
Combining Adaptivity with Progression Ordering for
Intelligent Tutoring Systems

Tong Mu*∗1, Shuhan Wang*2, Erik Andersen2, and Emma Brunskill3

1tongm@stanford.edu, Department of Electrical Engineering, Stanford University
2{forsona, eland}@cs.cornell.edu, Department of Computer Science, Cornell University

3ebrun@stanford.edu, Department of Computer Science, Stanford University

ABSTRACT
Learning at scale (LAS) systems like Massive Open Online
Classes (MOOCs) have hugely expanded access to high quality
educational materials however, such materials are frequently
time and resource expensive to create. In this work we propose
a new approach for automatically and adaptively sequencing
practice activities for a particular learner and explore its appli-
cation for foreign language learning. We evaluate our system
through simulation and are in the process of running an exper-
iment. Our simulation results suggest that such an approach
may be significantly better than an expert system when there
is high variability in the rate of learning among the students
and if mastering prerequisites before advancing is important.
They also suggest it is likely to be no worse than an expert
system if our generated curriculum approximately describes
the necessary structure of learning in students.

ACM Classification Keywords
J.m Computer Applications: Miscellaneous

Author Keywords
education;intelligent tutoring systems;language
learning;curriculum design; adaptivity;multi-armed
bandits;student forgetting

INTRODUCTION
As of yet, many LAS systems rely on an expert instructor or
team of instructors to create high quality content and order
such content into an effective learning sequence for the stu-
dents. This pipeline is expensive and time consuming, which
can limit the development of LAS systems for a wider range
of tasks and topics and can prohibit the fast development of
courses for new skills and training. Simultaneously, the exist-
ing pipeline offers a one sized fits all approach for learning.
Any personalization for a particular learner must be guided by
that learner’s own decisions about what and how to study, and
not from an instructor’s expertise or additional knowledge and
*Equal Contribution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
L@S 2018, June 26 - 28, 2018, London, UK
©2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5886-6/18/06
$15.00
DOI: https://doi.org/10.1145/3231644.3231672

data about what may yield the most effective learning for an
individual. While there has been previous research in personal-
ization resulting in well established and effective methods such
as Bayesian Knowledge Tracing (BKT) [6], these methods of-
ten require expert input for identifying knowledge components
or student data to fit models.

We propose a new approach which, unlike much prior research,
aims to use minimal assumptions on the student learning pro-
cess and curriculum. We aim to reduce system development
time, remove the need to initially collect data before the sys-
tem can be deployed with new activities, and yield robustness
for when a student’s learning process does not match well with
the assumed theoretical or statistical model of student learning
used to select pedagogical activities.

Our work builds on two recent developments. The first is
advances in program synthesis and program induction which
can be used to take examples or traces of a procedure to in-
fer a program (or algorithm) for completing said procedure
[9]. For example, examples of students completing n-digit
addition problems can be used to infer a generic algorithm
for completing addition problems. This work has been also
used to automatically synthesize a curriculum graph based on
comparing execution traces of the procedure given a grammar
of the items in the procedure. For instance, in addition such
elements might performing a carry [1, 10].

We also build on recent work on automatically providing per-
sonalized student advancement through such a curriculum
graph using concepts of a zone of proximal development and
multi-armed bandits [5]. This work relies on a very minimal
representation of student learning, but previously assumed a
hand specified curriculum graph was given. Clement et al.
have also shown this approach can be more robust to variabil-
ity in the student learning process, since it does not rely on a
particular sophisticated model of student learning [4].

In addition to integrating these two approaches we also address
forgetting, which is critical when learning many subjects by
incorporating ideas from prior work on modeling forgetting
[7].

We also discuss the Korean language learning platform we
are currently using to run an experiment where we compare
the progression induced by our proposed system with a fixed
expert designed progression. We have evaluated our system
through simulation before releasing the real world experiment

mailto:Permissions@acm.org
https://doi.org/10.1145/3231644.3231672
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3231644.3231672&domain=pdf&date_stamp=2018-06-26

and we discuss the expected results inferred from the simula-
tions.

METHODS
Our proposed system, illustrated in Figure 1, consists of com-
bining automatic curriculum generation from execution traces
[1, 10] and automatic problem selection using reinforcement
learning techniques [5, 8] which we modify to account for stu-
dent forgetting by incorporating ideas from the MCM model
of forgetting of Pashler et. al [7]. We ground or system in the
application of teaching basic Korean grammar and vocabulary
consisting of shapes, numbers and colors.

Parts 1 and 2: Organizing Vocabulary Knowledge
In this section, we present a summary from the work of Ander-
sen et al. and Wang et al. [1, 10] on synthesizing progressions
using automatic problem decomposition and partial orderings
which we apply to the domain of basic Korean vocabulary.

Given a set of Korean sentences, we model the difficulty
between sentences, defined as a multiset of vocabulary words,
based on the partial orderings defined in [10]:

Definition 2.1 (Wang et al. [10]). A sentence s1 is harder
than another sentence s2, indicated as s1 > s2, if s1 covers all
the vocabulary words in s2. A sentence s1 is directly harder
than s2 if s1 > s2 and there does not exist a third sentence such
that s1 > s3 > s2.

We then create a curriculum graph in which each node repre-
sents a sentence in our corpus and each directed edge repre-
sents a “directly harder than” relation between two nodes. An
example of such a graph is shown in Part 2 of Figure 1.

Part 3: Progressing Students Using Multi-Armed Bandits
In this section, we summarize the ZPDES algorithm proposed
by Clement et al. [5] for using multi-armed bandits for prob-
lem selection. We will discuss how we extended it to account
for forgetting in the next subsection. We choose to use this
algorithm because it is less reliant than other methods on
the underlying student learning model allowing it to be more
robust and does not require pre-existing data.

Given a curriculum graph, for each node in the graph, the
algorithm keeps track of a belief state of student mastery, mas-
tered or unmastered. At each timestep, the algorithm selects
a problem from within the set of problems on the boundary
of the student’s knowledge, which is defined as the Zone of
Proximal Development (ZPD). ZPD is an idea from classical
psychology and education research that hypothesizes learning
to be most productive when students are given activities that
are challenging but that are at the appropriate level of difficulty
for the student such that they can learn productively [3]. The
algorithm selects the problem from this set that it predicts
will give the most reward, which is measured in terms of stu-
dent learning progress. A brief summary of the algorithm is
described below.

Throughout the algorithm, a belief knowledge state (mastered
or unmastered) and a belief ZPD of the student is tracked. We
define the prerequisites of a node as the set of all nodes that

have a directed edge towards that node. On initialization, all
problems start in the not-learned knowledge state and start
with an initial un-normalized weight wa = wi. The belief ZPD
is initialized to the set of problems that have no prerequisites.

To select the next problem, the weights (wa) of the problems in
the ZPD are normalized (wa,n) to ensure a proper probability
distribution (pa) over the problems:

wa,n =
wa

∑a′∈ZPD wa′
, pa = wa,n(1− γ)+ γ

1
|ZPD|

a ∈ ZPD

(1)
Where γ is the hyperparameter for the rate of exploration and
|ZPD| is the number of elements in the ZPD. We stochastically
select the next problem to present to the student by taking one
sample from this probability distribution.

Once a problem, problem a, is selected and presented to the
student, the correctness of the student answer is recorded as
Ca,i where i represents that it is the ith time problem a has been
presented. The reward (ra,i) of problem a at this timestep is
calculated by the approximated gradient of the performance of
the student on that problem and this reward is used to update
the weight of the problem:

ra,i =
na

∑
k=na−d/2

Ca,k

d/2
−

na−d/2

∑
k=na−d

Ca,k

d−d/2
, wa← βwa +ηra,i

(2)
Where na is the total number of times problem a has been
presented, d is the hyperparameter for the length of history to
be used and β and η are hyperparameters for update rates.

In our experiments, we modify the weight update of problems
a to average over all rewards and reduce hyperparameters.

wa =
1
na

na

∑
k=0

ra,k (3)

The belief state of a problem is transitioned to the learned state
and is removed from the ZPD after the student’s accuracy on
that problem type over the past d attempts reaches an accuracy
above the threshold hyperparameter h. A not-learned problem
enters into the ZPD when all of it’s prerequisites are in the
learned state.

The MCM model of forgetting
In this section, we describe the MCM model of forgetting
which has been shown to model forgetting accurately [7] and
how we incorporate it into the ZPDES algorithm.

The MCM model proposes that each time an item is studied,
it leaves a memory trace that decays exponentially with time
at unique rates.

For the ith time a problem a is seen, it leaves memory trace
xa,i which decays with time according to:

xa,i(t +∆t) = xa,i(t)exp(−∆t/τi) (4)

Where τi is the decay rate and follows the constraint τi < τi+1.
The memory strength, sa,n of problem a at time t after it has
been seen a total of n times is:

Figure 1: Complete pipeline of our system showing the steps of (1) automatically decomposing each sentence into its vocabulary
set, (2) automatically generating the curriuculum graph, (3) choosing the next problem to present to the student, (4) presenting the
problem to the student

sa,t =
1

Γn

n

∑
i=1

γixa,i,t where Γn =
n

∑
i=1

γi (5)

In our application, we follow the MCM’s model of recording a
memory trace each time a problem is presented. We discretize
time for simplicity by taking t to be the total number of prob-
lems presented to the student so far. Because we do not have
any data for fitting our model, we choose γi = 1 and we set
τi = i.

To incorporate this into ZPDES, we expand the set of possible
problems that can be selected at each timestep to be the union
between the set of problems believed to be learned, which we
will denote as L and the set of problems in the belief ZPD.
The unnormalized weights of the problems in the belief ZPD
are calculated and updated as before. We introduce a memory
threshold mt and a memory multiplier mm to describe the
effects of of forgetting. We set the unnormalized weight of
problems in the learned set L to:

wa = mmmax{0,mt − sa} a ∈ L (6)

We then, as before, normalize the weights across all problems
in the set of possible problems to obtain a proper probability
distribution from which we take one sample to obtain the next
problem to present to the student.

SIMULATION RESULTS AND EXPECTATIONS
To verify our system before running a real world experiment,
we simulated students using the Bayesian Knowledge Tracing
(BKT) model which is popularly used in the educational data
mining and intelligent tutoring systems literature [2]. BKT
models a student’s knowledge state of a knowledge component
as a two-state Hidden Markov Model. The model transitions
from the not-learned state to the mastered state with probability
p(T), and once mastered, a knowledge component cannot be
forgotten. In the not-learned state, a student can guess the
solution of a problem correctly with probability p(G)< 0.5.
In the mastered state, a student can slip and answer incorrectly
with probability p(S)< 0.5. To simulate a student’s answer to
a problem, we sample from the probability distribution that

Figure 2: Simulation result for one of the simulated students
showing our adaptive system can result in faster progress
through the curriculum than a fixed progression.

the student answers correctly conditioned on the student’s
knowledge state.

For our student model, the student dependency graph also
follows the curriculum graph generated in Part 2 of Figure1.
We enforce the dependencies between nodes by decreasing
p(T) exponentially in the number prerequisites in the not-
learned state (we call this amount u):

p(T) = p(T)u
max (7)

Our student model also follows the MCM model of forgetting
described in the previous section. We model forgetting in our
student model by transitioning the state of a learned problem
and all learned problems that have it as a prerequisite to not-
learned if the memory strength of the problem drops below a
certain threshold which we will denote as p(M).

We simulated students with different parameters of p(T)max,
p(S), p(G) and p(M), and compared our method to a fixed
sequence hand created by an expert. We expect our method
to perform better than the fixed expert sequence because our
sequence is able to adapt to an individual student’s rate of
learning.

In Figure 2, we show plots of the average mastery of nodes
mastered vs the number of problems presented for a simulated
student described by one set of parameters averaged over 100
trials. As shown, our system is able to better adapt to the
simulated students and results in faster learning than the fixed
progression. We see this trend in simulated students with many
other sets of parameters as well.

From simulations results, we predict there are a few cases
where our system can provide benefits over a fixed progression
in a real world setting:

• When there is high variability among the pace of stu-
dent learning: Through simulation we found that adap-
tivity provides benefits because it can adapt to the pace
of learning of different students, which we simulated with
students with different values of p(T). If this is the case
in actuality, then we expect to see advantages of having
adaptivity. However if the variability among student for a
subject is low, it is then possible to create a fixed expert
sequence that works well for all students and the benefits of
adaptivity would decrease.

• When the probability of learning a node decreases with
the number of prerequisite nodes not learned: Our sys-
tem only introduces a new problem when the system’s belief
state of all the prerequisites of that problem are in the mas-
tered state. This provides benefits in cases where a concept
is harder to learn if the prerequisite concepts needed are not
learned. If this is not the case, we expect the effects of our
system to decrease with respect to a fixed progression.

USER STUDY
Currently we are in the process of collecting data in user study.
We used the same experimental setup and conditions for the
study as in the simulations. We recruited users to play our
web-game, Katchi, that teaches basic Korean vocabulary and
grammar in the form of a click and drag to fill in the blanks
game through the Korean language learning subreddit on the
social discussion website Reddit. We randomly assigned play-
ers to one of the two conditions: fixed or adaptive. We are
recording the total number of problems a user plays through,
the number of incorrect attempts a user makes on each prob-
lem, and a timestamp of when every problem was first seen
and attempted. we hope to analyze for statistically significant
differences int effectiveness and engagement.

CONCLUSION
We proposed a novel system that combines methods for auto-
matic curriculum ordering with methods for automatically and
adaptively advancing a student through a curriculum which
we extend to account for the effects of forgetting. We present
results and conjectures from simulations and are in the pro-
cess of conducting a user study in the form of a browser-game
released online for learning basic Korean vocabulary and gram-
mar. We believe this type of approach may reduce the barrier
for providing effective personalized assistance in learning at
scale systems.

There are several limitations to our work which we plan to
address in the future: (i) Incorporating the feedback of the

correctness of the student answer into the forgetting mecha-
nism. (ii) Leveraging richer reward signals such as time spent
by the student on distinct problems or the number of incor-
rect attempts by the student on a problem. (iii) Investigating
automatic content generation.

ACKNOWLEDGMENTS
This material is based upon work supported by the Na-
tional Science Foundation under Grant No. IIS-1657176, the
Schmidt Foundation, and the National Physical Science Con-
sortium fellowship.

REFERENCES
1. Erik Andersen, Sumit Gulwani, and Zoran Popovic. 2013.

A trace-based framework for analyzing and synthesizing
educational progressions. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
ACM, 773–782.

2. John R Anderson, Albert T Corbett, Kenneth R
Koedinger, and Ray Pelletier. 1995. Cognitive tutors:
Lessons learned. The journal of the learning sciences 4, 2
(1995), 167–207.

3. Seth Chaiklin. 2003. The zone of proximal development
in Vygotsky’s analysis of learning and instruction.
Vygotsky’s educational theory in cultural context 1
(2003), 39–64.

4. Benjamin Clement, Pierre-Yves Oudeyer, and Manuel
Lopes. 2016. A comparison of automatic teaching
strategies for heterogeneous student populations. In
International Conference on Educational Data Mining.

5. Benjamin Clement, Didier Roy, Pierre-Yves Oudeyer,
and Manuel Lopes. 2015. Multi-armed bandits for
intelligent tutoring systems. JEDM-Journal of
Educational Data Mining 7, n (2015).

6. Albert T Corbett and John R Anderson. 1994. Knowledge
tracing: Modeling the acquisition of procedural
knowledge. User modeling and user-adapted interaction
4, 4 (1994), 253–278.

7. Harold Pashler, Nicholas Cepeda, Robert V Lindsey, Ed
Vul, and Michael C Mozer. 2009. Predicting the optimal
spacing of study: A multiscale context model of memory.
In Advances in neural information processing systems.
1321–1329.

8. Anna N Rafferty, Emma Brunskill, Thomas L Griffiths,
and Patrick Shafto. 2011. Faster Teaching by POMDP
Planning.. In AIED. Springer, 280–287.

9. Scott Reed and Nando De Freitas. 2016. Neural
programmer-interpreters. International Conference on
Learning Representations (2016).

10. Shuhan Wang, Fang He, and Erik Andersen. 2017. A
Unified Framework for Knowledge Assessment and
Progression Analysis and Design. In Proceedings of the
2017 CHI Conference on Human Factors in Computing
Systems. ACM, 937–948.

	Introduction
	Methods
	Parts 1 and 2: Organizing Vocabulary Knowledge
	Part 3: Progressing Students Using Multi-Armed Bandits
	The MCM model of forgetting

	Simulation Results and Expectations
	User Study
	Conclusion
	Acknowledgments
	References

