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Graphene quantum point contacts (G-QPC) combine switching operations with quantized conductance, which can be modulated by top and back gates. 
Here we use the conductance quantization to design and simulate multi-valued logic (MVL) circuits and, more specifically an adder. The adder comprises 
two G-QPCs connected in parallel. We compute the conductance of the adder for various inputs and show that Graphene MVL circuits are feasible. 

 
1 INTRODUCTION 
Graphene displays quite interesting properties appropriate for be- yond CMOS device design, such as very high thermal conductiv- ity, high electron 
mobility in room-temperature and the ability to withstand very high current densities [5, 6]. It can therefore be considered as a serious candidate for 
post-silicon integrated circuit architectures and generally electronics along with its pronounced ability to offer very high speed switching [6]. 
 
 

nanoribbons maintain the highest electron mobility. The G-QPC is placed on a silicon dioxide substrate about 300 nm thick. A metallic 
contact on a heavily doped n-Si substrate acts as the back gate. The source and drain contacts are also placed on the dielectric.    In 
particular, the corresponding G-QPC device with the proposed dimensions has 6 different quantized conductance levels, 5 of which are broad 
enough to be actually usable. Those levels are sufficient enough for designing circuits for MVL logic and, more specifically, Radix-
4(Quaternary) arithmetics, because they can encode all the
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Figure 1: The G-QPC layer of the device used for the radix-4 
arithmetic system. The dimensions are L = 25a, LN = 9a,W = 
14a,WN = 4a, where L is the total length of the device, LN is 
the length of the shortened area, W is the total width and 
WN is the width of the shortened area, respectively. 

 
 

four necessary digits. We are even allowed to bypass half of them, 
so that the selected levels are even farther from one another, and the 
results can be easier separated by appropriate selection. Moreover, 
the device has also one top gate and one back gate. The top gate is 
separated from the Graphene nanoribbon by a silicon dioxide layer, 
so that no electrons can enter the device from either top or back 
gates. The length of top gate is 5a, where a 0.246nm is the lattice 
constant of graphene, while the back gate covers the whole device. 
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Figure 2: The circuit of the two digit adder. Inputs 1 and 2 
represent the terminals for the back gate voltages. 

 

2 THE RADIX-4 NUMERICAL SYSTEM 
A radix-4 numeral system, consists of a set of numbers from -3 to 
3, including 0. A conversion to the more common decimal system 
can be achieved with the following equation [7] 

In our design, back gate voltage represents the input of the device, 
while top gate voltage is constant and used only for minimizing 
small overshoots that may appear at the conductance levels. 

n 
D =  xi    4i 

i 
(3) 

In the proposed design, the device conductance changes by ap- 
plying the appropriate voltage at the back gate of the device. The 
calculation of this conductance will be done using the non equi- 
librium Green’s function method (NEGF) along with tight binding 
Hamiltonians [1, 8]. Briefly, the conductance of the G-QPC device, 
as a function of energy is calculated as follows: 

where xi represents a number from the set described above. In this 
case, we used an unsigned number representation, so the digits that 
we will take under consideration are [0,1,2,3]. Such a system is very 
convenient to use, because the radix proposed, is a power of 2, and 
the conversion from and to the binary system is straightforward 
and efficient. Thus, devices using a radix 4 system, could be easily 
designed along with today’s very mature binary logic circuits, even 

Gvalue (E) = 
2q2 

R 

h Trace[ΓLG ΓRGA ] (1) 
as interconnects, with the advantage of optimizing the connection 
wiring between binary subsystems [9]. The operation of addition 
in such a numeral system is described in [4]. 

where ΓL and ΓR , are the broadening factors, GR is the retarded 
Green’s function, GA is the advanced Green’s function, q = 1.6 
10−19Coulomb is the electron charge and h = 1.06 10−34 J s the 
Planck constant. Taking all these into account, equation 1 as found 
above can be rewritten: 

Gvalue (E) = 7.7463 · 10−5 · Trace[ΓLGR ΓRGA] (2) 

As a result, in the aforementioned equation 2 only Trace ΓLGR ΓRGA 

depends on energy and, for specific energy values, the conductance 
of the device can be computed. 

Even though conductance can be calculated for every energy 
value, only electrons with energies near Fermi Energy level, take 
part in current flow. Thus, the conductance of only a small region 
of energies, a few kT above and below energy Fermi, should be 
taken under consideration. Therefore, the total conductance that 
a G-QPC device displays, can be calculated as the mean value of 
conductance for this energy region of interest. In fact, back gate 
voltage moves the Fermi energy level up or down, and so changes 
the conductance that the device displays. 

3 HIGH RADIX G-QPC CIRCUIT 
By using the G-QPC device that exploits the unique character- 
istics of Graphene, and the quantization of conductance that is 
displayed, we propose here a radix 4 adder. For the creation of a 
two Quaternary-digit adder, we connected two G-QPCs in parallel, 
as shown in Figure 2. In this figure, yellow background represents 
the silicon dioxide layer behind of which the back gate is placed, 
while the two grey regions on the left and right depict the source 
and drain contacts, respectively. Moreover, the red region in the 
middle is the top gate. As mentioned before, with the application of 
the appropriate voltage at each back gate we are in position to tune 
the devices at specific conductance level. Thus the output current 
will differ, for different combinations of inputs. VSOU RCE can be 
set at any value that will not damage the device, and fortunately, 
Graphene can sustain high current densities and therefore high 
source voltages. Though, it would be more convenient to use volt- 
ages similar to those already used on the back or top gates. The 
current that will run through the device, will be measured at the 
output and will determine the result of the addition. 
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Quaternary Digit Back Gate Voltage(Volts) 
 

 

0 0.13 
1 −2.7 
2 −2.15 

  3 −1.45  
Table 1: Correlation between the Quaternary system digits 
and back gate voltages used for tuning properly the G-QPC 
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The devices shown in Figure 2 are tuned separately, but the total 
conductance that will arise, will determine the result of the addition 
being executed. The total conductance of a circuit with devices in 
parallel connection, can be easily calculated by: 
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GTOT AL  = G1 + G2 (4) 

The potentials applied to the back gates are specific, and each 
one represents one digit out of the four that make up a Quaternary 
numeral system. Those correlations between back gate voltages 
and Quaternary digits can be seen at the following Table 1. 

The specific back gate voltages mentioned above, were chosen so 
that each digit, is represented by only one predefined conductance 
value. Moreover, changing the back gate voltage of one device, so 
as to move from one digit to the next or the previous one (i.e. from 
2 to 3 or 1), corresponds to an equal change in conductance, as 
shown in Figure 3. This last property of the selected conductance 
levels eliminates the danger of error in case of additions with same 
result but different added digits, and makes the circuit scalable by 
allowing the simultaneous addition of n bits. That can be achieved 
with the use of n G-QPC devices connected in parallel. 

At this point, an advantage of using G-QPC devices for radix 4 
addition is that, the parallel combination of such devices, creates 
more conductance levels than those available at a single device. 
More specific, through the parallel connection of two G-QPC de- 
vices, results higher than 3 (the highest digit that a radix 4 numeral 
system can depict), can be encoded and represented, without further 
circuitry. Carry does not necessarily need special manipulation. 

4 SIMULATION RESULTS 
In this section numerical simulations of the G-QPC devices forming 
the Radix-4 adder circuit as discussed before are presented. The 
simulation results are expected to be in accordance with quaternary 
addition described in [4] and show that the proposed circuit maps 
correctly an addition in a higher radix (4) numeral system. 

As described above, the region of interest in those diagrams is a 
few kT above and below E = 0, which corresponds to Fermi energy. 
In Figures 3 conductance is depicted for a wide range of energies, 

(b) 
 

Figure 3: Conductance of a single G-QPC device. In (a), the 
two subfigures, from left to right, demonstrate the conduc- 
tance of the device for input digit 0 ( 0.13V ) and input digit 
1 ( 2.7V ) respectively. In (b), the two subfigures, from left to 
right, demonstrate the conductance of the device for input 
digit 2 (−2.15V ) and input digit 3(−1.45V ) respectively 

 
In Figure 4 the results of the proposed Radix-4 adder circuit 

are presented. The nature of the circuit implies that changing in- 
put 1 with input 2, and input 2 with input 1, would not bring any 
difference to the result, so only one of those calculations are de- 
picted. For example 0+1 and 1+0 have the same result, 1+2 and 2+1 
have the same result, and so on. In all the subfigures presented in 
Figure 4, top gate voltage does not change, it is constant and its 
value is VTG = 0.07Volts. The variable is back gate potential which 
determines the inputs, as mentioned above. 

Based on 1 for the inputs of the devices, the results are as ex- 
pected, and show that the proposed circuit indeed maps a Radix-4 
addition. It can be easily distinguished that the devices, in additions 
with the same result, irrespective of the inputs, are tuned so that 
the total conductance of the circuit is the same, and thus the current 
that will run through it, will also be the same. 

We also calculated the mean value of adder’s resistance for the 
energy region of interest, as mentioned above. This mean value is 
calculated for every possible 2 digit addition in a Radix-4 system, 
and is presented in Table 2. We applied a source potential of 1V olt , 
and calculated the current that runs through the device. The current 
was calculated using the corresponding Ohm’s law: 

from E =  0.5 to E = 0.5 in units of  E   EF   τ  , where τ =   2.7eV 
is the overlap integral for atoms that are nearest neighbors[8]. I = VSOU RCE 

RMEAN 
(5) 

However, the mean value of conductance and therefore the mean 
value of resistance, presented in Table 2, are calculated using values 
for a range of energies from E = −0.1 to E = 0.1 in units of ((E − 
EF )/τ ). Also, in those figures, conductance (x-axis) is normalized. 
More precisely, x-axis corresponds to Trace[ΓLGR ΓRGA]. 

Table 2 is an other view of the results shown in Figure 4. The 
visualization of the table (Figure 5) leads to the result that oper- 
ations with the same result, indeed conduct the same amount of 
current through the device, while the current difference between 
consecutive results (i.e. between 1 and 2, 2 and 3 etc.) is almost the 
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Table 2: The results of the simulations in numbers 
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Figure 5: Visualization of Table 2. Shows the correlation be- 
tween current running through an adder, and the result of 
the computation 

 
5 CONCLUSIONS 
We used G-QPC connected in parallel to design a MVL adder. We 
used non-equilibrium Green’s functions combined with tight bind- 
ing Hamiltonians to compute the conductance of the device for 
various input values. The inputs of the adder are the two back gate 
potentials. The output is the combined conductance and, therefore 
the current. The back gate voltages assign a predefined conduc- 
tance to each digit. The addition errors are eliminated because the 
change in back gate voltages correspond to discrete equidistant 
conductance values. The proposed adder is scalable and allows the 
simultaneous addition of n bits. 
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