

Ardeshir-Larijani, E., Gay, S. J. and Nagarajan, R. (2018) Automated
equivalence checking of concurrent quantum systems. ACM Transactions
on Computational Logic, 19(4), 28. (doi:10.1145/3231597)

There may be differences between this version and the published version.
You are advised to consult the publisher’s version if you wish to cite from
it.

http://eprints.gla.ac.uk/166295/

 Deposited on: 17 August 2018

Enlighten – Research publications by members of the University of
 Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1145/3231597
http://dx.doi.org/10.1145/3231597
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

1

Automated Equivalence Checking of ConcurrentQuantum
Systems

EBRAHIM ARDESHIR-LARIJANI, School of Computer Science, Institute for Research in Fundamental

Sciences (IPM), Iran

SIMON J. GAY, School of Computing Science, University of Glasgow, UK

RAJAGOPAL NAGARAJAN, Department of Computer Science, Faculty of Science and Technology,

Middlesex University, UK

The novel field of quantum computation and quantum information has gathered significant momentum in

the last few years. It has the potential to radically impact the future of information technology and influence

the development of modern society. The construction of practical, general purpose quantum computers

has been challenging, but quantum cryptographic and communication devices have been available in the

commercial marketplace for several years. Quantum networks have been built in various cities around the

world and a dedicated satellite has been launched by China to provide secure quantum communication. Such

new technologies demand rigorous analysis and verification before they can be trusted in safety- and security-

critical applications. Experience with classical hardware and software systems has shown the difficulty of

achieving robust and reliable implementations.

We present CCSq , a concurrent language for describing quantum systems, and develop verification tech-

niques for checking equivalence between CCSq processes. CCSq has well-defined operational and superop-

erator semantics for protocols that are functional, in the sense of computing a deterministic input-output

relation for all interleavings arising from concurrency in the system. We have implemented QEC (Quantum

Equivalence Checker), a tool which takes the specification and implementation of quantum protocols, described

in CCSq , and automatically checks their equivalence. QEC is the first fully automatic equivalence checking

tool for concurrent quantum systems. For efficiency purposes, we restrict ourselves to Clifford operators in the

stabilizer formalism, but we are able to verify protocols over all input states. We have specified and verified a

collection of interesting and practical quantum protocols ranging from quantum communication and quantum

cryptography to quantum error correction.

CCS Concepts: • Theory of computation→ Quantum computation theory; Process calculi; Program
semantics;

Additional Key Words and Phrases: Quantum information processing, process calculi, programming language

semantics, concurrency, equivalence checking

ACM Reference format:
Ebrahim Ardeshir-Larijani, Simon J. Gay, and Rajagopal Nagarajan. 2018. Automated Equivalence Checking

of Concurrent Quantum Systems. ACM Trans. Comput. Logic 1, 1, Article 1 (January 2018), 33 pages.

https://doi.org/10.1145/3231597

1 INTRODUCTION
Quantum technologies are evolving rapidly and the design of correct, secure hardware and software

for hybrid quantum/classical systems is a major task necessary for this development. Simulating

the quantum behaviour of such systems, with classical computers, is generally infeasible. On the

other hand, exploiting features such as entanglement, which are in contrast to common intuition,

© 2018 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in ACM Transactions on Computational Logic, https://doi.org/10.1145/3231597.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3231597
https://doi.org/10.1145/3231597

1:2 E. Ardeshir-Larijani, S. J. Gay, R. Nagarajan

imposes major challenges at the design level. Therefore developing formal verification tools for

quantum information systems is essential in achieving viable and safe quantum technologies such

as quantum cryptography and communication.

In classical computing, techniques from the area of formal methods have been used widely

to model and analyse systems. In order to describe complex systems where a large number of

components run and interact concurrently, high level languages are used to specify the systems

rigorously. For such languages, verification techniques and tools have been developed and these

have proved invaluable in the design and analysis of modern information systems. However, in the

case of quantum systems, the description is usually informal, for example by textual explanation of

sequences of actions. Another commonly used description is via quantum circuits, which are similar

to digital circuits, where quantum operations and measurements are applied by using quantum

gates. It can be argued that these methods are not sufficient for the analysis of more complicated

quantum protocols with many interacting components, running concurrently. That is why in recent

years many high level methods have been introduced for the modelling and analysis of quantum

protocols. These include quantum programming languages such as QPL [41] and Quipper [26],

as well as a categorical description of quantum mechanics [3]. These formalisms are designed for

specifying sequential quantum programs. For concurrent protocols, languages such as qCCS [43]

and CQP [22] have been introduced (for an introduction to quantum programming see [20, 44]).

Associated tools include the simulation environment LIQUi|⟩ [36] and verification frameworks for

quantum circuits [42] and programs [6, 7, 23].

To address the problem of formal verification of quantum systems, we present CCSq , a concurrent
language for describing quantum systems, and develop verification techniques for checking equiva-

lence between CCSq processes. CCSq has well-defined operational and superoperator semantics for

protocols that are functional, in the sense of computing a deterministic input-output relation for all

interleavings arising from concurrency in the system. We have implemented QEC (Quantum Equiv-

alence Checker), a tool which takes the specification and implementation of quantum protocols,

described in CCSq , and automatically checks their equivalence. QEC is the first fully automatic

equivalence checking tool for concurrent quantum systems. For efficiency purposes, we restrict

ourselves to Clifford operators in the stabilizer formalism, but we are able to verify protocols over

all input states. We have specified and verified a collection of interesting and practical quantum

protocols ranging from quantum communication and quantum cryptography to quantum error

correction.

CCSq can express physical separation of agents, concurrency and classical/quantum communica-

tion explicitly, and the process of equivalence checking is automatic. We consider the description of

a quantum protocol by an informal sequence of actions or by a quantum circuit as its implementation,
and its expected or intended behaviour as its specification. The equivalence checking of a protocol

involves showing that an implementation meets its specification. For example, consider the case

of the well-known quantum teleportation protocol [11]. The implementation of this protocol is

usually presented as a circuit (Figure 2). Our equivalence checking tool can be used to establish

that for all (quantum) inputs, the implementation is equivalent to the identity process, which maps

an input directly to the output.

We work within the stabilizer formalism and we restrict ourselves to certain operators called

Clifford operators in order to build an efficient tool. Moreover, we only apply equivalence checking

to protocols that behave functionally in the sense of computing a deterministic input-output relation

for all branches of computation (interleavings) arising from non-determinism (due to concurrency

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automated Equivalence Checking of Concurrent Quantum Systems 1:3

or quantum measurement) in the system. These input-output relations can be abstracted by su-
peroperators that enable us to exploit the linearity of quantum operators to extend equivalence

checking to arbitrary inputs, not just stabilizer states.

Despite the fact that our current approach is limited to the use of Clifford operators and restricts

the type of protocols that can be analysed, we demonstrate its applicability to many interesting

and practical quantum communication, cryptographic and fault tolerant protocols. For example,

we are able to analyse quantum teleportation, quantum secret sharing, quantum error correction

and remote CNOT gates.

In Section 2, we give necessary background from quantummechanics and quantum computing. In

Section 3, Selinger’s QPL (Quantum Programming Language) is used as the specification language

for describing sequential quantum protocols. The syntax of QPL is explained, together with its

type system and semantics in terms of superoperators. We also show how the equivalence of

two protocols in QPL, containing only Clifford operators, can be checked efficiently. Section 4

introduces CCSq , a concurrent language for the specification of quantum protocols. In Section 5,

we show how the semantics of concurrent protocols can be understood by reduction to sequential

interleavings and the superoperator semantics can be used by formally translating them to QPL.

Section 6 describes verification algorithms for concurrent protocols and also presents QEC (Quantum

Equivalence Checker), a tool for equivalence checking. In Section 7, we demonstrate various case

studies of concurrent quantum protocols, and the result of their verification with QEC. Section 8

gives an overview of related work and Section 9 contains concluding remarks and directions for

future work.

2 PRELIMINARIES
In this section, we give a concise introduction to quantum information processing (QIP). For more

detail, we refer to [39]. The basic unit of quantum information is a qubit (quantum bit). A qubit

can be in a basis state, represented by |0⟩ or |1⟩. These basis states correspond to the classical

states 0 and 1. However, a qubit may be in a superposition of states, described by α |0⟩ + β |1⟩, with
|α |2 + |β |2 = 1 where α and β are complex numbers called amplitudes. More generally, we consider

a state on n qubits, whose general form is
��ψ

〉
= α0 |00 . . . 0⟩ + . . . + α2n−1 |11 . . . 1⟩ with Σi |αi |

2 = 1.

The state of a single qubit is an element of a two-dimensional complex vector space, called

Hilbert space, which is equipped with an inner product denoted by ⟨ϕ |ψ ⟩. Multi-qubit state-spaces

are constructed by tensor product, and an n-qubit basis state such as |00 . . . 0⟩ is an abbreviation

for |0⟩ ⊗ |0⟩ ⊗ · · · ⊗ |0⟩.

There are two kinds of operations on quantum states. A unitary transformation is an invertible

linear operation on the Hilbert space. In a two-dimensional Hilbert space, measurement is specified

by a pair of orthogonal subspaces, and randomly projects the state onto one of them, with probability

determined by the amplitudes and producing classical information as the result of the measurement.

For example, if the state α |0⟩ + β |1⟩ is measured in the standard basis, then the result is 0 with

probability |α |2 or 1 with probability |β |2.
An important phenomenon in quantum information is entanglement. A multi-qubit state is

entangled if it cannot be decomposed as a tensor product of simpler states. An example is the

two-qubit state
1√
2

(|00⟩ + |11⟩), which is known as an EPR pair. It is one of a set of four important

two-qubit entangled states, termed Bell states. In this state, if the first qubit is measured in the

standard basis, then the overall state collapses to either |00⟩ or |11⟩, so the effect is to also fix the

state of the second qubit. Therefore, there is a correlation between the two entangled qubits even

when they are separated by a distance.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:4 E. Ardeshir-Larijani, S. J. Gay, R. Nagarajan

I =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Z =

(
1 0

0 −1

)
, Y =

(
0 −i
i 0

)

Fig. 1. Pauli operators

��ψ
〉

• H •

|0⟩

|0⟩ H • X Z ��ψ
〉

Fig. 2. Quantum Teleportation Circuit

Some basic single-qubit quantum operations and their matrix representations are shown in

Figure 1. We write P for the set of Pauli operators {I ,X ,Y ,Z }. The operator I is the identity
operator; the operator X introduces a bit-flip and is the quantum version of the classical NOT

gate; and the Z operator introduces a phase-flip. The Y operator combines bit- and phase-flip, with

Y = iXZ .
A common model for describing a quantum system is the quantum circuit model, analogous to

the classical circuit model. A quantum circuit consists of unitary gates and measurement. Unitary

gates can be applied to one or more qubits. A two-qubit controlled gate has a control qubit and a

target qubit. If the control qubit is set, then the quantum gate is applied to the target qubit. This

can be generalised to multi-qubit gates. Controlled-X (or CNot) and Toffoli [39, p. 29] gates are
examples of controlled gates.

Quantum circuits can be described in the following way. Single wires represent quantum in-

formation, while double wires represent classical information. Single gates and measurement are

depicted with squares, whereas controlled gates are shown with a point representing the control

qubit and a circle depicting the target qubit with a vertical wire connecting them. For example,

Figure 2 illustrates a quantum circuit corresponding to the quantum teleportation protocol [11].

Teleportation is a quantum communication protocol designed to use only local quantum opera-

tions and classical communication (LOCC). It is an important primitive in QIP and many quantum

computational schemes and models depend on it. Teleporting a given quantum state from Alice to

Bob in this protocol can be achieved by only using entanglement, classical communications, local

quantum operations and measurements.

In Figure 2, the three lines (from top to bottom) correspond to Alice’s qubit, her share of an

entangled pair and Bob’s share of the entangled pair. Going from left to right, the first two steps of

the circuit involve a Hadamard on the third qubit and a CNot on the third and second qubit. This

represents the preparation of an entangled pair. The third and fourth step show Alice’s operations,

which involves a CNot on the first and second qubit followed by a Hadamard on the first qubit.

Alice’s measurements on the first two qubits are shown in the fifth step. Bob’s operations, which

depend on the outcome of Alice’s measurements, are shown in the fifth and sixth step. At the end

of the protocol, Bob’s qubit is in the state that was the initial state of Alice’s qubit.

The density operator is an alternative way of describing quantum states where we need to

deal with uncertainty. For instance, an ensemble of quantum states {(��ϕi
〉
,pi)}, where the pi are

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automated Equivalence Checking of Concurrent Quantum Systems 1:5

probabilities, can be represented by the following density operator:

ρ =
∑
i

pi ��ϕi
〉〈
ϕi ��

where
��ϕi

〉〈
ϕi �� denotes outer product. Density operators are positive semi-definite, and Hermitian,

meaning that they satisfy

〈
φ��ρ��φ

〉
≥ 0 for all

��φ
〉
, and ρ† = ρ († denotes transpose of the complex

conjugate).

If quantum states are represented by density operators, then operations on states are represented

by superoperators. These are linear operators on the space of Hermitian matrices, which also

preserve the property of being positive semi-definite; therefore they map density operators to

density operators. Superoperators encompass both unitary operators and measurements.

Definition 1. A linear map between density operators ρ and ρ ′, S : ρ 7→ ρ ′, is a superoperator if
it satisfies the following conditions.
(1) It preserves hermicity: ρ ′ is Hermitian⇔ ρ is Hermitian.
(2) It preserves trace: tr (ρ ′) = tr (ρ).
(3) It is completely positive: ρ ′ is positive ⇔ ρ is positive and for any new system R, (IR ⊗ S)

preserves positivity.

For an n-qubit system, the space of Hermitian matrices has dimension 2
2n
. A quantum program

can be abstracted by a superoperator, where the input and output of the program are represented by

density operators. In this paper, we take advantage of the linearity of superoperators: a superoperator

is uniquely defined by its action on the elements of a basis of the space on which it acts, which in

our case is a space of Hermitian matrices. We can therefore check equality of superoperators by

checking that for every basis element as input, they produce the same output as each other.

Our approach to checking equivalence of quantum processes is based on the stabilizer formalism,

which characterises a small but important part of quantummechanics. The core idea of the stabilizer

formalism is to represent certain quantum states, which are called stabilizer states, by their stabilizer
group, instead of by an exponential number of complex amplitudes.

First we define the Pauli group of operators on n qubits, Pn . It consists of n-fold tensor products

of Pauli operators, combined with scalar factors from the set {+1,−1,+i,−i}.

Pn = {sP1 ⊗ · · · ⊗ Pn | Pi ∈ P, s ∈ {±1,±i}}

For any n-qubit quantum state, its stabilizer group is the set of unitary operators that leave it

unchanged; here we do not take account of the fact that states differing by scalar factors are

physically indistinguishable, but simply consider the action of operators on vectors.

Stab(��φ
〉
) = {S | S ��φ

〉
= ��φ

〉
}

The stabilizer states are the states that are uniquely determined by the intersection of their stabilizer

group with the Pauli group. A stabilizer state can be represented by a set of Pauli operators that

generate its stabilizer group. The result is that an n-qubit state is represented by a stabilizer tableau
consisting of n rows, each of which has n single-qubit Pauli operators (I , X , Y or Z) and a scalar

factor of ±1. This representation supports the simulation of Clifford operators, which consist of the

Pauli operators together with the phase operator and the controlled not operator, in polynomial

time.

Theorem 1. (Gottesman-Knill, [39, p. 464]) Any quantum computation which consists of only the
following components:
(1) state preparation, Hadamard gates, phase gates, controlled-not gates and Pauli gates;
(2) measurements in the standard basis;

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:6 E. Ardeshir-Larijani, S. J. Gay, R. Nagarajan

Statements S ::= new qbit q := 0 | discard q | q̃ ∗= U
| skip | S ; S | measure q then S else S

Programs P ::= input q̃ ; S ; output q̃

Fig. 3. Syntax of QPL (excluding loops and procedures)

can be efficiently simulated on a classical computer.

As a consequence of Theorem 1, several algorithms for simulation of stabilizer formalism have

been proposed [2, 4, 39, p. 463]. Our work is based on the algorithms in [2], which extend the

stabilizer tableau with destabilizer generators in order to increase the efficiency of simulating

measurements.

3 VERIFICATION OF SEQUENTIAL QUANTUM SYSTEMS
In this section we explain the key ideas of equivalence-checking by discussing sequential quantum

protocols, which we express in Selinger’s QPL language [41]. We expand on our previous work [6]

by giving a full account of the semantic basis for our approach. After establishing this foundation,

and introducing our concurrent language CCSq in Section 4, it will be easy to explain equivalence-

checking for concurrent quantum protocols in Sections 5 and 6.

3.1 The QPL Language and its Semantics
The syntax of QPL is defined in Figure 3. We exclude loops and procedures, and consider only

quantum (not classical) variables. We assume an infinite supply of qubit identifiers: these are indi-

cated by q in the grammar, but they can be any identifier. We use the notation ·̃ for finite sequences.

The top-level syntactic category is a program, which consists of a statement preceded by an input

declaration and followed by an output declaration. There are several forms of statement. Qubits are

created (and initialised) by new qbit q := 0, and discarded by discard q. Application of a unitary

operatorU to a sequence q̃ of qubits is denoted by q̃ ∗= U . The constructmeasure q then S1 else S2
measures the qubit q and executes either S1 or S2 depending on whether the classical result of the

measurement is 1 or 0. Sequential composition is denoted by semicolon, and skip does nothing.

The type system of QPL identifies well-formed programs P as those for which a judgement

⊢ ⟨Γ⟩ P ⟨∆⟩ is derivable by the rules in Figure 4. Here Γ and∆ are type environmentsx1 : qbit, . . . ,xn :

qbit. The type system checks that unitary operators are applied correctly, and tracks the set of

qubits that are in scope and available to be operated on. As an example, the teleportation protocol

in QPL is illustrated in Figure 5.

Selinger defines the semantics of QPL by first representing a program as a flowchart. Flowcharts

are constructed from the components in Figure 6. A flowchart can have multiple input paths and

multiple output paths. This allows them to show the branching structure arising from different

measurement outcomes. The annotations Γ = A show the set of qubits in scope (Γ) and the effect of
the component on a density matrix A. These components correspond to QPL statements, except

for two cases. A merge node is used to combine the branches of a measurement so that they can

be followed by a single flow of control. Horizontal composition allows multiple branches to be

constructed, representing independent operations on separate parts of the quantum state. A QPL

program

⊢ ⟨q̃ : qbit⟩ input q̃ ; S ; output r̃ ⟨̃r : qbit⟩

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automated Equivalence Checking of Concurrent Quantum Systems 1:7

(newqbit) ⊢ ⟨Γ⟩ new qbit q := 0 ⟨q : qbit, Γ⟩

(discard) ⊢ ⟨q : qbit, Γ⟩ discard q ⟨Γ⟩

(unitary)
U is of arity n

⊢ ⟨q1 : qbit, . . . ,qn : qbit, Γ⟩ q̃ ∗= U ⟨q1 : qbit, . . . ,qn : qbit, Γ⟩

(skip) ⊢ ⟨Γ⟩ skip ⟨Γ⟩

(compose)
⊢ ⟨Γ⟩ S ⟨Γ′⟩ ⊢ ⟨Γ′⟩ T ⟨Γ′′⟩

⊢ ⟨Γ⟩ S ;T ⟨Γ′′⟩

(measure)
⊢ ⟨q : qbit, Γ⟩ S ⟨Γ′⟩ ⊢ ⟨q : qbit, Γ⟩ T ⟨Γ′⟩

⊢ ⟨q : qbit, Γ⟩ measure q then S else T ⟨Γ′⟩

(permute)
⊢ ⟨Γ⟩ S ⟨∆⟩ Γ′, ∆′ permutations of Γ, ∆

⊢ ⟨Γ′⟩ S ⟨∆′⟩

(program)
⊢ ⟨q1 : qbit, . . . ,qm : qbit⟩ S ⟨r1 : qbit, . . . , rn : qbit⟩

⊢ ⟨q1 : qbit, . . . ,qm : qbit⟩ input q̃ ; S ; output r̃ ⟨r1 : qbit, . . . , rn : qbit⟩

Fig. 4. Typing rules for QPL statements and programs

// Alice's input.
input q0 ;

// Preparing the entangled pair.
newqbit q1 ;
newqbit q2 ;
q1 *= H ;
q1,q2 *= CNot ;

// Entangling Alice's qubit.
q0,q1 *= CNot ;
q0 *= H ;

// Alice's measurement and Bob's corrections.
measure q0 then q2 *= Z else q2 *= I end ;
measure q1 then q2 *= X else q2 *= I end ;

// Bob's output.
output q2

Fig. 5. Teleportation in QPL

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:8 E. Ardeshir-Larijani, S. J. Gay, R. Nagarajan

is represented by a flowchart LSM with input qubits q̃ and output qubits r̃ :

LSM

q̃ : qbit = A

r̃ : qbit = B

The translation from QPL statements to flowcharts is trivial except for the translation of measure-

ment:

Lmeasure q then S else T M = measure q ; (LSM | LT M) ;merge

The semantics of a program ⊢ ⟨Γ⟩ P ⟨∆⟩ is a superoperator [[P]] : [[Γ]]→ [[∆]]. The semantics of type

environments is defined by [[x1 : qbit, . . . ,xn : qbit]] = [[qbit]] ⊗ · · · ⊗ [[qbit]] where [[qbit]] = C2.
The typing of a flowchart F withm input paths and n output paths has the form ⊢ [Γ1 ; . . . ;

Γm] F [∆1 ; . . . ; ∆n], where each input path has a type environment Γi and each output path has

a type environment ∆j . The typing rules for flowcharts are defined explicitly in Figure 7, which

contains the same information as the Γ parts of the annotations in Figure 6. The semantics of F is a

superoperator [[F]] : [[Γ1]] ⊕ · · · ⊕ [[Γm]]→ [[∆1]] ⊕ · · · ⊕ [[∆m]], where ⊕ corresponds to tuples of

density matrices. The semantics of flowcharts is defined in Figure 8, following Selinger [41].

3.2 Checking Equivalence of QPL Programs
Our approach to verification is to consider two QPL programs, P and Q , with the same typing:

⊢ ⟨Γ⟩ P ⟨∆⟩ and ⊢ ⟨Γ⟩ Q ⟨∆⟩ for some Γ and ∆, and compute whether or not [[P]] = [[Q]]. We do

this by simulation in the stabilizer formalism. [[P]] = [[Q]] if and only if ∀b ∈ B.[[P]](b) = [[Q]](b),
where B is a basis for [[Γ]]. We can choose B to consist of stabilizer states.

Working in the stabilizer formalism has the obvious consequence that we can only use unitary

operators from the Clifford group. There is another consequence related to how we simulate

measurements.

In Selinger’s semantics, defined via the translation into flowcharts, [[measure q then S else T]]
requires addition of density matrices in order to merge the effects of S and T on the quantum

state. We cannot compute this addition in the stabilizer formalism, because in general the sum of

stabilizer states is not a stabilizer state. To resolve this problem, we do not simulate merge nodes.
Instead, we keep the two branches of a measurement separate, and simulate each branch to the

end of the program. For a given basis state as input, we require that all branches produce the same

output. This means that the non-determinism of measurement is compensated by other parts of

the protocol, so that the overall effect is a deterministic function from input to output.

We describe simulation of QPL programs in terms of the following operations on stabilizer

tableaus τ , which are all standard [2, 9].

• create(q1, . . . ,qn , ��ϕ
〉
) creates a tableau with qubits q1, . . . ,qn in state

��ϕ
〉
.

• allocate(q,τ) produces a new tableau with an additional qubit q in state |0⟩.

• apply(q1, . . . ,qn ,U ,τ) produces a new tableau in which the unitary operator U has been

applied to qubits q1, . . . ,qn .
• possible(q,v,τ) returns a boolean value indicating whether or not |v⟩ (either |0⟩ or |1⟩) is a
possible result of measuring qubit q.
• set(q,v,τ) produces a new tableau in which qubit q has been measured with result |v⟩.
• reduce(q1, . . . ,qn ,τ) produces a new tableau in which all of the qubits except q1, . . . ,qn have

been traced out.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automated Equivalence Checking of Concurrent Quantum Systems 1:9

Allocate qubit: Unitary transformation:

new qbit q := 0

Γ = A

q : qbit, Γ =
(
A 0

0 0

) q̃ ∗= U

q̃ : qbit, Γ = A

q̃ : qbit, Γ = (U ⊗ I)A(U ⊗ I)∗

Discard qubit: Measurement:

discard q

q : qbit, Γ =
(
A B
C D

)

Γ = A + D

measure q

q : qbit, Γ =
(
A B
C D

)

0

q : qbit, Γ =
(
A 0

0 0

)
1

q : qbit, Γ =
(
0 0

0 D

)

Merge: Permutation:

Γ = A Γ = B

Γ = A + B

permute ϕ

q1, . . . ,qn : qbit = (ai j)i j

qϕ (1), . . . ,qϕ (n) : qbit = (a
2
ϕ (i),2ϕ (j))i j

Vertical: Horizontal:

F

G

Γ1 = A1
· · · Γm = Am

∆1 = B1
· · · ∆n = Bn

Θ1 = C1
· · · Θp = Cp

F G

Γ1 = A1
· · · Γm = Am

∆1 = B1
· · · ∆n = Bn

Θ1 = C1
· · · Θp = Cp

Ξ1 = D1
· · · Ξq = Dq

Fig. 6. QPL flowcharts

Given these operations, Figure 9 defines a transition relation on configurations ⟨τ , S⟩ consisting of

a stabilizer tableau τ and a QPL statement S . Simulation ends with a terminal configuration ⟨τ ⟩,
reached when an output statement is executed. This transition relation enables us to define the

key property of programs that our verification technique requires: that they are functional.

Definition 2. Let ⊢ ⟨q̃ : qbit⟩ P ⟨̃r : qbit⟩ be a program, where P = input q̃ ; S ; output r̃ . Define

the transition relation
P
→ between stabilizer tableaus by τ

P
→ τ ′ if and only if:

(1) τ is a stabilizer tableau for qubits q̃, and
(2) τ ′ is a stabilizer tableau for qubits r̃ , and
(3) ⟨τ , S ; output r̃ ⟩ →∗ ⟨τ ′⟩.

Definition 3. A program P is functional if whenever τ
P
→ τ1 and τ

P
→ τ2 we have τ1 = τ2.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:10 E. Ardeshir-Larijani, S. J. Gay, R. Nagarajan

(newqbit) ⊢ [Γ] new qbit q := 0 [q : qbit, Γ]

(discard) ⊢ [q : qbit, Γ] discard q [Γ]

(unitary)
U is of arity n

⊢ [q1 : qbit, . . . ,qn : qbit, Γ] q ∗= U [q1 : qbit, . . . ,qn : qbit, Γ]

(vertical)
⊢ [Γ1 ; . . . ; Γm] F [∆1 ; . . . ; ∆n] ⊢ [∆1 ; . . . ; ∆n] G [Θ1 ; . . . ; Θp]

⊢ [Γ1 ; . . . ; Γm] F ;G [Θ1 ; . . . ; Θp]

(horizontal)
⊢ [Γ1 ; . . . ; Γm] F [∆1 ; . . . ; ∆n] ⊢ [Θ1 ; . . . ; Θp] G [Ξ1 ; . . . ; Ξq]

⊢ [Γ1 ; . . . ; Γm ; Θ1 ; . . . ; Θp] F | G [∆1 ; . . . ; ∆n ; Ξ1 ; . . . ; Ξq]

(measure) ⊢ [q : qbit, Γ] measure q [q : qbit, Γ ; q : qbit, Γ]

(merge) ⊢ [Γ ; Γ] merge [Γ]

(permute)
ϕ is a permutation

⊢ [q1 : qbit, . . . ,qn : qbit] permute ϕ [qϕ (1) : qbit, . . . ,qϕ (n) : qbit]

Fig. 7. Typing rules for QPL flowcharts

We simulate a QPL program according to the transitions defined in Figure 9, exploring all

branches due to non-deterministic measurements and discovering all possible final outputs for

a given input. This enables functionality to be checked. Given two programs, we can also check

equivalence. We now give a semantic justification for this approach to simulating branches, by

separating the computational part of a flowchart from the part that merges branches resulting from

measurements.

Definition 4. A merge network is a flowchart constructed from merge, permutations and hori-
zontal and vertical composition.

Definition 5. A flowchart is normal if horizontal composition is always immediately followed (in
a vertical composition) by merge. That is, horizontal composition occurs only in structures of the form
(F | G) ;merge.

Lemma 1. (Weak commutativity) Let P be a flowchart that does not contain merge, and let M be a
normal merge network. Then there exist flowcharts P ′ andM ′ such that P ′ does not contain merge,
M ′ is a normal merge network, and [[M ; P]] = [[P ′ ;M ′]].

Proof. By induction on the construction ofM .

• If M is merge then [[M ; P]](a,b) = [[P]](a + b) = [[P]](a) + [[P]](b). Let P ′ = P | P and

M ′ = merge. Then [[P ′ ;M ′]](a,b) = [[(P | P) ;merge]](a,b) = [[P]](a) + [[P]](b).
• IfM is a permutation then we can combine it with P to give P ′, and takeM ′ to be the identity
permutation.

• IfM isM1 ;M2 withM1 andM2 normal then by induction we have P ′
2
andM ′

2
such that P ′

2
does

not contain merge, M ′
2
is a normal merge network, and [[M1 ;M2 ; P]] = [[M1 ; P

′
2
;M ′

2
]] =

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automated Equivalence Checking of Concurrent Quantum Systems 1:11

[[new qbit q := 0]] [[Γ]]→ [[qbit]] ⊗ [[Γ]]

A 7→

(
A 0

0 0

)
[[discard q]] [[qbit]] ⊗ [[Γ]]→ [[Γ]](

A B
C D

)
7→ A + D

[[q̃ ∗= U]] [[qbit]]n ⊗ [[Γ]]→ [[qbit]]n ⊗ [[Γ]]
A 7→ (U ⊗ I)A(U ⊗ I)∗

[[F ;G]] [[Γ1]] ⊕ · · · ⊕ [[Γm]]→ [[Θ1]] ⊕ · · · ⊕ [[Θp]]

[[G]] ◦ [[F]]

[[F | G]] [[Γ1]] ⊕ · · · ⊕ [[Γm]] ⊕ [[Θ1]] ⊕ · · · ⊕ [[Θp]]→

[[∆1]] ⊕ · · · ⊕ [[∆n]] ⊕ [[Ξ1]] ⊕ · · · ⊕ [[Ξq]]

[[F]] ⊕ [[G]]

[[measure q]] [[qbit]] ⊗ [[Γ]]→ ([[qbit]] ⊗ [[Γ]]) ⊕ ([[qbit]] ⊗ [[Γ]])(
A B
C D

)
7→ (

(
A 0

0 0

)
,

(
0 0

0 D

)
)

[[merge]] [[Γ]] ⊕ [[Γ]]→ [[Γ]]
(A,B) 7→ A + B

[[permute ϕ]] [[qbit]]n → [[qbit]]n

(ai j)i j 7→ (a
2
ϕ (i),2ϕ (j))i j

where ϕ is a permutation of {1, . . . ,n} and 2
ϕ
is a permutation

of the set of bit vectors of length n, defined by

2
ϕ (x1, . . . ,xn) = (xϕ−1 (1), . . . ,xϕ−1 (n)).

Fig. 8. Semantics of QPL flowcharts [41]

⟨τ ,new qbit q := 0 ; S⟩ → ⟨allocate(q,τ), S⟩

⟨τ , skip ; S⟩ → ⟨τ , S⟩

⟨τ ,q1, . . . ,qn ∗= U ; S⟩ → ⟨apply(q1, . . . ,qn ,U ,τ), S⟩

⟨τ ,measure q then S else T ;U ⟩ → ⟨set(q, 1,τ), S ;U ⟩ if possible(q, 1,τ)

⟨τ ,measure q then S else T ;U ⟩ → ⟨set(q, 0,τ),T ;U ⟩ if possible(q, 0,τ)

⟨τ , output q1, . . . ,qn⟩ → ⟨reduce(q1, . . . ,qn ,τ)⟩

Fig. 9. Simulation of QPL programs by exploring all branches

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:12 E. Ardeshir-Larijani, S. J. Gay, R. Nagarajan

[[M1 ; P
′
2
]] ; [[M ′

2
]]. Again by induction we have P ′

1
andM ′

1
such that P ′

1
does not containmerge,

M ′
1
is a normal merge network, and [[M1 ; P

′
2
]] = [[P ′

1
;M ′

1
]] = [[P ′

1
]] ; [[M ′

1
]]. Taking P ′ = P ′

1

andM ′ = M ′
1
;M ′

2
gives the required result.

• IfM is (M1 |M2) ;merge then [[M ; P]](a,b) = [[P]]([[M1]](a) + [[M2]](b)) = [[P]]([[M1]](a)) +
[[P]]([[M2]](b)) = [[M1 ; P]](a) + [[M2 ; P]](b). By induction we have P ′

1
and M ′

1
such that P ′

1

does not contain merge,M ′
1
is a normal merge network, and [[M1 ; P]] = [[P ′

1
;M ′

1
]]. Again by

induction we have P ′
2
and M ′

2
such that P ′

2
does not contain merge, M ′

2
is a normal merge

network, and [[M2 ; P]] = [[P ′
2
;M ′

2
]]. So [[M ; P]](a,b) = [[P ′

1
;M ′

1
]](a) + [[P ′

2
;M ′

2
]](b). There-

fore [[M ; P]] = [[((P ′
1
;M ′

1
) | (P ′

2
;M ′

2
)) ;merge]] = [[(P ′

1
| P ′

2
) ; (M ′

1
| M ′

2
) ;merge]]. Taking

P ′ = P ′
1
| P ′

2
andM ′ = (M ′

1
| M ′

2
) ;merge gives the required result. □

Lemma 2. (Deferring merge) Let P be a normal flowchart. There exist flowcharts P ′ and M such
that P ′ does not contain merge,M is a normal merge network, and [[P]] = [[P ′ ;M]].

Proof. By induction on the construction of P . The base cases are all trivial: either P is a basic

node different from merge, and we takeM to be the identity permutation; or P is a permutation,

and we again takeM to be the identity permutation; or P ismerge, and we take P ′ to be the identity
permutation and takeM = merge.
• If P is (P1 | P2) ; merge then by induction we have P ′

1
, M1, P

′
2
, M2 such that P ′

1
and P ′

2
do

not contain merge, M1 and M2 are normal merge networks, [[P1]] = [[P ′
1
;M1]] and [[P2]] =

[[P ′
2
;M2]]. Now [[P]] = [[(P1 | P2) ;merge]] = ([[P1]]⊕[[P2]]) ;merge = ([[P ′

1
;M1]]⊕[[P

′
2
;M2]]) ;

merge = ([[P ′
1
]]⊕ [[P ′

2
]]) ; ([[M1]]⊕ [[M2]]) ;merge = [[P ′

1
| P ′

2
]] ; [[M1 | M2]] ;merge = [[P ′

1
| P ′

2
]] ;

[[(M1 | M2) ;merge]], so we can take P ′ = P ′
1
| P ′

2
andM = (M1 | M2) ;merge.

• If P is P1 ; P2 then by induction we have P ′
1
, M1, P

′
2
, M2 such that P ′

1
and P ′

2
do not contain

merge, M1 and M2 are normal merge networks, [[P1]] = [[P ′
1
;M1]] and [[P2]] = [[P ′

2
;M2]].

Now [[P1 ; P2]] = [[P ′
1
;M1]] ; [[P

′
2
;M2]] = [[P ′

1
;M1 ; P

′
2
;M2]]. By Lemma 1 there exist P ′′

2
and

M ′′
1
such that P ′′

2
does not contain merge,M ′′

1
is a normal merge network, and [[M1 ; P

′
2
]] =

[[P ′′
2
;M ′′

1
]]. We can therefore take P ′ = P ′

1
; P ′′

2
andM = M ′′

1
;M2. □

Lemma 3. If ⊢ ⟨Γ⟩ P ⟨∆⟩ is a QPL program then LPM is a normal flowchart.

Proof. The only place in which the translation introduces horizontal composition is

Lmeasure q then S else T M = measure q ; (LSM | LT M) ;merge,

which constructs a normal flowchart. □

Proposition 1. (Semantic consistency) Suppose ⊢ ⟨Γ⟩ P ⟨∆⟩ is a QPL program. If P is functional

and τ
P
→ τ ′ then [[P]](τ) = τ ′.

Proof. We also write P for the flowchart representation of the program, and we have ⊢ [Γ] P [∆].
By Lemma 3, P is a normal flowchart. By Lemma 2 there exist P ′ and M such that P ′ does not
contain merge, M is a normal merge network, and [[P]] = [[P ′ ;M]] = [[P ′]] ; [[M]]. We have

[[P ′]] : [[Γ]] → [[∆]] ⊕ · · · ⊕ [[∆]] and [[M]] : [[∆]] ⊕ · · · ⊕ [[∆]] → [[∆]]. Now P ′ consists of all the
potential branches when P is simulated. For a given input state (tableau) τ , some branches might

not occur because they correspond to measurement outcomes that are not possible for τ . We have

[[P ′]](τ) = (τ1, . . . ,τn) where each τi is either a stabilizer tableau or 0, representing absence of a

branch. For each non-zero τi we have τ
P
→ τi and because P is functional, all of these τi are equal.

Let the common value be τ ′. Then [[M]](τ1, . . . ,τn) = τ1 + · · · + τn (including zero terms), which is

equal to τ ′ up to normalisation. □

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automated Equivalence Checking of Concurrent Quantum Systems 1:13

3.3 Equality of Stabilizer States
Because the representation of stabilizer states by tableaus is not unique, we need an algorithm to

test tableaus for the equality of the states that they represent. Let
��ϕ1

〉
and

��ϕ2
〉
be stabilizer states

with stabilizer groupsG1 andG2, represented by tableaus τ1 and τ2. It is standard that
��ϕ1

〉
= ��ϕ2

〉
if

and only ifG1 = G2. Each groupGi is generated by the rows дi,1, . . . ,дi,n of its tableau, assuming

that we are working with n qubits. G1 and G2 are equal if and only if each generator д1, j of G1 can

be produced by a combination of the generators ofG2, and vice versa. Multiplication of generators

corresponds to row operations on the tableau, so we check that each row of τ1 is linearly dependent
on the rows of τ2, and vice versa.

Linear dependence can be checked by calculating the rank of a set of generators (tableau rows).

The RREF (row-reduced echelon form) algorithm of Audenaert and Plenio [9] uses row operations

to put a tableau into a form in which the rank is revealed as the number of rows that do not consist

only of identity operators. Using RREF, we can calculate rank(д1, . . . ,дm) for any set of rows.

Assuming that we are working withn-qubit states, it is possible that rank(τi) < n if ��ϕi
〉
is a mixed

state. Let ri = rank(τi) = rank(дi,1, . . . ,дi,n). If r1 , r2 then ��ϕ1
〉
, ��ϕ2

〉
. Otherwise,

��ϕ1
〉
= ��ϕ2

〉
if

and only if rank(д1,1, . . . ,д1,n ,д2,1, . . . ,д2,n) = r1 = r2.
An alternative way of checking equality is to use the inner product algorithm for stabiliser

tableaus [2] and the fact that
��ϕ1

〉
= ��ϕ2

〉
if and only if ⟨ϕ1 |ϕ2⟩ = 1.

3.4 The Stabilizer Basis
When checking equivalence of QPL programs, we simulate them with inputs taken from a basis for

the space of Hermitian matrices. For stabilizer simulation, we need a basis that consists of density

matrices of stabilizer states, as previously defined by Gay [21]. We summarise the construction

and proof here in order to explicitly describe the basis. It is straightforward to implement the

construction of the stabilizer tableaus for these basis elements.

We denote the standard basis for n-qubit states by {|x⟩ | 0 ⩽ x < 2
n }, considering numbers to

stand for their n-bit binary representations. For simplicity, we omit normalization factors. With

this notation, for n ⩾ 1 let GHZn = |0⟩ + |2n − 1⟩ and iGHZn = |0⟩ + i |2n − 1⟩, as n-qubit states.

Lemma 4. ([21]) For all n ⩾ 1, GHZn and iGHZn are stabilizer states.

Lemma 5. ([21]) If n ⩾ 1 and 0 ⩽ x ,y < 2
n with x , y then |x⟩ + ��y

〉
and |x⟩ + i��y

〉
are stabilizer

states.

Theorem 2. ([21]) The space of 2n × 2n Hermitian matrices, considered as a (2n)2-dimensional real
vector space, has a basis consisting of density matrices of n-qubit stabilizer states.

Proof. The obvious basis is the union of

{|x⟩⟨x | | 0 ⩽ x < 2
n } (1)

{|x⟩
〈
y�� + ��y

〉
⟨x | | 0 ⩽ x < y < 2

n } (2)

{−i |x⟩
〈
y�� + i��y

〉
⟨x | | 0 ⩽ x < y < 2

n }. (3)

Now consider the union of

{|x⟩⟨x | | 0 ⩽ x < 2
n } (4)

{(|x⟩ + ��y
〉
) (⟨x | +

〈
y��) | 0 ⩽ x < y < 2

n } (5)

{(|x⟩ + i��y
〉
) (⟨x | − i

〈
y��) | 0 ⩽ x < y < 2

n }. (6)

This is also a set of (2n)2 states, and it spans the space because we can obtain states of forms (2)

and (3) by subtracting states of form (4) from those of forms (5) and (6). Therefore it is a basis, and

by Lemma 5 it consists of density matrices of stabilizer states. □

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:14 E. Ardeshir-Larijani, S. J. Gay, R. Nagarajan

3.5 Equivalence Checking
We can now combine the ideas from previous sections to describe the algorithm for equivalence

checking. Given a QPL program P , there is a corresponding flowchart. By Lemma 2 there is an

equivalent flowchart consisting of a merge-free flowchart combined with a merge network. Denote

the merge-free part by Pf .
The structure of Pf is a tree in which the leaf nodes correspond to outputs. This is a tree of

potential execution paths. According to the semantics of flowcharts (Figure 8), the denotational

semantics of P for input τ is the sum of the density matrices at the leaf nodes. Some leaf nodes

have a zero density matrix, because they arise from measurement outcomes that are not possible

for the particular input τ ; the branches leading to these leaf nodes are not simulated.

For a given input τ , let paths(P ,τ) be the set of simulated paths from the root node to leaf nodes.

For a particular path p, let result(P ,τ ,p) be the output when p is simulated. We denote equivalence

of stabilizer tableaus τ1 and τ2 by τ1 � τ2. We write B for the stabilizer basis on the appropriate

number of qubits.

Figure 10 shows the algorithm for checking equivalence of programs P1 and P2. It is presented as
if paths(Pi ,τ) is known in advance, but actually the paths are calculated during simulation because

this is when it becomes known that certain measurement outcomes are possible or impossible.

In order to generate paths, we apply the following scheduling procedure. We start running the

stabilizer simulation algorithm, and when we reach a random measurement outcome (determined

by looking at the stabilizer tableau representation of the state which we intend to measure), we store

both configurations after measurement. This will result in a program tree in which all execution

paths can be generated by applying depth first search.

Remark 1. The overall complexity of the above algorithm is O (22n+L (m + n)3), where n is the
number of input qubits,m is the number of qubits inside the programs (i.e. those created by new qbit)
and L is the length of program (this is the worst case where we assume the program consists of only
measurement). The complexity of the stabilizer simulation algorithm is O ((m + n)2) and the equality
test has complexity O ((m + n)3), where we run them on 2

L interleavings for 22n basis inputs.

4 SPECIFICATION OF CONCURRENT QUANTUM SYSTEMS
We now present a concurrent language, CCSq , for specifying quantum protocols, and illustrate

it with a concurrent version of the teleportation protocol. CCSq is based on the classical process

calculus CCS [37] and is broadly similar to the quantum process calculi qCCS [43] and CQP [22].

The aim is to explicitly describe the structure of a quantum system as a collection of communicating

components, in order to enable analysis of its communication behaviour as well as its quantum

information processing behaviour.

A CCSq program consists of a collection of processes which are described in a similar language to

QPL. Additionally, processes can send classical and quantum data to each other along synchronous

communication channels. Synchronous communication is semantically simpler, as there is no need

to consider message queues or buffers; it also seems more realistic for current quantum technology,

because the existence of queues for quantummessages would imply the existence of stable quantum

memory.

The syntax of CCSq is defined in Figure 11. We assume an infinite supply of identifiers, indicated

by q or x in the grammar. We write v for a value, which can be either a boolean literal or a

variable. We use the notation ·̃ for finite sequences. The top-level syntactic category is a process.
Termination is represented by nil, and parallel composition of P1 and P2 is P1 | P2. Processes can
also be constructed by prefixing. The process c!v . P sends the message v , which can be classical

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automated Equivalence Checking of Concurrent Quantum Systems 1:15

1: for all τ ∈ B do
2: for all i ∈ {1, 2} do
3: pathsi = {pi,1, . . . ,pi,ni } = paths(Pi ,τ)
4: τi = result(Pi ,τ ,pi,1)
5: for all q ∈ {pi,2 . . . ,pi,ni } do
6: if result(Pi ,τ ,q) ≇ τi then
7: return Pi non-functional
8: end if
9: end for
10: end for
11: if τ1 ≇ τ2 then
12: return P1 ≇ P2
13: end if
14: end for
15: return P1 � P2

Fig. 10. Algorithm for checking equivalence of QPL programs.

Booleans b ::= 0 | 1

Prefixes e ::= x := measure q | U (q̃) | if x thenU (q̃) | match x̃ : b̃ thenU (q̃)
| new qbit q | input q̃ | output q̃ | c!v | c?x

Processes P ::= nil | (P | P) | e . P

Fig. 11. Syntax of CCSq

or quantum, on channel c and then continues with P . The process c?x . P receives a classical or

quantum message on channel c and binds it to the variable x , then continues with P . The process
E . P executes the expression E, which can have several forms, and then continues with P .
The forms of expressions E cover non-communication operations. They are similar to the

constructs of QPL. The initial input and final output are defined by input q̃ and output q̃ respectively.
Application of a unitary operator is expressed by the syntaxU (q̃). Conditional behaviour on the

result of a measurement is separated into two constructs: x := measure q introduces a classical

variable x to store the result, and if x thenU (q̃) conditionally applies a unitary operator depending
on the value of a classical variable. Qubits are introduced by the new qbit construct, just as in QPL.

Finally, the match construct generalises the conditional construct for convenience in expressing

more complex conditions.

In order to state the correctness of the semantic definitions in Section 5, we define a type system

for CCSq by the rules in Figure 12. Types are bit, qbit andchan(T), which is the type of channels

carrying values of typeT . Some previous work on quantum process calculus [22] has used the type

system to guarantee that parallel processes do not share access to qubits. We do not include this

condition here, in order to simplify the semantic definitions.

The concurrent model of quantum teleportation can be described in CCSq as follows. Three

components interact with each other: EPR, Alice and Bob. These are modelled as processes that

run in parallel. The process EPR prepares an entangled pair of qubits and sends one to Alice on

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:16 E. Ardeshir-Larijani, S. J. Gay, R. Nagarajan

(bit) Γ ⊢ 0, 1 : bit

(newqbit)
Γ,q : qbit ⊢ P

Γ ⊢ new qbit q . P

(output)
Γ ⊢ P

Γ ⊢ output q̃ . P

(input)
Γ, q̃ : q̃bit ⊢ P

Γ ⊢ input q̃ . P

(send)
Γ ⊢ c : chan(T),v : T Γ ⊢ P

Γ ⊢ c!v . P

(receive)
Γ ⊢ c : chan(T) Γ,x : T ⊢ P

Γ ⊢ c?x . P

(measure)
Γ ⊢ q : qbit Γ,x : bit ⊢ P

Γ ⊢ x := measure q . P

(unitary)
Γ ⊢ q1 : qbit, . . . ,qn : qbit Γ ⊢ P U has arity n

Γ ⊢ U (q̃) . P

(cond)
Γ ⊢ q1 : qbit, . . . ,qn : qbit,x : bit Γ ⊢ P U has arity n

Γ ⊢ if x thenU (q̃) . P

(match)
Γ ⊢ q1 : qbit, . . . ,qn : qbit,x1 : bit, . . . ,xm : bit Γ ⊢ P U has arity n

Γ ⊢ match x1 : b1, . . . ,xm : bm thenU (q̃) . P

(nil) Γ ⊢ nil

(parallel)
Γ ⊢ P Γ ⊢ Q

Γ ⊢ P | Q

Fig. 12. Typing rules for CCSq programs

channel c and one to Bob on channel d. Alice inputs the qubit to be teleported, then receives one of

the entangled qubits on channel c and performs the appropriate operations before making two

measurements. The results of the measurements are sent to Bob on channel b. Bob applies a suitable
transformation to his part of the entangled pair, in order to recover the state of the original qubit.

This is shown in Figure 13.

In the concurrent model the physical separation of Alice and Bob is evident, a feature that cannot
be captured easily within the quantum circuit model or a QPL program. Also, the communication

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automated Equivalence Checking of Concurrent Quantum Systems 1:17

// Preparing EPR pair (y,z) and sending y to Alice and z to Bob:

newqubit y . newqubit z . H(y) . CNOT(y,z) . c!y . d!z . nil |

// Alice's process:

(input x . c?y . CNOT(x,y) . H(x) . m := measure x . n := measure y .
b!m . b!n . nil |

// Bob's process:

d?w . b?m . b?n . if n then X(w) . if m then Z(w) . output w . nil)

Fig. 13. Quantum teleportation

// The desired behaviour of teleportation: input and output the same qubit

input x . output x . nil

Fig. 14. The specification of quantum teleportation

between EPR, Alice and Bob is made explicit. The specification of quantum teleportation is a simple

process, that just passes the input to the output. This is shown in Figure 14.

As an interesting example to show how the design of concurrent quantum protocols can be

non-intuitive, suppose that in the Alice process of Figure 13, quantum measurements and sending

outcomes are run concurrently.

m := measure x . b!m | n := measure y . b!n

Then specification and implementation become non-equivalent, because the order in which Bob
receives the two measurement outcomes is no longer fixed.

Although CCSq has a simple structure, its key advantage over quantum circuits is the ability to

explicitly model aspects of protocols that are not visible in a circuit diagram. There is potential to

extend CCSq with additional programming constructs, to increase its flexibility.

5 SEMANTICS OF CCSq

For each CCSq program we define a set of QPL programs, which differ in the interleaving of

concurrent operations. When we check equivalence of CCSq programs, we first check that they

implement deterministic functions, which means that their behaviour does not depend on the

choice of interleaving.

Figure 15 defines transition rules that generate sequentialisations of CCSq programs. We use

them to define the translation from CCSq to QPL. Because we have restricted QPL to quantum data,

for simplicity, the translation represents the classical results of measurement by qubits in basis

states. This could be optimised to avoid increasing the size of the stabilizer tableaus.

It is straightforward to prove the following result about transitions of typed CCSq programs.

Lemma 6. If Γ ⊢ P and P
α
−→ Q then there exists ∆ such that ∆ ⊢ Q and Γ ⊆ ∆.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:18 E. Ardeshir-Larijani, S. J. Gay, R. Nagarajan

(input) input q̃ . P
input q̃
−−−−−→ P

(output) output q̃ . P
output q̃
−−−−−−→ P

(new) new qbit q . P
new qbit q
−−−−−−−−→ P

(unitary) U (q̃) . P
U (q̃)
−−−−→ P

(measure) x := measure q . P
measure(x,q)
−−−−−−−−−−→ P

(conditional) if x thenU (q̃) . P
cond(x,U (q̃))
−−−−−−−−−−→ P

(match) match x̃ : b̃ thenU (q̃) . P
match(x̃ :b̃,U (q̃))
−−−−−−−−−−−−−→ P

(communication) c!v . P | c?x . Q
comm
−−−−→ P | Q[v/x]

(parallel-left)
P

α
−→ P ′

P | Q
α
−→ P ′ | Q

(parallel-right)
Q

α
−→ Q ′

P | Q
α
−→ P | Q ′

Fig. 15. Transition rules for sequentialising CCSq

For a transition label α , we define a QPL statement T (α) as follows.

T (input q̃) = skip
T (output q̃) = skip
T (new qbit q) = new qbit q := 0

T (U (q̃)) = q̃ ∗= U
T (cond(x ,U (q̃))) = measure x then q̃ ∗= U else skip
T (match(x̃ : b̃,U (q̃))) = (M (x̃ : b̃,U (q̃))
T (measure(x ,q)) = new qbit x := 0 ;measure q then x ∗= X else skip
T (comm) = skip

The translation of match labels depends on the function M that translates a sequence x̃ : b̃ of

conditions into a nested structure of conditional statements.

M (ϵ,U (q̃)) = q̃ ∗= U
M ((x : 0, t),U (q̃)) = measure x then skip elseM (t ,U (q̃))
M ((x : 1, t),U (q̃)) = measure x thenM (t ,U (q̃)) else skip

Now for a typed CCSq program Γ ⊢ P and a sequence σ of transition labels such that P
σ
−→∗P ′, we

define a typed QPL program T (Γ ⊢ P ,σ) by induction on σ , as follows. For a type environment Γ,

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automated Equivalence Checking of Concurrent Quantum Systems 1:19

we write Γ for the environment obtained by replacing qbit by bit.

T (Γ ⊢ P , ε) = ⟨Γ⟩ skip ⟨Γ⟩
T (Γ ⊢ P ,α . σ) = ⟨Γ⟩ T (α) ⟨∆⟩ ;T (∆ ⊢ Q,σ) where P

α
−→ Q and ∆ ⊢ Q

The appearance of skip in the translation is a technical convenience which could be avoided by

combining the definitions of the translation of individual labels and the translation of sequences of

labels. Extra skip statements are harmless because they correspond to identity functions.

It is straightforward to check that the correctness conditions for CCSq programs, expressed by

the type system, match those of QPL programs.

Proposition 2. If Γ ⊢ P and P
σ
−→∗Q then T (Γ ⊢ P ,σ), which is of the form ⟨Γ⟩ R ⟨∆⟩, is derivable

in the type system of QPL.

In the implementation, we integrate construction of the sequentialisations with exploring all paths

in each sequentialisation. During this process, we also check that the choice of sequentialisation

does not affect the input/output behaviour of the program.

Definition 6. Given a typed CCSq program Γ ⊢ P , its set of sequentialisations is defined by

S (P) = {T (Γ ⊢ P ,σ) | P
σ
−→∗P ′}.

Definition 7. A CCSq program Q is functional if
(1) for all QPL programs P ∈ S (Q), P is functional, and
(2) for all QPL programs P , P ′ ∈ S (Q), P � P ′.

The semantics of a functional CCSq program is the superoperator that is the semantics of all of

its sequentialisations.

Example: Consider the CCSq program

input q . H (q) . c!q . nil | c?r . H (r) . output r . nil

It has a unique sequentialisation, corresponding to the sequence of transitions shown in Figure 16.

From this sequence of transitions we derive the following QPL program. The skip statements come

from the translations of input q, output r and the communication on c .

⟨q : qbit⟩ skip ; H ∗= q ; skip ; H ∗= q ; skip ⟨q : qbit⟩

6 AUTOMATED VERIFICATION OF CONCURRENT QUANTUM SYSTEMS
Our equivalence-checking tool for concurrent quantum protocols, QEC (Quantum Equivalence

Checker) [5], was originally described in [7]. In this section we summarise howwe combine the ideas

of Sections 4 and 5 to check equivalence of CCSq programs, and then discuss the implementation

of QEC.

6.1 Equivalence-checking algorithm for concurrent quantum protocols
To check equivalence of concurrent protocols in CCSq , we combine the sequentialisation and

translation of CCSq into QPL (Section 5) and the equivalence-checking algorithm for QPL (Section 3).

CCSq programs are simulated by a scheduler that generates sequentialisations and explores all

execution paths of each sequentialisation. The rest of the analysis is exactly the same as for QPL.

The description of the algorithm is the same as in Figure 10; the only change is that paths now
includes sequentialisation.

The cost of running the equivalence-checking algorithm increases exponentially in the size of

input qubits, because of iteration over all basis states, and the number of concurrent processes,

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:20 E. Ardeshir-Larijani, S. J. Gay, R. Nagarajan

input q . H (q) . c!q . nil | c?r . H (r) . output r . nil

H (q) . c!q . nil | c?r . H (r) . output r . nil

c!q . nil | c?r . H (r) . output r . nil

nil | H (q) . output q . nil

nil | output q . nil

nil | nil

input q

H (q)

comm

H (q)

output q

Fig. 16. A sequence of transitions for a concurrent protocol

because of scheduling to determine interleavings. The following proposition gives the computa-

tional complexity of our equivalence-checking algorithm. Note that in classical computing, the

equivalence-checking problem or implementation verification of concurrent systems (where only

the containment problem is considered, not the simulation problem), is PSPACE-complete (see [28]
for details).

Proposition 3. Checking equivalence of concurrent quantum protocols has overall time complexity
of O (N 2

2n (m + n)3), where n is the number of input qubits (basis size),m is the number of qubits
inside a program (i.e those created by newqbit) and N is the number of interleavings of processes

(where N = (
∑M
i ni)!∏M
i (ni !)

forM processes each having ni atomic instructions) .

The analysis in Proposition 3 is based on the three phases of our algorithm, namely: scheduling

(where N comes from), basis generation (factor 2
2n
) and stabilizer simulation and equality test

(factor (m + n)3, see Remark 1).

6.2 The QEC tool
QEC is implemented in Java and consists of around 30k lines of code. The core is the scheduler,

which implements the paths function used by the algorithm in Figure 10. The implementation of

the scheduler and the stabilizer simulation operations are designed for clarity and extensibility,

and have not been heavily optimised. The structure of QEC is illustrated in Figure 17.

QEC is a command-line tool that is given two files containing CCSq models, and checks them

for equivalence. There is no intrinsic difference between specifications and implementations; any

two models can be compared. The output of QEC consists of a report of the number of basis states

generated, the number of simulated runs for each model, the final result of equivalence-checking,

and the time taken. If the models are not equivalent, then QEC shows a basis state that caused the

models to produce different outputs. An outline example of QEC’s output is shown in Figure 18.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automated Equivalence Checking of Concurrent Quantum Systems 1:21

Parser

Implementation

Specification

Basis Generator

Stabilizer

Simulator

Concurrency

Scheduler

Equivalence

Checker

Equivalent or

not equivalent

Fig. 17. Structure of QEC

> check Identity.ccs Teleportation.ccs
>
>
> Basis generated with 4 states.
> Final Evaluation:true
> Equivalence Checked on Spec: 4, Imple: 400 runs.
> Verification Time: 138 milliseconds

Fig. 18. QEC output for the specification (Figure 14) and implementation (Figure 13) of teleportation.

7 CASE STUDIES AND EXPERIMENTATION
7.1 Case Studies
We now describe several case studies that we have verified with QEC. These case studies are chosen

from a range of areas within quantum information processing: quantum communication, quantum

cryptography, quantum error-correction, and fault tolerant quantum computation. Together, they

show that our approach and tool can be used to analyse a variety of important protocols.

For each protocol, we model the implementation and the specification in the concurrent language

CCSq . Sequential models of each protocol in QPL have previously been presented by Ardeshir-

Larijani [8]. Our results, in Figure 30, compare the performance of verification using the CCSq and

QPL models.

7.1.1 Dense Coding. This is another quantum communication protocol that takes advantage of

entanglement [12]. Alice communicates two classical bits to Bob by sending only one qubit. Because
a pair of entangled qubits must also be distributed to Alice and Bob, there is no real reduction in

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:22 E. Ardeshir-Larijani, S. J. Gay, R. Nagarajan

// Inputs x and y represent classical bits: only |0> and |1> are simulated

// Preparing EPR pair (a,b) and sending a to Alice and b to Bob:

newqubit a. newqubit b . H(a). CNOT(a,b) . c!a . d!b . nil |

// Alice's process:

(input x,y . c?a . m := measure x . n := measure y .
if m then Z(a) . if n then X(a) . q!a .nil |

// Bob's process:

d?b . q?a . CNOT(a,b) . H(a) . output a,b . nil)

Fig. 19. Dense coding

// Input and output the same pair of qubits, representing classical bits

input x,y . output x,y . nil

Fig. 20. The specification of dense coding

the amount of communication; however, the protocol illustrates the effects that can be achieved

through entanglement.

Our model of dense coding, shown in Figure 19, encodes the classical input bits as standard basis

states of qubits. When we check equivalence, the protocol is simulated only for the standard basis

states, not for the full stabilizer basis. Similarly to teleportation, there are three processes: EPR,
Alice and Bob, where Alice receives the input and Bob produces the output of the protocol. The

specification (Figure 20) is similar to the specification of teleportation but with two qubits.

An alternative way of analysing dense coding is to extend the equivalence checker to work with

classical bits. In this case the inputs x and y are classical, and we replace Alice’s measurements and

conditional operations with

if x then Z(a) . if y then X(a)

This means that the semantics of the protocol is a classical binary function, rather than a superop-

erator, and the analysis does not require the theory from Section 3.

7.1.2 Quantum Secret-Sharing. The problem of secret sharing involves an agent Alice sending a

message to two agents Bob and Charlie, one of whom is dishonest. Alice does not know which one

of the agents is dishonest, so she encodes the message in a way that requires Bob and Charlie to
collaborate in order to retrieve it. We describe a version of a protocol due to Hillery et al.1 [29].
The message, in this case, is a qubit.

1
There is another quantum secret sharing protocol, called Graph State Secret Sharing [35], for sharing a classical bit or a

qubit, based on the same idea of using multi-party entangled states.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automated Equivalence Checking of Concurrent Quantum Systems 1:23

// Preparing GHZ state and sending to Alice, Bob and Charlie:
newqubit a . newqubit b . newqubit c . H(a) . CNOT(a,b) . CNOT(b,c) .
d!a . e!b . f!c . nil |

// Alice, who commits her qubit as a secret:
(input x . d?a . CNOT(x,a) . H(x) . m := measure x .
n := measure a . t!m . w!n . nil |

// Bob, who is chosen as a collaborator:
(e?b . H(b) . o := measure b . u!o . nil |

//Charlie, who recovers the original qubit from Alice:
f?c . t?m . w?n . u?o . if o then Z(c) .
if m then X(c) . if n then Z(c) . output c . nil))

Fig. 21. The implementation of quantum secret sharing in CCSq

// Input and output the same qubit

input x . output x . nil

Fig. 22. The specification of quantum secret sharing in CCSq

The three agents need to share a maximally entangled three-qubit state, the GHZ state
1√
2

(|000⟩+

|111⟩), prior to the execution of the protocol. We assume that it is Charlie who retrieves the original
qubit (a variation of the protocol allows Bob to retrieve it, or Alice can choose who retrieves it). The

body of the protocol has two main phases: committing a secret by Alice, and collaboration between

Bob and Charlie to retrieve the secret. First, Alice entangles the input qubit with her entangled qubit

from a previously distributed GHZ state. Then Alice measures her qubits and sends the outcome

to Charlie (committing the secret). Bob also measures his qubit and sends the outcome to Charlie.
Finally, Charlie is able to retrieve the original qubit once he has access to the bits from Alice and
Bob (collaboration and retrieval of the secret). The security of this protocol is a consequence of the

no-cloning theorem and is discussed in [29].

The implementation of the secret-sharing protocol is shown in Figure 21. The specification of

the protocol in CCSq is the same as for teleportation: a process that inputs a qubit and immediately

outputs it (Figure 22).

7.1.3 Error-Correcting Codes. Error-correction is an important requirement for building practical

QIP systems. Several error-correction protocols are based on stabilizer codes [39, p. 453]. They
can be analysed with QEC because they only require operations from the stabilizer formalism.

The general structure of the examples that we consider is as follows. There is a process Alice
which inputs a qubit and encodes it, an Error process which receives encoded data from Alice and
introduces errors, and a process Bob which corrects the errors in the data received from the Error
process.

We start with two simple codes that are able to correct bit-flip and phase-flip errors. We then

discuss the five-qubit code [34], which combines bit-flip and phase-flip correction in such a way

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:24 E. Ardeshir-Larijani, S. J. Gay, R. Nagarajan

// Alice encodes the input and sends three qubits to Error:
input x . newqubit a . newqubit b . CNOT(x,a) . CNOT(x,b) .
c!x . d!a . e!b . nil |

// The Error process randomly flips at most one qubit:
(c?x . d?a . e?b . newqubit w . newqubit z . H(w) . H(z) .

k := measure w . l := measure z . match k:0 and l:1 then X(x) .
match k:1 and l:0 then X(a) . match k:1 and l:1 then X(b) .

f!x . g!a . h!b . nil |

// Bob receives qubits and corrects errors:
f?x . g?a . h?b . newqubit s . newqubit t .

CNOT(x,s) . CNOT(a,s) . CNOT(x,t) . CNOT(b,t) .
m := measure s . n :=measure t .

match m:1 and n:0 then X(a) . match m:0 and n:0 then X(b) .
match m:1 and n:1 then X(x) .

CNOT(x,a) . CNOT(x,b) . output x . nil)

Fig. 23. The bit-flip error-correcting code

that it results in protecting a single qubit against a continuum of errors. The five-qubit code has

also been implemented in the laboratory [31].

Bit Error Codes. There are two kinds of bit error codes, namely bit-flip and phase-flip codes.

The bit-flip code corrects an error that consists of applying the X operator to a qubit. This is the

analogue of inverting a classical bit. The phase-flip code corrects an error that consists of inverting

the phase of a qubit, in other words applying a Z operator to a qubit. This has no classical analogue.

The encoding phase of a bit error code entangles the input of the protocol, which is the qubit

that needs to be protected, with two ancillary qubits. Then errors are introduced, randomly, to

the encoded qubit. Quantum measurement is used as a source of randomness. Finally, the original

qubit is retrieved by applying the appropriate correcting operations. In the last step, new qubits are

introduced and entangled with the message; these qubits are measured and act as error syndromes.
They are necessary because simply measuring the message qubits would destroy their state.

The phase-flip code applies Hadamard operators in the encoding and decoding phases, which is

because the syndrome measurements need to be in the diagonal basis.

The implementation of bit error codes is shown in Figures 23 and 24. The match construct is

convenient for expressing the cases corresponding to different error possibilities. The specification

for these protocols is the same as for teleportation (Figure 14).

In our models, errors (bit or phase-flip) are introduced on at most one qubit. However, in general

errors can occur in more than one encoded qubit, resulting in a more complicated scenario. In this

case, the original (input) qubit cannot be perfectly recovered, but errors can be corrected with high

probability. We are not able to analyse this aspect of the protocols.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automated Equivalence Checking of Concurrent Quantum Systems 1:25

// Alice encodes the input and sends three qubits to Error:
input x . newqubit a . newqubit b . CNOT(x,a) . CNOT(x,b).
H(x) . H(a) . H(b) .
c!x . d!a . e!b . nil |

// The Error process randomly flips the phase of at most one qubit:
(c?x . d?a . e?b . newqubit w . newqubit z . H(w) . H(z) .

k := measure w . l := measure z . match k:0 and l:1 then Z(x) .
match k:1 and l:0 then Z(a) . match k:1 and l:1 then Z(b) .

f!x . g!a . h!b . nil |

// Bob receives qubits and corrects errors:
f?x . g?a . h?b .
H(x) . H(a) . H(b) .

newqubit s . newqubit t .

CNOT(x,s) . CNOT(a,s) . CNOT(x,t) . CNOT(b,t) .
m := measure s . n := measure t .

match m:1 and n:0 then Z(a) . match m:0 and n:0 then Z(b) .
match m:1 and n:1 then Z(x) .

CNOT(x,a) . CNOT(x,b) . output x . nil)

Fig. 24. The phase-flip error-correcting code

Five Qubit Code. The idea of combining phase-flip and bit-flip codes into a single code first

appeared in Shor’s nine qubit protocol [39, p. 430]. Then it was optimized to the Steane seven qubit

protocol. Finally, Laflamme et al. [34] showed that there is a five qubit protocol which is equivalent

to Shor’s and Steane’s codes. These codes can protect a single qubit not only from bit-flip and

phase-flip errors, but from arbitrary errors.

The CCSq model of the five qubit code is rather long, because of the large number of combinations

of error syndrome measurements that need to be handled. The code can be found in [8]. Analysis

of the five qubit code is included in our experimental results in Section 7.2.

Remark 2. The five qubit code can also protect a single qubit against adversary measurements,
in which the transmitted qubits are altered by unintended measurements rather than by unitary
operations, with high probability. The current version of QEC, which checks exact equivalence, cannot
analyse this situation.

7.1.4 X and Z teleportation. In the standard teleportation protocol, quantum operations are

only applied locally inside the Alice, EPR or Bob processes. However, if a CNot operation can be

applied to Alice’s input qubit and Bob’s qubit, then variations of the protocol are possible in which

only one classical bit is sent from Alice to Bob, and Bob only applies one correction to his qubit.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:26 E. Ardeshir-Larijani, S. J. Gay, R. Nagarajan

// Alice's process:
input x . d!x . f?x . b := measure x . g!b . nil |

// Intermediate process for applying joint operations:
(c?a . d?x . CNOT(a,x) . e!a . f!x . nil |

// Bob's process:
newqubit a . H(a). c!a . e?a . g?b . if b then X(a). output a . nil)

Fig. 25. X-teleportation

// Alice's process:
input x . d!x . f?x . H(x) . b := measure x . e!b . nil |

// Intermediate process for applying joint operations:
(c?a . d?x . CNOT(x,a) . f!x . g!a . nil |

// Bob's process:
newqubit a . c!a . g?a . e?b . if b then Z(a) . output a . nil)

Fig. 26. Z-teleportation

Moreover, the initial entangled pair of qubits can be replaced by a single qubit allocated by Bob.
These variations are called X -teleporation and Z -teleportation. The CNot operation is applied

locally by first sending the necessary qubits to an intermediate process, then sending them back

afterwards.

In the concurrent implementation of X- and Z-teleportation, specified in CCSq , there are three
processes: Alice, who sends her qubit; an intermediate process for joint operations; and Bob, who
receives only one bit of classical information and retrieves Alice’s qubit state. The models of the

implementation of these protocols are shown in Figure 25 and Figure 26. The specification is the

same as for teleportation (Figure 14).

7.1.5 Remote CNot (1). This is a fault-tolerant quantum protocol in which Alice and Bob want
to perform a joint CNot gate between their qubits without exchanging any qubits with each other.

However, they are only allowed to use prior entanglement and classical communication. Here we

present a construction of such a protocol introduced in [45].

The idea of this protocol is that Alice runs X -teleportation and Bob runs Z -teleportation, in
parallel. To achieve this, two pairs of entangled qubits must be used along with communicating

four classical bits.

The concurrent implementation of the Remote CNot protocol has four processes: Feeder, EPR,
Alice and Bob. Joint operations between two processes, namely Alice and Bob, are not allowed.
The role of Feeder is to distribute input qubits to Alice and Bob. The EPR process distributes an

entangled pair to Alice and Bob. Another pair of qubits will be entangled later by Bob.
The implementation and specification of RemoteCNot inCCSq are illustrated in Figures 27 and 28,

respectively. In the implementation, Alice produces the final output of the protocol; alternatively it

could be restructured so that Bob produces the final output.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automated Equivalence Checking of Concurrent Quantum Systems 1:27

// Feeder of inputs:
input x,y . e!x . p!y . nil |

// EPR process sharing entanglement:
(newqubit a . newqubit b . H(a) . CNOT(a,b) . c!a . d!b . nil |

// Alice's process (Block 1):
(e?x . c?a . CNOT(a,x) . u := measure x .

if u then X(a) . f!u . g?t . if t then Z(a) . h?b . output a,b . nil |

// Bob's process (Block 2):
p?y . d?b . CNOT (y,b) . H(y). f?u . if u then X(b) .

t := measure y . if t then Z(b) . g!t . h!b . nil))

Fig. 27. Implementation of Remote CNot (1).

// Directly apply CNOT to the input qubits
input x,y . CNOT(x,y) . output x,y . nil

Fig. 28. Specification of Remote CNot.

7.1.6 Remote CNot (2). This version of Remote CNot was introduced in [25]. The structure of

this protocol is different in that it does not run two teleportation protocols, and therefore reduces

classical communication to only three bits. Figure 29 shows the implementation; the specification

is the same as before.

7.2 Experimental Results
Figure 30 presents the results of verification of the case studies that we have described. For each

case study, we have used QEC to verify the concurrent model presented earlier in this section, as

well as a sequential version of the model. We have also verified each case study with our previous

tool SEC [6], which handled only sequential models. Experiments were run on a 2.6GHz Intel Core

i7 machine with 16GB RAM.

As well as the running times, we show the number of interleavings for the concurrent models,

and the number of branches (resulting from non-deterministic measurements) for the sequential

models. The running times for concurrent models are longer than for sequential ones, because of

the need to analyse more interleaving generated by concurrency. The running times for sequential

models in the two tools are similar but in most cases QEC is slightly faster, which might be explained

by its use of an abstract syntax tree instead of a full parse tree. The five-qubit code was not analysed

with SEC. This is because the match construct necessary for effective definition of the model was

not implemented in SEC.

The experimental results show how concurrency affects quantum systems. Not surprisingly, with

more sharing of entanglement and increased classical and quantum communication, we have to deal

with a larger amount of interleaving, particularly in the last three protocols of Figure 30. However,

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:28 E. Ardeshir-Larijani, S. J. Gay, R. Nagarajan

//Feeder of inputs:
input x,y . e!x . p!y . nil |

//EPR process sharing entanglement:
(newqubit a . newqubit b . H(b) . CNOT(b,a) . c!a . d!b . nil |

//Alice process (Block 1):
(e?x . c?a . CNOT(x,a) . u := measure a . f!u .

g?t . if t then Z(x) . h?y . output x,y . nil |

//Bob process (Block2):
p?y . d?b . CNOT (b,y) . f?u . if u then X(b) .

if u then X(y) . H(b) . t:=measure b . g!t . h!y . nil))

Fig. 29. Implementation of Remote CNot (2).

error correction protocols are inherently sequential and therefore verification of sequential and

concurrent models in these cases produce similar results.

An advantage of our approach is that we can change the amount of concurrency in the models.

Naturally, increasing the concurrency leads to slower verification due to the larger amount of

interleaving. This is illustrated by the two Remote CNot protocols, in which the second version

has fewer classical communication and, consequently, less interleaving.

There is a lack of other fully-automatic tools for equivalence-checking of concurrent quantum

protocols; this is why our results are based on comparisons between concurrent and sequential

models in QEC, and between QEC and our own previous tool SEC. We would like to compare our

results with those produced by the model-checker QMC [23], but QMC has not been maintained

and we have not been able to run all the examples. Moreover, QMC is based on a different approach

to verification i. e., temporal logic model checking, rather than equivalence checking. The Quan-

tomatic [15] tool is a well-developed system to support reasoning about quantum protocols, but it

is not fully automatic. Therefore we have not included it in our comparison.

We conclude this section with two remarks. First, consider teleportation again (Figure 5). If we

add another qubit x to the inputs and outputs in both the specification and the implementation,

then equivalence-checking verifies that q0 is correctly teleported in cases in which it is entangled

with x. This property follows from linearity, but it is not usually stated explicitly in standard

presentations of teleportation. Similarly for the error-correcting codes: correct transmission of a

qubit is guaranteed even when it is entangled with other quantum state. However, secret-sharing

does not have this property. Our approach, by explicitly identifying the input and output qubits,

enables us to investigate such questions.

Second, we can model different implementations of a protocol, for example by changing the

amount of concurrency, as with the sequential (Figure 5) and concurrent (Figure 13) versions of

teleportation. These differences are not apparent at the level of circuit diagrams or sequential

programs.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automated Equivalence Checking of Concurrent Quantum Systems 1:29

Protocol #Interleavings QEC/conc #Branches QEC/seq SEC
Teleportation 400 138 16 16 22

Dense Coding 100 75 4 12 17

Bit flip code 16 47 16 38 23

Phase flip code 16 37 16 31 21

Five qubit code 64 198 64 181 *

X-Teleportation 32 53 8 15 16

Z-Teleportation 72 62 8 16 16

Remote CNOT(1) 78400 7359 64 54 63

Remote CNOT(2) 23040 3855 64 52 69

Quantum Secret Sharing 88480 8015 32 34 31

Fig. 30. Experimental results for equivalence-checking of quantum protocols. The columns headed QEC/conc
and QEC/seq show the results of verification of concurrent and sequential models of protocols with the
QEC tool. Column SEC shows verification times for sequential models in our previous tool for sequential
equivalence-checking [6]. The number of branches for the QEC/seq and SEC models are the same. Times are
in milliseconds.

8 RELATEDWORK
Quantum computation and quantum information processing were originally studied in the quantum

circuit model, but the growing complexity of quantum technologies makes it necessary to develop

higher-level techniques adapted from classical formal methods. A key characteristic of this approach

is the use of structured modelling languages supported by automated analysis tools.

8.1 QMC
Papanikolaou et al. developed the QMC model-checking tool [23, 24, 40]. The modelling language

is broadly similar to CCSq , but the approach to specification is property-oriented rather than

our process-oriented technique. Specifications are expressed in quantum computation tree logic

(QCTL) [10], which combines two aspects: a logic for expressing properties of quantum states,

and the standard connectives of temporal logic. Although QCTL has the potential to specify

complex temporal properties of protocols, the case studies developed by Papanikoloau et al. only
use properties of the initial and final quantum states; therefore the expressivity in practice is similar

to that of our QEC.

8.2 Probabilistic Model-Checking
Gay and Nagarajan [38] investigated the use of the PRISM probabilistic model-checking system

[33], which has been widely used for classical systems, to analyse quantum systems. A major

challenge for this approach is the scalability of verifying larger protocols with more qubits, due to

lack of an efficient representation of arbitrary quantum states. Also, without a dedicated language,

specification of more complicated protocols and their properties becomes a difficult task.

Probabilistic model-checking represents systems in terms of Markov chains, consisting of a set

of states and a probabilistic transition function between states. For quantum systems, a quantum

Markov chain is defined on a set of quantum states and a set of superoperators that represent the

transitions between states. Feng et al. [18] introduced a model-checking technique and algorithm

for quantum Markov chains. The idea has been implemented in a model-checking tool, QPMC [19],

which is an extension of the probabilistic model-checker IscasMC [27].

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:30 E. Ardeshir-Larijani, S. J. Gay, R. Nagarajan

8.3 Quantum Process Calculus
Our modelling language, CCSq , is based on previous work on quantum versions of classical process

calculus: CQP (Communicating Quantum Processes) [22] and especially qCCS (Quantum Communi-

cating Concurrent Processes) [43]. One aim of research on quantum process calculus was to support

equivalence-based specification and verification of quantum systems by developing theories of

bisimulation for quantum processes. There has been some theoretical work on bisimulation for

CQP [14], and much more for qCCS [16, 17]. The key difference between bisimulation and the

input/output equivalence that QEC checks, is that bisimulation allows for inputs and outputs at

various points during the lifetime of a system. However, examples of quantum bisimulation in

the literature do not yet take advantage of this aspect. Analogously to the situation for classical

model-checking, it should be possible to implement tools to check quantum bisimulation. So far, the

only work in this direction is by Kubota et al. [32], who have developed a semi-automated approach

in which the user has to provide equations that can be used to verify bisimulation relationships by

equational reasoning. Their technique has been used to verify a quantum key-distribution protocol.

8.4 Quantomatic
The category-theoretic approach to quantum mechanics [3] led to the development of the zx-

calculus [13], a graphical formalism for quantum information processing. Quantomatic [15, 30] is a

semi-automated tool that uses graph rewriting to verify equivalences between quantum systems

described in zx-calculus. Its approach to specification, like ours, is process-oriented, and verification

consists of progressively transforming a model of a system into a simpler model which is taken to

be the specification. This is a form of symbolic analysis, in constrast to our explicit consideration

of particular input states, so there is no restriction to Clifford operators; however, user interaction

is required to guide the rewriting.

9 CONCLUSION AND FUTUREWORK
We have presented the theory and implementation of a technique for verifying quantum information

processing systems by checking equivalence between a specification process and an implementation

process, both defined in a modelling language based on process calculus. The implementation

as QEC is the first fully automatic equivalence checking tool for concurrent quantum processes.

Checking equivalence means checking that two processes have the same semantics, viewed as

superoperators from an input space to an output space. By working in the stabilizer formalism, and

restricting attention to processes that use Clifford group operators, we are able to check equality

of superoperators by simulating their action on a basis consisting of stabilizer states. We have

presented experimental results showing that it is feasible to verify a range of quantum systems

with this approach.

There are two limitations of our approach. The first is that we can only analyse protocols and

programs that use Clifford operators and can therefore be simulated in the stabilizer formalism.

As universal quantum computation cannot be simulated efficiently on classical computers and

our techniques are built on simulation, it is reasonable to accept this limitation. The examples in

Section 7.1 show that despite this restriction, we can handle a representative range of protocols

including teleportation, secret-sharing and error-correction. Although we can model quantum

computing, our focus has been on modelling quantum protocols as many of them have been

implemented and are used in applications, whereas practical quantum computers are still under

development. Regarding the restriction to stabilizer simulation, it seems that realistic quantum

algorithms and protocols that are outside the stabilizer formalism have only a few non-stabilizer

gates. Stabilizer simulation can be extended to this situation [2] and such an extension could be

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automated Equivalence Checking of Concurrent Quantum Systems 1:31

included in QEC in the future; inevitably this would reduce efficiency. It is also important to note

that, although our approach is limited to Clifford operators, we can check equivalence of protocols

on arbitrary input states. Currently not many automatic tools exist which can model and analyse

quantum protocols, so QEC is a valuable contribution. In the tool LIQUi|⟩, developed at Microsoft

Research, there is a stabilizer simulator in addition to a universal simulator. The stabilizer simulator

handles many more qubits than the universal simulator and is faster. Therefore, such tools can be

useful in practice. However, we are doing more than just simulation.

The second limitation is that we can only analyse protocols and programs that produce a definite

consistent output state for each input state: this is the requirement of functionality. It means that we

exclude algorithms and protocols that succeed with a certain probability, rather than with certainty.

However, the examples in Section 7.1 show that many natural quantum verification problems fall

into this category. Again considering quantum protocols rather than programs, this is a natural

restriction as it would not be desirable for a protocol to produce different outputs for a given input.

In conclusion, we have established the principle of verification of quantum systems via formal

modelling and automatic equivalence-checking. We have shown that it works well with stabilizer

simulation and is a practical approach to the verification of quantum protocols.

Future work will address at least the following areas; we are already working on the first four

points.

• Classical model-checkers usually provide diagnostic information when a specification is

not satisfied, in the form of a trace of execution steps leading to failure. We have not yet

implemented such diagnostics in QEC, although it is not conceptually difficult.

• Some quantum protocols and algorithms are not intended to work exactly, but only up to

a certain probability of error. It would be possible to extend QEC so that it calculates the

probability of failure of a specification, instead of simply reporting failure in an absolute

sense.

• There are techniques for extending the stabilizer formalism to handle quantum states in

which some qubits are in non-stabilizer states, or in which some non-Clifford operators are

applied [2]. This increases the complexity of simulation, but in a way that depends only on

the non-stabilizer or non-Clifford parts of the system. It would be interesting to implement

these techniques in QEC.

• The CCSq language lacks programming constructs such as loops, and data structures such as

arrays. It should be straightforward to add these features in order to support the analysis of

more complex systems.

• We have only considered systems that take an initial input and produce a final output, so

that their behaviour can be interpreted as a superoperator. Theories of quantum bisimulation

[14, 16, 17] define equivalence between systems that receive inputs and produce outputs

repeatedly at arbitrary points during their execution. An open question is whether our

stabilizer-based technique can be generalised from input/output behaviour to bisimulation.

• The concept of verification as equivalence-checking, as implemented in QEC, doesn’t cover all

existing areas of reasoning about correctness of quantum systems. For example, correctness

of quantum key-distribution protocols is expressed in terms of asymptotic limits on the

amount of mutual information between an attacker and a generated key. At the moment it is

not clear how to generalize our approach to include this kind of specification.

• It would be interesting to analyze other stabilizer-based systems such as Aaronson’s stabilizer

money [1]. This might require probabilistic analysis.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:32 E. Ardeshir-Larijani, S. J. Gay, R. Nagarajan

Acknowledgements
The first author is supported in part by a grant from the School of Computer Science, Institute for

Research in Fundamental Sciences (IPM), Iran. The third author is partially supported by EU ICT

COST Action IC1405 “Reversible Computation—Extending Horizons of Computing".

REFERENCES
[1] S. Aaronson. Quantum copy-protection and quantum money. In Proceedings of the 24th Annual IEEE Conference on

Computational Complexity (CCC), pages 229–242. IEEE Computer Society, 2009.

[2] S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Phys. Rev. A, 70:052328, 2004.
[3] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In Proceedings of the 19th Annual IEEE

Symposium on Logic in Computer Science (LICS), pages 415–425. IEEE Computer Society, 2004.

[4] S. Anders and H. J. Briegel. Fast simulation of stabilizer circuits using a graph-state representation. Phys. Rev. A,
73:022334, 2006.

[5] E. Ardeshir-Larijani. Quantum Equivalence Checker (QEC). http://www.dcs.gla.ac.uk/~simon/qec, 2013.

[6] E. Ardeshir-Larijani, S. J. Gay, and R. Nagarajan. Equivalence checking of quantum protocols. In N. Piterman and

S. A. Smolka, editors, Proceedings of the 19th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 7795 of Lecture Notes in Computer Science, pages 478–492. Springer, 2013.

[7] E. Ardeshir-Larijani, S. J. Gay, and R. Nagarajan. Verification of concurrent quantum protocols by equivalence checking.

In E. Ábrahám and K. Havelund, editors, Proceedings of the 20th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), volume 8413 of Lecture Notes in Computer Science, pages 500–514.
Springer, 2014.

[8] E. Ardeshir-Larijani. Automated Equivalence Checking of Quantum Information Systems. PhD thesis, University of

Warwick, 2014.

[9] K. M. R. Audenaert and M. B. Plenio. Entanglement on mixed stabilizer states: normal forms and reduction procedures.

New Journal of Physics, 7(1):170, 2005.
[10] P. Baltazar, R. Chadha, and P. Mateus. Quantum computation tree logic: model checking and complete calculus.

International Journal of Quantum Information, 6(2):219–236, 2008.
[11] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters. Teleporting an unknown quantum state

via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 70:1895–1899, 1993.
[12] C. H. Bennett and S. J. Wiesner. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen

states. Phys. Rev. Lett., 69:2881–2884, 1992.
[13] B. Coecke and R. Duncan. Interacting quantum observables: categorical algebra and diagrammatics. New Journal of

Physics, 13(4):043016, 2011.
[14] T. A. S. Davidson. Formal Verification Techniques Using Quantum Process Calculus. PhD thesis, University of Warwick,

2011.

[15] L. Dixon and R. Duncan. Graphical reasoning in compact closed categories for quantum computation. Annals of
Mathematics and Artificial Intelligence, 56(1):23–42, 2009.

[16] Y. Feng, Y. Deng, and M. Ying. Symbolic bisimulation for quantum processes. ACM Transactions on Computational
Logic, 15(2):14:1–14:32, 2014.

[17] Y. Feng, R. Duan, and M. Ying. Bisimulation for quantum processes. In Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), pages 523–534. ACM, 2011.

[18] Y. Feng, N. Yu, and M. Ying. Model checking quantum Markov chains. Journal of Computer and System Sciences,
79(7):1181–1198, 2013.

[19] Y. Feng, E. M. Hahn, A. Turrini, and L. Zhang. QPMC: A model checker for quantum programs and protocols. In

N. Bjørner and F. de Boer, editors, Proceedings of the 20th International Symposium on Formal Methods (FM), volume

9109 of Lecture Notes in Computer Science, pages 265–272. Springer, 2015.
[20] S. J. Gay. Quantum programming languages: survey and bibliography. Mathematical Structures in Computer Science,

16(4):581–600, 2006.

[21] S. J. Gay. Stabilizer states as a basis for density matrices. arXiv:1112.2156, 2011.
[22] S. J. Gay and R. Nagarajan. Communicating Quantum Processes. In Proceedings of the 32nd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming languages (POPL), pages 145–157. ACM, 2005.

[23] S. J. Gay, R. Nagarajan, and N. Papanikolaou. QMC: A model checker for quantum systems. In Proceedings of the 20th
International Conference on Computer Aided Verification (CAV), volume 5123 of Lecture Notes in Computer Science, pages
543–547. Springer, 2008.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

http://www.dcs.gla.ac.uk/~simon/qec

Automated Equivalence Checking of Concurrent Quantum Systems 1:33

[24] S. J. Gay, R. Nagarajan, and N. Papanikolaou. Specification and verification of quantum protocols. In S. J. Gay and I. C.

Mackie, editors, Semantic Techniques in Quantum Computation. Cambridge University Press, 2010.

[25] D. Gottesman. The Heisenberg representation of quantum computers. Technical Report LA-UR-98-2848, Los Alamos

National Laboratory, 1998.

[26] A. S. Green, P. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron. An introduction to quantum programming in Quipper.

In G. W. Dueck and D. M. Miller, editors, Proceedings of the 5th International Conference on Reversible Computation (RC),
volume 7948 of Lecture Notes in Computer Science, pages 110–124. Springer, 2013.

[27] E. M. Hahn, Y. Li, S. Schewe, A. Turrini, and L. Zhang. IscasMC: A web-based probabilistic model checker. In J. S.

Cliff Jones, Pekka Pihlajasaari, editor, Proceedings of the 19th International Symposium on Formal Methods (FM), volume

8442 of Lecture Notes in Computer Science, pages 312–317. Springer, 2014.
[28] D. Harel, O. Kupferman, and M. Y. Vardi. On the complexity of verifying concurrent transition systems. Information

and Computation, 173(2):143–161, 2002.
[29] M. Hillery, V. Bužek, and A. Berthiaume. Quantum secret sharing. Phys. Rev. A, 59:1829–1834, 1999.
[30] A. Kissinger. Pictures of Processes: Automated Graph Rewriting for Monoidal Categories and Applications to Quantum

Computing. PhD thesis, University of Oxford, 2011. arXiv:1203.0202.

[31] E. Knill, R. Laflamme, R. Martinez, and C. Negrevergne. Benchmarking quantum computers: The five-qubit error

correcting code. Phys. Rev. Lett., 86:5811–5814, June 2001.
[32] T. Kubota, Y. Kakutani, G. Kato, Y. Kawano, and H. Sakurada. Semi-automated verification of security proofs of

quantum cryptographic protocols. Journal of Symbolic Computation, 73:192–220, 2016.
[33] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking with PRISM: a hybrid approach.

International Journal on Software Tools for Technology Transfer, 6(2):128–142, 2004.
[34] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek. Perfect quantum error correcting code. Phys. Rev. Lett., 77:198–201,

July 1996.

[35] D. Markham and B. C. Sanders. Graph states for quantum secret sharing. Phys. Rev. A, 78:042309, 2008.
[36] Microsoft. Language-Integrated Quantum Operations. https://www.microsoft.com/en-us/research/project/

language-integrated-quantum-operations-liqui, 2013.

[37] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[38] R. Nagarajan and S. J. Gay. Formal verification of quantum protocols. arXiv:quant-ph/0203086, 2002.
[39] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.

[40] N. Papanikolaou. Model Checking Quantum Protocols. PhD thesis, University of Warwick, 2009.

[41] P. Selinger. Towards a quantum programming language. Mathematical Structures in Computer Science, 14(4):527–586,
2004.

[42] G. F. Viamontes, I. L. Markov, and J. P. Hayes. Quantum Circuit Simulation. Springer, 2009.
[43] M. Ying, Y. Feng, R. Duan, and Z. Ji. An algebra of quantum processes. ACM Transactions on Computational Logic,

10(3):19:1–19:36, 2009.

[44] M. Ying. Foundations of Quantum Programming. Morgan Kaufmann, 2016.

[45] X. Zhou, D. W. Leung, and I. L. Chuang. Methodology for quantum logic gate construction. Phys. Rev. A, 62:052316,
2000.

Received 2017

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://www.microsoft.com/en-us/research/project/language-integrated-quantum-operations-liqui
https://www.microsoft.com/en-us/research/project/language-integrated-quantum-operations-liqui

	Cover Sheet (AFV)
	166295
	Abstract
	1 Introduction
	2 Preliminaries
	3 Verification of Sequential Quantum Systems
	3.1 The QPL Language and its Semantics
	3.2 Checking Equivalence of QPL Programs
	3.3 Equality of Stabilizer States
	3.4 The Stabilizer Basis
	3.5 Equivalence Checking

	4 Specification of Concurrent Quantum Systems
	5 Semantics of CCSq
	6 Automated Verification of Concurrent Quantum Systems
	6.1 Equivalence-checking algorithm for concurrent quantum protocols
	6.2 The QEC tool

	7 Case Studies and Experimentation
	7.1 Case Studies
	7.2 Experimental Results

	8 Related Work
	8.1 QMC
	8.2 Probabilistic Model-Checking
	8.3 Quantum Process Calculus
	8.4 Quantomatic

	9 Conclusion and Future Work
	References

