughter, and Ronald D. Williams. 2006. Security issues
in SCADA networks. Computers & Security 25 (2006), 498–506. https://doi.org/
10.1016/j.cose.2006.03.001

[22] Vinay M. Igure, Sean A. Laughter, and Ronald D. Williams. 2009. Anomaly-based
network intrusion detection: Techniques, systems and challenges. Computers &
Security 28 (February 2009), 18–28. https://doi.org/10.1016/j.cose.2008.08.003

[23] Amit Kleinmann and Avishai Wool. 2014. Accurate Modeling of the Siemens
S7 SCADA Protocol for Intrusion Detection and Digital Forensics. In Journal of
Digital Forensics, Security and Law, Vol. 9.

[24] Antoine Lemay and Jose M. Fernandez. 2016. Providing SCADA Network
Data Sets for Intrusion Detection Research. In 9th Workshop on Cyber Secu-
rity Experimentation and Test (CSET 16). USENIX Association, Austin, TX. https:
//www.usenix.org/conference/cset16/workshop-program/presentation/lemay

[25] Matti Mantere, Mirko Sailio, and Sami Noponen. 2013. Network Traffic Features
for Anomaly Detection in Specific Industrial Control System Network. Future
Internet 4, 5 (September 2013), 460–473. https://doi.org/10.3390/fi5040460

[26] Mathworks. [n. d.]. Simulation and Model-Based Design. ([n. d.]). https://www.
mathworks.com/products/simulink.html

[27] Ankush Meshram and Christian Haas. 2016. Anomaly Detection in Industrial
Networks using Machine Learning: A Roadmap. In Machine Learning for Cyber
Physical Systems. 65–72.

[28] Modbus. 2012. MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b3.
(2012). http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf

[29] Modbus-IDA. 2006. MODBUS MESSAGING ON TCP/IP IMPLEMENTATION
GUIDE V1.0b. (2006). http://www.modbus.org/docs/Modbus_Messaging_
Implementation_Guide_V1_0b.pdf

[30] MODICON Inc. 1996. (1996). http://www.modbus.org/docs/PI_MBUS_300.pdf
[31] Thomas Morris and Wei Gao. 2014. Industrial Control System Traffic Data Sets

for Intrusion Detection Research. Springer Berlin Heidelberg, Berlin, Heidelberg,
65–78. https://doi.org/10.1007/978-3-662-45355-1_5

[32] Morris, Thomas. [n. d.]. Industrial Control System (ICS) Cyber Attack Datasets.
([n. d.]). https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets

[33] David L. Olson and Delen Dursun. [n. d.]. Advanced Data Mining Techniques.
Springer. https://doi.org/10.1007/978-3-540-76917-0

[34] OPC Foundation. 2017. Unified Architecture. (2017). https:
//opcfoundation.org/developer-tools/specifications-unified-architecture/
part-1-overview-and-concepts

[35] PROFIBUS. 2017. PROFINET Specification. (2017). http://www.profibus.com/
nc/download/specifications-standards/downloads/profinet-io-specification/
display/

[36] The Bro Project. [n. d.]. The Bro Network Security Monitor. ([n. d.]). https:
//www.bro.org/

[37] Rapid7. [n. d.]. metasploit. ([n. d.]). https://www.metasploit.com/
[38] Lior Rokach and Oded Maimon. 2005. Top-Down Induction of Decision Trees

ClassifiersâĂŤA Survey. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews) 35, 4 (November 2005), 476–487. https://doi.org/10.
1109/TSMCC.2004.843247

[39] Peter J. Rousseeuw. 1987. Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis. J. Comput. Appl. Math. 20 (November 1987), 53–65.
https://doi.org/10.1016/0377-0427(87)90125-7

[40] Schneider Electric. 2017. Life Is On. (2017). https://www.schneider-electric.fr/fr/
[41] Jan Seidl. [n. d.]. VirtuaPlant. ([n. d.]). https://wroot.org/posts/

introducing-virtuaplant-0-1/
[42] Christos Siaterlis, Bela Genge, and Marc Hohenadel. 2013. EPIC: A Testbed

for Scientifically Rigorous Cyber-Physical Security Experimentation. IEEE
Transactions on Emerging Topics in Computing 1, 2 (December 2013), 319–330.
https://doi.org/10.1109/TETC.2013.2287188

[43] Snort. [n. d.]. Snort. ([n. d.]). https://www.snort.org/
[44] The R Foundation. [n. d.]. The R Project for Statistical Computing. ([n. d.]).

https://www.r-project.org/
[45] The University of Utah. [n. d.]. emulab total network testbed. ([n. d.]). http:

//www.emulab.net/
[46] TU Wien 2017. Package e1071. TU Wien, Probability Theory Group (Formerly:

E1071).
[47] University of Berkeley 2015. Package randomForest. University of Berkeley.
[48] University of California, Irvine (UCI). 1999. KDD Cup 1999 Data. (1999). http:

//kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
[49] C. J. van Rijsbergen. 1979. Information Retrieval. (1979).
[50] Chunlei Wang, Lan Fang, and Yiqi Dai. 2010. A Simulation Environment for

SCADA Security Analysis and Assessment. In 2010 International Conference
on Measuring Technology and Mechatronics Automation, Vol. 1. 342–347. https:
//doi.org/10.1109/ICMTMA.2010.603

[51] Dayu Yang, Alexander Usynin, and J. Wesley Hines. 2006. Anomaly-based in-
trusion detection for SCADA systems. In 5. International Topical Meeting on
Nuclear Plant Instrumentation Controls, and Human Machine Interface Technology.
797–803.

[52] Bonnie Zhu, Anthony Joseph, and Shankar Sastry. 2011. A Taxonomy of Cyber
Attacks on SCADA Systems. In 2011 International Conference on Internet of Things
and 4th International Conference on Cyber, Physical and Social Computing. 380–388.
https://doi.org/10.1109/iThings/CPSCom.2011.34

https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1109/AINS.2017.8270432
https://www.ethercat.org/default.htm
https://www.python.org/
https://doi.org/10.1016/j.compeleceng.2012.06.015
https://doi.org/10.1109/ETFA.2009.5347134
https://doi.org/10.1109/EC2ND.2011.10
https://doi.org/10.1109/EC2ND.2011.10
https://doi.org/10.1016/j.cose.2006.03.001
https://doi.org/10.1016/j.cose.2006.03.001
https://doi.org/10.1016/j.cose.2008.08.003
https://www.usenix.org/conference/cset16/workshop-program/presentation/lemay
https://www.usenix.org/conference/cset16/workshop-program/presentation/lemay
https://doi.org/10.3390/fi5040460
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
http://www.modbus.org/docs/PI_MBUS_300.pdf
https://doi.org/10.1007/978-3-662-45355-1_5
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://doi.org/10.1007/978-3-540-76917-0
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-1-overview-and-concepts
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-1-overview-and-concepts
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-1-overview-and-concepts
http://www.profibus.com/nc/download/specifications-standards/downloads/profinet-io-specification/display/
http://www.profibus.com/nc/download/specifications-standards/downloads/profinet-io-specification/display/
http://www.profibus.com/nc/download/specifications-standards/downloads/profinet-io-specification/display/
https://www.bro.org/
https://www.bro.org/
https://www.metasploit.com/
https://doi.org/10.1109/TSMCC.2004.843247
https://doi.org/10.1109/TSMCC.2004.843247
https://doi.org/10.1016/0377-0427(87)90125-7
https://www.schneider-electric.fr/fr/
https://wroot.org/posts/introducing-virtuaplant-0-1/
https://wroot.org/posts/introducing-virtuaplant-0-1/
https://doi.org/10.1109/TETC.2013.2287188
https://www.snort.org/
https://www.r-project.org/
http://www.emulab.net/
http://www.emulab.net/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://doi.org/10.1109/ICMTMA.2010.603
https://doi.org/10.1109/ICMTMA.2010.603
https://doi.org/10.1109/iThings/CPSCom.2011.34

	Abstract
	1 Introduction
	2 Related Work
	3 Dissecting the Data set
	3.1 An Introduction to Modbus
	3.2 Description of the Data Set
	3.3 Feature Extraction

	4 Anomaly Detection in Modbus Data
	4.1 Naive Approach
	4.2 Support Vector Machines
	4.3 Random Forrest
	4.4 k-nearest Neighbour
	4.5 k-means Clustering

	5 Results and Discussion
	6 Conclusion and Outlook
	References

