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ABSTRACT
Getting novice programmers over initial misconceptions is difficult
because learning programming is difficult. Practice is one of the
best ways for novices to learn. However, in the absence of feed-
back contextualized to instruction and focused on misconceptions,
misconceptions become a difficult hurdle. To improve feedback, I
present the Misconception-Driven Student Model (MDSM). MDSM
is a cognitive model that lends itself to a framework to scalably
deliver Misconception-Driven Feedback (MDF). I show MDF’s im-
pact through a quasi-experimental study that indicates that MDF
significantly supports programming skill development. I plan on
verifying these results by running another experimental study.
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1 PROGRAM CONTEXT
I am a computer science PhD student. My current research project
started in Fall of 2016. I am analyzing a cognitive model I have
developed, the Misconception Driven Student Model (MDSM). I
have run one of two planned quasi-experimental studies to analyze
the impact of MDSM on student learning. My work includes two
published papers on MDSM and the experimental study’s results. I
plan on publishing additional results from the firs experiment and
data from the second experiment.

2 CONTEXT AND MOTIVATION
Programming is difficult to learn; increasing programming expe-
rience is one of the most effective ways to learn programming[9].
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To increase the efficiency of knowledge acquisition, students need
frequent practice with plentiful immediate feedback, grounded in
instruction [8]. However, delivering well-designed feedback for
numerous programming problems to build that experience can be
a time-consuming task.

3 BACKGROUND & RELATEDWORK
Creating immediate feedback for programming problems has two
popular approaches: hint generation and unit testing (e.g. [7] and
[3]). Hint generation suggests code edits to students while unit
tests deliver feedback regarding program output. Both approaches
require little instructor effort, but frequently fail to give feedback
about program solutions [4] and contextualize feedback to instruc-
tion [3, 7]. While intelligent tutoring systems address this issue,
they require significant extra effort and expertise[5]. In contrast,
my approach intimately involves the instructor and mitigates in-
structor burden through technology and several reuse strategies by
leveraging what current hint generation and unit testing techniques
currently lack, a well articulated model to contextualize immediate
feedback to instruction for several programming problems.

4 STATEMENT OF THESIS/PROBLEM
To contextualize automated feedback to instruction, I propose the
following thesis: authoring feedback using a cognitive student model
supports student learning of programming. This thesis requires con-
fronting a number of challenges:

(1) What is an appropriate cognitive student model?
(2) How can this model be used practically by instructors to

author feedback contextualized to their instruction?
(3) How can the impact of the feedback on learning be mea-

sured?

5 RESEARCH GOALS & METHODS
The cognitive model I propose is the Misconception-Driven Student
Model (MDSM). MDSM models student knowledge by mapping
observed programming mistakes to sets of inferred misconceptions;
this model enables detection of misconceptions, linking of feedback
to instruction, immediate generation of feedback, and finer grained
evaluation of students and feedback. While applicable to the learn-
ing of programming by all novice learners, I explore the impact of
MDSM on non-computing majors.

MDSM builds on the idea of knowledge components, “an ac-
quired unit of cognitive function or structure that can be inferred
from performance on a set of related tasks.”[6]. Framing miscon-
ceptions as undesirable knowledge components and mistakes as
student performance, I define two interrelated ideas, a (program-
ming) misconception and a (programming) mistake, as follows:
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• A programming misconception is a unit of cognitive func-
tion or structure that can be inferred from a mistake on a
programming task.

• A programmingmistake is an incorrect configuration of code
elements.

The model is defined as follows: a programming mistake maps to
an associated (inferred) set of programming misconceptions. This
model’s major implication is that automatically detecting program-
mingmistakes inherently implicates the underlyingmisconceptions.
This model relies on having a set of discovered misconceptions that
we can map to a set of mistakes. This model and the challenges
posed in section 4 leads to four research questions:

5.1 Research Question 1
What is an appropriate cognitive student model on which to
base feedback for students learning to program?My tentative
answer to this question isMDSM. This model may need to be refined
as the research proceeds and new insights and evidence are gained.

5.2 Research Question 2
How can we discover misconceptions? Usage of MDSM, neces-
sitates misconception discovery. As misconceptions are inferred
from mistakes, experts (e.g. instructors) must discover these mis-
takes. Mistake discovery techniques are described in [1]; they in-
clude observing code, machine learning, and personal experience.

5.3 Research Question 3
How can we detect misconceptions in student code and de-
liver instructor-authored immediate feedback based onmis-
conceptions? My proposal for authoring of contextualized feed-
back is a specification language for authoring mistakes’ automatic
detection and feedback delivery. I have outlined this specification
in [2]. I refer to instructor-authored feedback contextualized in
misconceptions as Misconception-Driven Feedback (MDF). The im-
plementation of the specification involves implementing a modified
tree-inclusion algorithm for ASTs and abstract interpretation.

5.4 Research Question 4
How does feedback grounded in instruction impact student
learning? I plan on measuring the impact of MDF through experi-
mental studies using multiple choice tests, programing problems,
surveys, and log data. I use multiple choice tests to measure stu-
dents’ recall and understanding. I use programming problems to
identify deficiencies in students’ practical skills by viewing distribu-
tions of misconceptions detected by MDF. I use surveys to measure
the students’ perceptions of MDF on their learning.

6 DISSERTATION STATUS
I have used MDSM to develop an instructional design process (In-
structional Design + Knowledge Components a.k.a. ID + KC)[1] and
MDF. ID + KC is a misconception discovery-centric Instructional
Design process used to develop an instructional unit on iteration
that was deployed in classrooms.

I completed program analysis software implementation of MDF
and deployed it to collect treatment data regarding the impact of

MDF. This experiment was run on 290 students over one control
semester and two treatment semesters; instructors, course content,
number of TAs, etc. were controlled to isolate the MDF’s effect.
Summarily, the experiment’s results suggests that MDF supports
development of programming skills to a significant degree with an
average score increase of 10%. These results help to answer research
questions 3 and 4 and have been submitted for review.

The continuation of this research includes reviewing more log
data, and applying the MDSM and MDF to a different programming
context. None of my dissertation has been written yet. This is
pending on first completing my research proposal document and
an estimated dissertation completion date of Fall of 2019.

7 EXPECTED CONTRIBUTIONS
My expected contributions are as follows:

(1) The Misconception Driven Student Model, a cognitive model
suitable for formulating immediate feedback

(2) Two Quasi-experimental studies analyzing the impact of
Misconception Driven Feedback, a product of the MDSM

(3) A software implementation of program analysis techniques
to detect mistakes and deliver Misconception Driven Feed-
back.

I anticipate the results of the second experiment will also provide
evidence that MDF supports student learning.
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