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We model and analyze cardinal contests, where a principal running a rank-order tournament has access to

an absolute measure of the quality of agents’ submissions in addition to their relative rankings. We show

that a mechanism that compares each agent’s output quality against a threshold to decide whether to award

her the prize corresponding to her rank is optimal amongst the set of all mixed cardinal-ordinal mechanisms

where the jth-ranked submission receives a fraction of the jth prize that is a non-decreasing function of the

submission’s quality. Furthermore, the optimal threshold mechanism uses exactly the same threshold for each

rank.
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1 INTRODUCTION

Contests have a long history as a means for procuring innovations, with government-sponsored
contests for research and development dating back to at least 1714.1 Contests provide an effective
incentive structure for eliciting effort in settings where the quality of an agent’s output as well as
her effort are unverifiable or difficult to measure, making conventional contracts based on input- or
output-dependent reward infeasible—either by virtue of being too costly for the sponsor to imple-
ment, or because they cannot be credibly enforced due to unverifiability of output [9, 49]. In several
such situations, an ordinal comparison—identifying a relative ranking of agents’ submissions—
might nonetheless be feasible, allowing the principal to commit to an enforceable contract that
awards rank-based prizes to some subset of entrants in a contest. This has led to a large literature
on the optimal design of rank-order mechanisms for effort elicitation; see Section 1.1.

In contrast with more traditional settings, however, an increasing number of online contests
procure innovations whose quality is evaluated and ranked via verifiable cardinal measurements.
For instance, the well-known Netflix contest, designed to procure improved algorithms for movie

1The British parliament ran a contest with a 20,000 pound prize for a method for determining longitude-at-sea to within

half a degree.
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recommendations, evaluated entries according to how well they predicted user preferences on a
test subset of its user database, with the algorithm that obtained the highest score being declared
the winner. In a different context, contests for designing mobile apps for health or education might
compute scores for submissions based on their performance on metrics of efficacy in randomized
trials,2 and rank entries based on these scores. A third example is the contest platform Kaggle,
which hosts contests where the innovation being procured is a data-mining algorithm: again, sub-
missions are typically evaluated on a test dataset provided by the requesters and ranked according
to the score they obtain. A number of other such contests abound. In summary, there is an increas-
ingly large family of contests where submissions can be assigned a meaningful numerical quality
score that reflects their value to the principal.

Suppose a principal running a contest has access to such cardinal measurements of the qualities
of agents’ submissions, in addition to the ordinal ranking of their outputs. What effect does making
prizes contingent on absolute performance, in addition to relative ranking, have on contestants’
incentives for effort, and what is the optimal way to incorporate such cardinal measurements of
output into an ordinal rank-order contest?

Our contributions. We model and analyze cardinal contests, where a principal, who wants to
maximize some increasing function of the quality of received submissions, can evaluate the quality
of each submission via a real-valued score in addition to observing the rank-ordering of contes-
tants’ outputs. We ask whether and how such a principal can improve his utility by incorporating
such cardinal information to determine agents’ rewards.

Specifically, consider a rank-order tournament with prizes (A1,A2, . . . ,An ) for ranks 1, . . . ,n,
in a model where contestants are strategic and have a cost to effort. Can the principal mod-
ify the rank-order mechanism M (A1,A2, . . . ,An ), using participants’ quality scores qj in ad-
dition to their ranks j to decide how much of the prize Aj to actually award, to improve in-
centives for effort? And if so, how should the function дj (qj ) that determines the fraction of
the prize Aj to be awarded to the jth-ranked contestant be chosen to optimally incentivize the
agents?

Our main result is that a very simple threshold mechanism—a mechanism that awards the prize
for a rank if and only if the output of the agent at that rank exceeds a certain threshold—is optimal

amongst all mechanisms induced by any non-decreasing functions дj (·): We show that for any
given rank-order mechanismM (A1,A2, . . . ,An ), the functions дj (qj ) that incentivize the highest
effort are precisely step functions that increase from 0 to 1 at a threshold score (Theorem 3.1).
Additionally, if the noise density that stochastically maps an agent’s effort into her output quality
is single-peaked at 0, we find that the optimal threshold mechanism also uses exactly the same
threshold for each rank, meaning the optimal threshold mechanism would effectively remove all
agents whose quality falls below a certain threshold, and rank and award prizes to the remaining
contestants as per the original mechanism. Interestingly, real-world contests where prizes are made
contingent on cardinal information measuring absolute performance seem to commonly use such
threshold-based prize structures.3

After deriving comparative statics for the optimal threshold and equilibrium effort in such mech-
anisms in Section 4.1, we ask to what extent does incorporating cardinal information (via an opti-
mal threshold mechanism) improve equilibrium effort relative to using only ordinal information?
We address this question via numerical simulations as well as theory, and find that the extent to
which cardinal information incentivizes higher effort depends on the contest parameters: the most

2See, for example, http://www.robinhood.org/prize.
3For example, one of the largest contests hosted on Kaggle awarded prizes to the top three entries, provided their scores

were above a minimum baseline.
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substantial improvements are achieved in contests with a smaller number of participants, contests
with participants whose cost functions are “not too convex” (in a sense made precise in Section 5),
and contests that award a larger rather than smaller number of prizes. We conclude by address-
ing questions related to whether one would want to modify the prize structure in a rank-order
tournament if one wishes to also incorporate cardinal information in Section 6 and by analyzing
questions on endogenous entry in Section 7.

We note that we ask the question of how to optimally modify a given rank-order mechanism
which awards a prize of Aj to the jth-ranked contestant, in the sense that we ask how to opti-
mally use the participants’ quality scores qj to decide how much of the jth prize to award to the
jth-ranked contestant. This contrasts with the question of choosing the overall optimal reward
structure (A1 (q1, . . . ,qn ), . . . ,An (q1, . . . ,qn )) that incorporates all available cardinal information
in determining the reward for each rank. There are a number of reasons we address the question
we focus on, the foremost of which is practical: a principal announcing a contest might choose, or
be committed to, a certain rank-based prize structure for reasons such as sponsorship constraints,
publicity, simplicity, cost of precise evaluations of a full rank-order due to scale, and so on. How-
ever, the principal might still want to, and more easily be able to, incorporate an entry’s absolute
quality in determining whether, and how much of the rank-based prize to actually award (for in-
stance, he may wish to award no prize if the highest-ranked submission performs worse than the
current state-of-the-art). See Sections 2 and 8 for further discussion.

1.1 Related Work

There is a large body of work on contest design in the economics literature. In addition to general
work on the theory of contests [11, 20, 23, 28, 30–33, 38, 41, 43–48], there has also been a variety of
work motivated by specific applications. References [19], [26], [27], and [35] address the design of
rank-order tournaments for the purpose of incentivizing employees to work hard. References [9]
and [49] study contest design in the context of research tournaments. And there is a growing
literature motivated by online crowdsourcing contests [2, 7, 8, 12, 18]. There is also an extensive
empirical and experimental literature analyzing observed strategic behavior by real subjects in
contests in a variety of settings [1, 4–6, 10, 14, 15, 21, 29, 34, 39, 40, 42].

This work addresses a variety of questions on the economics of contests such as comparing
tournaments to schemes for incentivizing effort that are based solely on an individual’s personal
performance [20, 27, 35, 41], relationships between contests and all-pay auctions [8, 9, 12], taxing
entry to improve the quality of contributions [18, 49], dynamic contests in which agents dynam-
ically decide how much effort to exert when they get information over time about how they are
doing in the contest compared to their competitors [16, 17, 24, 51], and incentives for agents to
work hard in teams [22, 36]. The most relevant subset of this literature to our article is that re-
lated to optimal contest design [2, 11, 19, 23, 25, 28, 30–33, 48], which asks how to best choose the
rank-based rewards under various models of effort and constraints on the rewards.

The key difference between this literature and our work is that this literature almost exclu-
sively studies contests that are structured as rank-order mechanisms, where the announced prizes
depend only on the rank of an agent’s output relative to that of her competitors, whereas we con-
sider mixed cardinal-ordinal mechanisms of the form described in Section 2. Specifically, rather
than ask which ordinal rewards (A1,A2, . . . ,An ) incentivize optimal outcomes, we ask how cardi-
nal information about an agent’s output can be optimally incorporated into a given ordinal reward
mechanismM (A1,A2, . . . ,An ) to incentivize the highest effort, a question that has not been ad-
dressed previously in this literature. The only relevant exception, to the best of our knowledge, is
Reference [8], which does address the question of optimal contest design using both cardinal and
ordinal information, albeit in a completely different model of output and for risk-neutral agents

ACM Transactions on Economics and Computation, Vol. 6, No. 2, Article 7. Publication date: July 2018.



7:4 A. Ghosh and P. Hummel

only. Interestingly, although the models are completely different, the optimal mechanism in that
model also turns out to use cardinal information via a threshold.

2 MODEL

We consider a setting where a pool of agents competing in a contest strategically choose their
effort levels, which stochastically determine their submission qualities, and each agent receives a
prize based on the relative rank of her output as well as possibly its absolute quality. The model is
a natural extension of Reference [27].

Agents. There are n agents who compete in a contest. Each agent simultaneously chooses a
level of effort ei ≥ 0 to exert. The quality qi of agent i’s output is determined both by her effort,
and a random noise term ϵi as qi = ei + ϵi , where each ϵi is an independent and identically dis-
tributed draw from a cumulative distribution function F (·). The noise ϵi has a number of possible
interpretations. Most simply, ϵi could model the fact that a given amount of effort does not de-
terministically guarantee a certain level of output, but rather only influences its expected value.
As another interpretation, the noise ϵ could also model randomness in the measurement, or per-
ception, of an agent’s output quality by the principal. Most interestingly, ϵi could be thought of
as modeling heterogeneity amongst agents’ abilities to solve the specific problem or execute the
specific task required for the contest; we discuss this in detail at the end of this section. We will
assume throughout that the probability density function f (ϵ ) corresponding to F (ϵ ) is a bounded
continuously differentiable function of ϵ with a bounded first derivative, and the distribution F (·)
and the number of agents n are known to all agents.

Utilities. An agent’s utility is the difference between her benefit from any prize she wins and
her cost of effort. An agent who receives a prizeAi derives a benefit ofv (Ai ), wherev (·) is a strictly
increasing and concave function satisfying v (A) ≥ 0 for all A ≥ 0 and v (0) = 0. Exerting effort ei

incurs a cost c (ei ), where c (·) is a strictly increasing and convex function satisfying c (e ) ≥ 0 for
all e ≥ 0 and c ′(0) = 0.4 We begin our analysis by considering the case where c (0) = 0, so that
all agents have an incentive to participate in equilibrium; in Section 7, we extend our analysis
to consider the case where c (0) > 0 and agents make endogenous decisions about whether to
participate.

The utility to an agent who exerts effort ei and receives prize Ai is the difference between
this benefit and cost, ui = v (Ai ) − c (ei ). We assume that each agent chooses ei to maximize her
expected utility E[v (Ai )] − c (ei ), where the expectation is taken over the n random draws of ϵi′

that determine each agent’s output quality (and therefore their prizes). Our model allows for both
risk-neutral and risk-averse agents, as v (A) may either be a linear function of A (for risk-neutral
agents) or a strictly concave function of A (risk-averse agents).

Mechanisms. We suppose that the principal running the contest can observe the quality
qi of each agent’s output. (Our results extend immediately to a model where the principal’s
observations of output qualities are noisy, because the noise can be folded into the ϵi term.)
We use M (A1,A2, . . . ,An ) to denote a rank-order mechanism that assigns a reward Aj to the
agent with the jth-highest output regardless of its absolute quality, and assume throughout that
A1 ≥ · · · ≥ An ≥ 0.5

Mixed cardinal-ordinal mechanisms. Let qj denote the quality of the jth-ranked submission.
We consider mixed cardinal-ordinal modifications of a rank-order mechanismM (A1,A2, . . . ,An )

4The assumption that c′(0) = 0 is primarily used to help prove equilibrium existence.
5It is worth noting, however, that most of the proofs and results in this article will continue to hold even if this assumption

on the monotonicity of rewards is relaxed. In particular, the main result in our article about the optimality of threshold

mechanisms will hold more generally.
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of the formM (д1 (q1)A1, . . . ,дn (qn )An ), which awards the agent with the jth-ranked submission
of quality qj a prize Pj = дj (qj )Aj , where дj (q) is a non-decreasing function of q satisfying 0 ≤
дj (q) ≤ 1. That is, дj (q) represents the fraction of the maximum prize Aj for achieving rank j that
an agent obtains if she produces a contribution with absolute quality q. Note that the rank-order
mechanismM (A1,A2, . . . ,An ) corresponds to setting дj (·) to be the constant function дj (q) = 1
for all j.

We note that a principal with access to cardinal measurements of the qualities of each submis-
sion could conceivably use more general mechanisms by allowing the function дj (·) to depend not
only on the quality of the corresponding jth-ranked submission, but rather on the entire vector of
qualities (q1, . . . ,qn ). We restrict ourselves to mechanisms that use functions дj (qj ) for simplicity,
both of analysis and implementation. In addition to leading to simpler mechanisms, a principal
might, practically speaking, prefer to announce a contest where the prize awarded to a winner is
contingent on the absolute quality of only her own submission, and not on the absolute qualities
of the submissions produced by her competitors; see also the discussion in Section 1.

Principal’s objective. We assume that the principal’s objective is to maximize some utility
functionW (q1, . . . ,qn ) of agents’ output qualities in equilibrium, whereW is non-decreasing in its
arguments, i.e.,W (q1, . . . ,qn ) is such that if q′i ≥ qi for all i , thenW (q′1, . . . ,q

′
n ) ≥W (q1, . . . ,qn ).

Implicitly, here we are focusing on a setting in which the principal has a fixed budget that rep-
resents the maximum amount the principal can spend, and the principal seeks to maximize some
utility function of the quality of the agents’ contributions subject to the constraint that the total
prizes paid out must not exceed this budget. Such a setting has also been considered in several
other papers in the contest design literature, such as References [8], [31], and [32]. It is a reason-
able model of a middle manager who is given some budget to run a contest with the objective of
obtaining the highest quality contributions possible, but does not keep any of the budget that is
not spent. In this setting, the manager only cares about the quality of the contributions and does
not care about the amount of prizes that are paid out (beyond needing to ensure that total prize
payments are less than or equal to the budget), so the cost of the prizes does not directly enter the
principal’s utility, as in References [8], [31], and [32].

We will be interested throughout in symmetric pure-strategy Nash equilibria. If agents all use
the same level of effort, then the principal’s expected utility is non-decreasing in the effort choice of
the agents: therefore, all such increasing objectives are simultaneously improved by mechanisms
that elicit higher equilibrium effort, assuming a symmetric equilibrium.

Heterogeneity. Our model, with noise terms ϵi all drawn from the same distribution F (·) and
costs to effort given by the same function ci (·) = c (·), suggests contributors who are a priori ho-
mogeneous, corresponding to a pool of contestants who all have similar abilities for the subject of
the contest (for example, programmers with similar levels of expertise or graphic designers with
similar skill levels). Such a model captures scenarios where it is predominantly differences in ef-
fort, rather than differences in ability, that dominate differences in the quality produced. It also
captures scenarios where the contestants may be self-selected to have rather similar abilities or
expertise levels, and therefore similar costs to producing a particular quality.

Our model can nonetheless capture agent heterogeneity in two different ways. First, two contes-
tants with the same effort choice will still come up with solutions of different qualities depending
on their draws of ϵi , corresponding to situations where agents with similar skills nonetheless pro-
duce different outputs for the specific task posed by a particular contest. Second, the incentives of
agents in contests where there is indeed heterogeneity in abilities that affects agents’ final output
qualities, but where agents do not know these abilities (beyond their distribution) prior to making
their strategic effort choices, are identical to those in our model with ‘abilities’ drawn from F (·)
after the agents choose their effort levels. Therefore, this model of heterogeneity includes many

ACM Transactions on Economics and Computation, Vol. 6, No. 2, Article 7. Publication date: July 2018.
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situations with non-homogeneous contributors, as long as agents do not learn their abilities prior
to choosing their effort levels.

In a different model of heterogeneity amongst agents that appears in the contest design litera-
ture, an agent’s output qi is her ability-scaled effort aiei , where agents’ abilities are all randomly
drawn from a single distribution F (·): a logarithmic transformation of variables from qi = aiei in
those models yields exactly our model where qi = ei + ϵi . The key difference between these two
models of heterogeneity is timing of information—agents observe their random draws of ai before

making their strategic effort choices in those models, whereas agents do not observe their draws
of ϵi prior to making their effort choices in our model (for instance, as with a graphic designer
who does not know exactly how good a design she will produce until she attempts it).

3 OPTIMALITY OF THRESHOLD MECHANISMS

A contestant’s cardinal quality score can be incorporated into a given rank-order mechanism in
many different ways. A mechanism might choose to increase the reward for each rank linearly
with an agent’s output; more generally, the reward might increase as some convex function of her
cardinal quality score up to some maximum reward. The reward scheme could also vary discon-
tinuously with the quality of the agent’s output, for instance, so that the reward for a particular
rank is determined by which of several intervals the corresponding quality score lies in. A priori,
each of these cardinal modifications to a rank-order mechanism might create stronger incentives
for effort than a purely ordinal mechanism by making rewards more strongly dependent on the
absolute quality. What choice of functions дj (·) creates the strongest incentives for effort amongst
all non-decreasing дj (·)?

While analyzing this question, we make two simplifying assumptions. First, we consider func-
tions дj (q) for which there is some small δ j > 0 such that дj (q) may only assume values that are
integral multiples of δ j . While this assumption is purely for technical simplicity and our results
continue to hold without this assumption (albeit with a more complex proof), we note that this
assumption is realistic, because in any practical application there will be some minimum unit of
a currency that represents the smallest possible amount by which one can change the value of an
agent’s prize. (For example, if prizes were paid in U.S. dollars, any prize would necessarily have
to be some integral multiple of some small fraction of a penny, as a principal would not be able
to divide an agent’s prize further than this). Second, we assume that there is a unique symmetric
pure-strategy equilibrium in which all agents exert the same effort level e in the game;6 we show
in the appendix (Theorem A.1) that a unique symmetric pure-strategy equilibrium will exist under
the assumption that a player’s cost function is sufficiently convex.7

Our main result shows that the question of how to choose the functions дj (q) to optimally
modify any given rank-order mechanism has a strikingly simple answer: For any given rank-order
mechanism M (A1,A2, . . . ,An ) with fixed A1, . . . ,An , no other function can incentivize higher
equilibrium effort than the optimal step functions that increase from 0 to 1 at some threshold
score. We refer to such mechanisms as threshold mechanisms.

Theorem 3.1. Suppose there exists a unique symmetric pure-strategy equilibrium in any rank-

order tournament in which the agent who finishes in jth place is awarded a prize дj (q)Aj , where дj (q)
is a non-decreasing function satisfying 0 ≤ дj (q) ≤ 1 for all q. Then there exist functions дj (q) of the

6In particular, we also assume that there is a unique value of e that is a solution to Equation (4) in the Appendix, which

characterizes the equilibrium level of effort.
7Furthermore, we also prove in Theorem A.3 that if there is enough noise in the sense that the noise terms ϵi are drawn

from a distribution with sufficiently high variance, then only a minimal amount of convexity is needed to ensure existence

of a unique symmetric pure-strategy equilibrium.
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form дj (q) = 0 for q < q∗j and дj (q) = 1 for q ≥ q∗j for some constants q∗j that incentivize the highest

equilibrium effort amongst all possible mechanisms characterized by some functions дj (q).

All proofs are in the Appendix.
While there are potentially a variety of more nuanced ways to incorporate cardinal information

in determining agents’ prizes, Theorem 3.1 says that there is always an optimal mechanism with
an exceedingly simple form—it awards the entire value of the jth prize to the agent who finishes
in jth place if this agent’s output quality meets some threshold, and awards her no prize at all
otherwise. This result may be surprising, since it would seem more natural to use a mechanism
where an agent’s prize varies smoothly with the quality of her output, especially if agents are risk-
averse—risk-averse agents are likely to prefer a prize structure in which they have a good chance
of receiving a moderate prize over one in which they have a high chance of receiving nothing
and a high chance of receiving a large prize. Nonetheless, Theorem 3.1 shows that such threshold
mechanisms can always incentivize agents to choose optimal effort levels.

The reason that Theorem 3.1 holds is as follows: If awarding an agent some fraction of the jth
prize for output of quality qj would create an incentive for an agent to exert more effort than
not awarding the agent at all, then awarding the agent an even larger fraction of the jth prize
for output of quality qj would create an even stronger incentive to exert more effort. Thus, if it is
not optimal to award the agent none of the jth prize for output of quality qj , it will be optimal to
award the agent all of the jth prize for output quality of qj . However, it could be sensible to award
the agent none of the jth prize for low quality output, as this may create a disincentive for low
absolute quality. This in turn implies that the optimal mechanism is a threshold mechanism.

It is also worth noting that this result will hold even if there is a common shock to the agents’
output in the sense that qi = ei + ϵi + η for some randomly drawn η that is common to all agents.
A substantively identical proof can be used to prove Theorem 3.1 in this more general model. This
addresses a natural question in regards to settings with observable outputs, namely why use a
contest at all—the principal might directly write contracts with individuals that specify rewards
contingent on absolute performance. In a setting in which there are common shocks to the agents’
outputs, it is known that it is essential to use tournaments rather than a reward scheme based
purely on an individual’s output in optimal contracts [20]. Thus, the main result of our article
about the optimal cardinal contests also holds in a setting in which it is necessary to use a contest
structure to elicit optimal contributions.

4 OPTIMAL THRESHOLDS

Our main result shows that the optimal mechanism is a threshold mechanism; we now ask what
the optimal thresholds are. The proof of optimality of threshold mechanisms does not say any-
thing about how the thresholds corresponding to each rank j vary with j, and thus allows for the
possibility that the optimal thresholds might differ substantially for each rank. However, while it
might seem intuitive that the optimal threshold could either consistently increase or consistently
decrease across ranks, this turns out not to be the case, as we show below:

Theorem 4.1. Suppose the noise density f (·) is single-peaked at 0.8 Then the optimal threshold

mechanismM (A1, t
∗
1 , . . . ,An , t

∗
n ) applies the same threshold to each rank j for any monotone mech-

anismM (A1,A2, . . . ,An ), i.e., t∗j = t∗ for j = 1, . . . ,n.

Theorem 4.1 says that optimally incorporating cardinal scores into a rank-order contest to
maximize effort is, in fact, even simpler than the method suggested by Theorem 3.1—a mechanism

8Analogs of the results in this section and Section 7 can also be proven for noise densities that are single-peaked at an

arbitrary value at the cost of complicating the exposition.
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designer only needs to compare all agents’ outputs against the same baseline, reducing the
problem of finding the optimal modification of M (A1,A2, . . . ,An ) to one of choosing a single
optimal threshold t∗ for M (A1,A2, . . . ,An ). Thus, the optimal threshold mechanism would
remove all agents whose quality falls below a certain threshold, and award prizes to the remaining
contestants by using the original mechanism.

The intuition for this result is that if the mechanism designer used thresholds that decreased
with rank, then it would be possible for the agent with the highest realized quality to actually
receive a lower prize than an agent who finishes in second place, because the agent with the high-
est quality contribution failed to meet the threshold for the corresponding rank while the agent
who finished second did not. This in turn would create an incentive for agents to potentially not
want to finish in a higher place, thereby decreasing incentives to exert effort. It would also be un-
likely for the optimal thresholds to increase with rank, thereby requiring higher absolute standards
from lower-ranking agents than higher-ranking ones. Together, these arguments suggest that the
optimal threshold mechanism should use the same thresholds for all ranks.

Our proof of Theorem 4.1 also contains a proof of the following result, which we state here,
since it is used repeatedly in the remainder of our analysis:

Corollary 4.2. Suppose the noise density f (·) is single-peaked at 0. Then if t∗ denotes the optimal

threshold and e∗ (t ) denotes the equilibrium effort at a given threshold t , then t∗ = e∗ (t∗).

While equilibrium effort is maximized at the optimal threshold t∗, a mechanism designer without
access to precise information about the parameters of the population of contestants may not be
able to compute and use the optimal threshold t∗ for this population. Our next result addresses the
question of how the equilibrium effort e∗ (t ) varies as a function of the threshold used to modify a
mechanismM for arbitrary non-optimal thresholds t .

Theorem 4.3. Suppose that f (·) is single-peaked at 0. Then the equilibrium level of effort is greater

than the threshold and increasing in the threshold for t ≤ t∗ and lower than the threshold and decreas-

ing in the threshold for t > t∗.

This result is relevant to the question of identifying the optimal threshold t without complete
knowledge of the contestant population when multiple iterations of a contest will be held with
different agents. Suppose a mechanism designer uses some particular threshold t and observes
the qualities of the submissions elicited with that threshold. When the number of contestants
n is large, the mean of the elicited qualities qi = e∗ (t ) + ϵi provides a reasonable estimate of
the equilibrium effort e∗ (t ). Thus, a principal who repeatedly runs such a contest would be
able to make probabilistic inferences as to whether equilibrium effort e∗ (t ) was higher or lower
than the threshold t that was used. The theorem above indicates how the mechanism designer
can use his estimate of e∗ (t ) to update the threshold for the next iteration of the contest:
since equilibrium effort is both greater than the threshold and increasing in the threshold
when t < t∗, if equilibrium effort was probably greater than the threshold, then the threshold
t is likely to be below the optimum so the principal should increase the threshold, and vice
versa.

4.1 Comparative Statics

We now address the question of how the optimal threshold t∗ varies with changes in the number
of contestants and the prize structure. First, we consider comparative statics with respect to the
number of agents. Our mechanismsM (A1,A2, . . . ,An ) so far have been specified in terms of the
prizes for each of the n ranks, where n is the number of players. Since we want to now vary n, we

ACM Transactions on Economics and Computation, Vol. 6, No. 2, Article 7. Publication date: July 2018.
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assume that there is a fixed number k of prizes, A1,A2, . . . ,Ak , and the number of players n ≥ k .
In this scenario, we prove the following result:

Theorem 4.4. Consider any given rank-order mechanismM with prizes A1, . . . ,Ak , and let t∗ (n)
denote the optimal threshold forM when there are n agents in the contest. If the noise density f (·) is

single-peaked at 0, then the optimal threshold t∗ (n) is decreasing in the number of players n for all

n ≥ k . Furthermore, the equilibrium effort e∗ (t∗ (n)) in the optimal threshold mechanism also decreases

with n.

To understand the reasoning behind Theorem 4.4, note that when there are more agents in
the contest, the expected prize that any particular agent will be able to achieve will be smaller.
Thus, agents have less incentive to exert effort when there are more agents in the contest, and
equilibrium effort will be smaller when n is larger. At the same time, since the optimal threshold is
equal to equilibrium effort at that threshold, the optimal threshold is also decreasing in the number
of players n. This explains the results in Theorem 4.4.

Theorem 4.4 illustrates how equilibrium effort varies with the number of players n, but it is
worth noting that similar results can be obtained about how the average quality of the contribu-
tions varies with n. Since the average quality of the contributions is q = e∗ (t∗ (n)) + E[ϵi ] and E[ϵi ]
is independent of n, the result in Theorem 4.4 immediately implies that the average quality of the
contributions is also decreasing in n.9

Next, we ask how the optimal threshold varies with the number of prizes awarded. To formu-
late this question meaningfully, we consider contests where the top k participants who meet the
threshold all receive the same prize and consider two ways that the total number of prizes might
increase—first, where the total prize pool stays the same, but the prizes are split amongst a larger
number of players, and second, where the value of each prize stays the same, but more prizes
are awarded (contingent on meeting the threshold). The optimal threshold varies predictably with
these changes in the prize structure, as the following theorem illustrates:

Theorem 4.5. Suppose that f (·) is single-peaked at 0 and the number of prizes is less than the

number of players.

(1) The optimal threshold t∗ in a contest with k equal prizes of value A is increasing in k .

(2) The optimal threshold t∗ in a contest with k equal prizes of value A/k is increasing in k if

players are sufficiently risk-averse. Formally, there is some α > 0 such that if the coefficient

of absolute risk aversion, −v ′′( ·)
v ′ ( ·) , satisfies −v ′′(A)

v ′ (A) ≥ α for all A, then the optimal threshold t∗

in a contest of k equal prizes of value A
k

is increasing in k .

The intuition for this result has to do with how an agent’s incentives to try to meet the threshold
vary with the number of prizes. As the number of prizes increases in either of the two manners
considered in Theorem 4.5, the expected value of the prize that an agent obtains for meeting the
threshold increases. Thus, agents have a stronger incentive to try to meet the threshold, and agents
will thus exert more effort in equilibrium when there are a larger number of prizes.10 Since the
optimal threshold is equal to the equilibrium level of effort, it then follows that increasing the
number of prizes also increases the optimal threshold.

9However, there is no general result about how the average quality of the best contribution varies with n. The average

quality of the best contribution is qmax = e∗ (t ∗ (n)) + E[maxi {ϵi }]. Since e∗ (t ∗ (n)) is decreasing in n while E[maxi {ϵi }]
is increasing in n, there is no general result about how qmax varies with n.
10Similarly, the average quality of the contributions and the average quality of the best contribution will also increase when

there are a larger number of prizes.
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5 HOW USEFUL IS CARDINAL INFORMATION?

Our results thus far show that making the award of the prizes in a rank-order contest
M (A1,A2, . . . ,An ) contingent on submission qualities exceeding a suitable threshold creates the
strongest incentives for effort, and in particular, outperforms the contest that ignores cardinal in-
formation. In this section, we address the question of how much of an improvement is obtained
from using this cardinal information relative to M (A1,A2, . . . ,An ), which awards prizes based
only on relative rankings.

We first present simulation results to obtain a sense of the size of the improvement in equilib-
rium effort as a function of the number of contestants, the nature of participants’ cost functions,
the reward structure (A1,A2, . . . ,An ), and the noise distribution governing the stochastic perturba-
tions that influence an agent’s output. We ask to what extent the size of these gains are affected by
changes in these underlying parameters, and discuss these results in the context of typical parame-
ter values in online contests. Finally, we conclude with a theorem that formalizes the observations
from these simulations.

Simulations. We simulate contests where n players each have a cost function c (ê ) = êa

a
for

some constant a > 1 (a larger a corresponds to a more convex cost function). We assume that
players are risk-neutral with values v (A) = A for a prize A. For the distribution of the noise terms
ϵi that randomly influence a player’s submission quality as qi = ei + ϵi , we consider IID draws
from (i) a standard normal distribution and (ii) a standard Laplace distribution. For the set of prize
structures, we consider contests with prizes of A1 and A2 for the top two ranks and Aj = 0 for all
lower ranks for simplicity and brevity. Each of n, a, and the split into A1 and A2 are parameters
describing the contest that we will vary in our simulations.

Computing equilibrium efforts. To quantify the extent of improvement in equilibrium ef-
fort from using cardinal information in a contest, we first need to calculate the equilibrium level
of effort both with no threshold and with the optimal threshold. When there is no threshold, the
equilibrium level of effort is the same as it would be if the threshold were t = −∞. Applying Equa-
tion (7) in the Appendix to the special case in which t = −∞, we see that the equilibrium level of
effort e∗

ϕ
with no thresholds must satisfy

e∗
a−1

ϕ =

n∑
j=1

v (Aj )

[∫ ∞

−∞

[
(n − 1)!

(j − 1)!(n − j − 1)!
(1 − F (ϵi )) j−1F (ϵi )n−j−1 (1)

− (n − 1)!

(j − 2)!(n − j )! (1 − F (ϵi )) j−2F (ϵi )n−j

]
f 2 (ϵi ) dϵi

]
,

where we abuse notation by defining
(n−1)!

(j−2)!(n−j )! to be zero when j = 1.

When the mechanism designer uses the optimal threshold t∗, we know from Corollary 4.2 that
the equilibrium level of effort e∗O equals the optimal threshold. Setting t = e in Equation (7), we
see that e∗O must satisfy

e∗
a−1

O =

n∑
j=1

v (Aj )

[(
n − 1

j − 1

) (
1

2

)n−1

f (0) +

∫ ∞

0

[
(n − 1)!

(j − 1)!(n − j − 1)!
(1 − F (ϵi )) j−1F (ϵi )n−j−1 (2)

− (n − 1)!

(j − 2)!(n − j )! (1 − F (ϵi )) j−2F (ϵi )n−j

]
f 2 (ϵi ) dϵi

]
.

We can compute the percentage increase in equilibrium effort for a particular set of contest pa-
rameters by using the equations above to compute e∗

ϕ
and e∗O . We compute these improvements

for a wide range of different parameters to observe how the various parameters affect the extent
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Table 1. Percentage Increase in Equilibrium Effort from Using

the Optimal Threshold Under a Winner-take-all Contest When

the Cost to Effort ê is c (ê ) = ê2

2 for Different Noise Distributions

and Varying Values of the Number of Players n

n Normal distribution Laplace distribution
2 20.71% 50.00%
3 4.95% 16.67%
4 1.59% 7.14%
5 0.58% 3.33%
6 0.23% 1.61%
7 0.10% 0.80%
8 0.04% 0.40%
9 0.02% 0.19%

Table 2. Percentage Increase in Equilibrium Effort from Using the

Optimal Threshold for Different Noise Distributions and Varying

Values of the Term a in the Cost Function c (ê ) = êa

a , Under a

Winner-take-all Contest with n = 4

a Normal distribution Laplace distribution
1.25 6.51% 31.78%
1.5 3.21% 14.80%
1.75 2.12% 9.64%

2 1.59% 7.14%
3 0.79% 3.51%
4 0.53% 2.33%
5 0.40% 1.74%
6 0.32% 1.39%

Table 3. Percentage Increase in Equilibrium Effort from Using the

Optimal Threshold for Different Noise Distributions and Varying

Distributions of the Top Prizes, with Five Players When c (ê ) = ê2

2

(A1,A2) Normal distribution Laplace distribution
(1, 0) 0.58% 3.33%

(0.9, 0.1) 1.06% 5.17%
(0.8, 0.2) 1.59% 7.14%
(0.7, 0.3) 2.20% 9.26%
(0.6, 0.4) 2.90% 11.54%
(0.5, 0.5) 3.72% 14.00%

of the increase in equilibrium effort from using cardinal information via the optimal threshold
mechanisms. The results are summarized in Tables 1–3.

Discussion of simulation results. The simulations lead to a number of interesting insights.
First, they show that when the number of players is larger, the benefit to setting the optimal thresh-
old is relatively smaller. We also see that when the parameter a in the exponent of the cost function

c (ê ) = êa

a
increases, so that players’ cost functions are more convex, less is gained by using the
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optimal threshold. Finally, when more of the prizes are given to the lower-ranked players, there is
again a larger benefit from using a threshold.

These observations all have intuitive explanations. Since equilibrium effort equals the opti-
mal threshold (Corollary 4.2), when there are a large number of players, the winning players’
final realized quality is likely to far exceed the threshold, so the threshold provides little incen-
tive for effort. By contrast, when there are only a small number of players, there is a significant
risk that even the winning player’s final realized quality will be in the same range as the thresh-
old, and the threshold may therefore provide significant incentives to exert effort. Thus, using
the optimal threshold should have a relatively smaller effect when there are a larger number of
players.

We note that both regimes with large numbers of players and small numbers of players are rel-
evant empirically. For example, in Kaggle contests, there are typically at least dozens and usually
hundreds of participants, so in such a contest, setting the optimal threshold is likely to have little
effect on incentives to exert effort. By contrast, many tasks on TaskCN and Topcoder11 only at-
tract a few participants,12 so in such contests, using the optimal threshold is likely to significantly
improve effort. There are also online contests with elimination rounds leading up to a final round
with a few finalists (such as the Robin Hood Foundation Prize13). In such settings, our results would
suggest that using an optimal threshold to award prizes is likely to significantly improve effort in
the final round of the contest.

To understand why convexity affects equilibrium effort, note that when the players’ cost func-
tions are more convex, a change in a player’s effort does relatively more to increase the player’s
marginal cost of exerting effort, which in turn implies that a player can only increase her effort
by a smaller amount in response to improved incentives before the player’s marginal cost from
exerting more effort will equal her marginal benefit. Thus, using the optimal threshold will have
less effect when the players’ cost functions are more convex.

Finally, we address the effect of the distribution of prizes. The lower-ranked players are
more likely to have final realized qualities that are close to the threshold, so the threshold pro-
vides a greater incentive for a lower-ranked player to exert effort than a higher-ranked player.
Thus, when a greater amount of the prize pool is given to the lower-ranked players, this shifts
prizes from players who will be less strongly incentivized by the thresholds to players who
will be more strongly incentivized by the thresholds. Thus, using the optimal threshold has a
relatively greater effect when a larger amount of the prize pool is distributed amongst lower
ranks.

All these insights are, in fact, more general than this, as shown below:

Theorem 5.1. Consider values of the number of playersn for which there exists a unique symmetric

pure-strategy equilibrium.14 Let eopt denote the equilibrium effort that is achieved under the optimal

threshold and let e0 denote the equilibrium effort that is achieved when there is no threshold. Then,

we have the following results:

(1) If c (e ) = e2

2 , f (·) is symmetric about 0, and the number of players n is at least twice as large

as the number of prizes k , then the difference eopt − e0 is decreasing in n.

11http://community.topcoder.com/tc?module=CompList&pt=35.
12For example, Reference [29] notes that most programming tasks on TaskCN attracted fewer than six participants and

[50] notes that it is far more common to receive a small number of solutions for a task on TaskCN than some larger number

of solutions.
13https://www.robinhood.org/prize.
14An immediate implication of Theorem A.3 is that if the noise terms ϵi are drawn from a distribution with sufficiently

high variance, then a unique symmetric pure-strategy equilibrium will exist for a wide range of values of n.
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(2) If c (e ) = e2

2 , f (·) is symmetric and single-peaked about 0, the number of players n is at least

twice as large as the number of prizes k , and all prizes are equal, then the relative gain in

equilibrium effort from the optimal threshold,
eopt−e0

e0
, is decreasing in n.

(3) If c (e ) = e2

2 , f (·) is symmetric about 0, the number of players n is at least twice as large as

the number of prizes k , and the prizes are all equal, then the difference eopt − e0 is increasing

in k .

(4) If c (e ) = e2

2 , f (·) is symmetric and single-peaked about 0, the number of players n is at least

twice as large as the number of prizes k , and the prizes are all equal, then the relative gain

in equilibrium effort from the optimal threshold,
eopt−e0

e0
, is increasing in k .

(5) If c2 (·) is a more convex cost function than c1 (·) in the sense that the ratio
c ′′ (e )
c ′ (e ) is greater for

c = c2 (·) than it is for c = c1 (·) and the values of e0 are equal under c1 (·) and c2 (·), then both

the difference eopt − e0 and the ratio
eopt−e0

e0
are larger for c1 (·) than for c2 (·).

The results in this section so far have addressed how the increase in equilibrium effort from using
the optimal threshold varies with the parameters, but one could also derive similar conclusions
about other natural metrics of interest, such as the average quality of the contributions or the
average quality of the best contribution. First, note that when f (·) is symmetric about zero, then
the average quality of the contributions is just equal to the equilibrium level of effort e . Thus, all
of our results in Theorem 5.1 about how the increase in equilibrium effort from using the optimal
threshold varies with the parameters also apply to how the increase in the average quality of the
contributions varies with the parameters.

These results also apply to how the increase in the average quality of the best contribution
from using the optimal threshold varies with the parameters. Note that the average quality of the
best contribution under a symmetric pure-strategy equilibrium will be qmax = e + E[maxi {ϵi }],
where e denotes equilibrium effort and E[maxi {ϵi }] denotes the expectation of the largest value
of ϵi . Since E[maxi {ϵi }] does not vary with the cost function or the number of prizes, any results
in Theorem 5.1 about how the increase in equilibrium effort varies with the cost function or the
numbers of prizes also apply to how the increase in the average quality of the best contribution
varies with these parameters.

Similarly, the result in Theorem 5.1(i) about how eopt − e0 is decreasing in the number of players
n implies that qopt − q0 is decreasing in n, where qopt denotes the average quality of the best con-
tribution under the optimal threshold, and q0 denotes the average quality of the best contribution
under no threshold. And since E[maxi {ϵi }] is increasing in n, the result in Theorem 5.1(ii) that
eopt−e0

e0
is decreasing in n also implies that

qopt−q0

q0
=

eopt−e0

e0+E[maxi {ϵi }] is decreasing in n. Thus, all the

results in Theorem 5.1 about how the impact of the optimal threshold on equilibrium effort varies
with the parameters also apply to how the increase in the average quality of the best contribution
varies with the parameters.

Finally, we can also make statements about how the amount of surplus extracted by using the
optimal threshold varies with the underlying parameters, where we define the amount of surplus
extracted by the optimal threshold as the percentage decrease in the net utility of the players as a
result of using the optimal threshold rather than no threshold. We first note how this surplus ex-
tracted varies with the number of players and the number of prizes in the same settings considered
in Tables 1 and 3.

The results in Tables 4 and 5 suggest that the fraction of surplus extracted is larger both when
the number of players n is smaller and when more of the prize pool is given to the lower-ranked
players. These results have intuitive explanations.
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Table 4. Percentage of Surplus Extracted from Using

the Optimal Threshold (i.e., the Percentage Decrease

in the Net Utility of the Players as a Result of Using the

Optimal Threshold) Under a Winner-Take-all Contest When

c (ê ) = ê2

2 for different Noise Distributions and Varying Values

of the Number of Players n

n Normal distribution Laplace distribution
2 31.11% 46.43%
3 15.57% 23.72%
4 7.69% 11.23%
5 3.80% 5.24%
6 1.87% 2.45%
7 0.93% 1.16%
8 0.46% 0.56%
9 0.23% 0.27%

Table 5. Percentage of Surplus Extracted from Using the Optimal

Threshold (i.e., the Percentage Decrease in the Net Utility of the

Players as a Result of Using the Optimal Threshold) for Different

Noise Distributions and Varying Distributions of the Top Prizes,

with Five Players When c (ê ) = ê2

2

(A1,A2) Normal distribution Laplace distribution
(1, 0) 3.79% 5.24%

(0.9, 0.1) 5.62% 7.69%
(0.8, 0.2) 7.37% 10.06%
(0.7, 0.3) 9.07% 12.33%
(0.6, 0.4) 10.71% 14.51%
(0.5, 0.5) 12.30% 16.62%

When the number of players n is larger, the fact that there is a smaller percentage difference in
effort under no threshold and the optimal threshold also implies that there is a smaller percentage
difference in cost of effort under no threshold and the optimal threshold. In addition, there is also a
smaller percentage difference in the probability the prize will be paid out for the following reason:
When there is no threshold, the probability the highest-ranked player’s contribution will meet the
threshold is 1. By contrast, under the optimal threshold t∗, we know that e∗ (t∗) = t∗ in equilibrium,
so the probability any given player’s contribution meets the threshold is just the probability that
ϵi ≥ 0 or F (0) = 1

2 , meaning the probability the highest-ranked player’s contribution will fail to

meet the threshold is 1
2n , which is decreasing in n. Thus, when the number of players is larger,

there is a smaller difference between the probability the prize will be paid out under the optimal
threshold and under no threshold.

But since there is a smaller percentage difference in cost of effort and a smaller difference be-
tween the probability the winning prize will be paid out under no threshold and the optimal thresh-
old when the number of players n is larger, it is reasonable to also expect there to be a smaller
percentage difference in the net utility of the players when the number of players n is larger. Thus,
the results in Table 4 make intuitive sense.

Similarly, when more of the prize pool is given to lower-ranked players, the fact that there will
then be a larger percentage difference in effort under no threshold and the optimal threshold also
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implies that there is a larger percentage difference in cost of effort under no threshold and the
optimal threshold. And since there is a larger probability that the lower-ranked players will fail
to meet the optimal threshold than there is that the higher-ranked players will fail to meet the
optimal threshold, the expected difference in the total value of the prizes paid out will be larger
when more of the prize pool is given to lower-ranked players. Thus, it is also reasonable to expect
there to be a larger difference in the net utility of the players when more of the prize pool is given
to lower-ranked players, as we saw in Table 5.

6 OPTIMAL PRIZE STRUCTURES

In the previous section, we have seen that the size of the improvement in effort that can be achieved
by using the optimal threshold can depend significantly on the parameters of the contest, including
how the prize pool is divided amongst the various places. Various papers in the literature have
addressed questions related to the optimal division of prizes in rank-order tournaments, but none
have addressed this question in the context of mixed cardinal-ordinal tournaments. Would the
optimal division of prizes change as a result of optimally incorporating cardinal information into
a contest?

In particular, suppose the optimal division of the prize pool A amongst the n places for a rank-
order mechanism is (A1, . . . ,An ), where A1 ≥ · · · ≥ An . Is it still the case that this is the optimal
division of the prizes amongst the n places for the optimal mixed cardinal-ordinal mechanism that
makes use of the optimal threshold? In this section, we illustrate that the answer to this question
depends crucially on whether the agents are risk-averse:

Theorem 6.1. (1) If v (A) = A, then regardless of whether no threshold or the optimal threshold is

used, the optimal prize structure is a winner-take-all prize structure.15

(2) Ifv (·) is strictly concave, then the optimal prize structures generally differ when the mechanism

designer uses the optimal threshold instead of no threshold. In particular, if n ≥ 4 and the prize pool

is split between the top two places, then it is optimal to give a larger percentage of the prize pool to

the second place finisher under the optimal threshold than under no threshold.

The intuition behind this result is as follows. We have seen that making use of the optimal
threshold does more to increase the amount of effort agents exert in equilibrium when a larger
fraction of the prize pool is given to the lower-ranked players. And since making use of the optimal
threshold mechanism is more beneficial when a larger fraction of the prize pool is given to the
lower-ranked players, the principal will generally have an incentive to give a larger percentage of
the prize pool to the lower-ranked players when the principal is using the optimal threshold than
under a pure rank-order mechanism.16

The only exception to this is when there is a non-interior solution to the optimal division of
prizes, as when agents are risk-neutral. In this case, the same division of the prize pool may be
optimal regardless of whether the principal uses the optimal threshold mechanism or a purely
ordinal mechanism. Thus, the winner-take-all prize structure is optimal for risk-neutral agents
regardless of whether the mechanism designer uses the optimal threshold.

15References [25] and [31] present similar results about the optimality of winner-take-all prize structures with no threshold,

but do not prove such a result for threshold mechanisms.
16However, the principal will still typically have an incentive to give a larger fraction of the prize pool to the winner of the

contest than the second-place finisher, even under the optimal threshold mechanism. This contrasts with Reference [30],

which illustrates circumstances, albeit in a completely different model of contests, under which it may actually be optimal

to give a larger fraction of the prize pool to the second-place finisher than to the winner of the contest.
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7 ENDOGENOUS ENTRY

In this section, we investigate cardinal contests with endogenous entry. We extend our model in
Section 2 to incorporate endogenous entry as follows. Agents first simultaneously decide whether
to participate in the contest; an agent who does not participate incurs no cost but also receives
no prize, obtaining a utility of zero. An agent who does participate incurs a cost of effort, and an
expected benefit depending on her performance in the contest; her final utility is exactly as in
the model with exogenous entry in Section 2. After agents make their simultaneous participation
decisions, each agent observes how many other agents have chosen to participate in the contest,
and the agents then simultaneously decide how much effort to exert in the contest. We note that
in this model with endogenous entry, agents’ cost functions c (·) can be nonzero at 0 (i.e., c (0) > 0),
meaning that participating in the contest is allowed (though not required) to be strictly more costly
than not participating at all, even if one exerts almost no effort.

A set of participation decisions is an equilibrium if no agent can profitably deviate by making
a different participation choice, accounting for how the remaining participants will update their
effort choice to account for this change in participation. Specifically, suppose k agents decide to
participate in a given threshold mechanism with threshold t , and let e∗ (t ,k ) denote the equilibrium
level of effort in the game where exactly k agents participate. For k to be an equilibrium level of
participation, (i) the expected utility to each of these k agents when they participate with effort
e∗ (t ,k ) and the remaining agents do not participate must be nonnegative, and (ii) none of the n − k
non-participants can profitably deviate by participating and choosing any effort level e ≥ 0 when
these k agents are participating with effort e∗ (t ,k + 1). Throughout, we let n denote the number of
agents who must decide whether to participate in the contest and k denote the number of agents
who actually choose to participate in the contest; i.e., n is the number of potential contestants
and k is the number of actual participants. We first note that there exists an equilibrium to the
endogenous entry game under threshold mechanisms:

Theorem 7.1. Suppose entry is endogenous. For every threshold mechanism, there is a pure-

strategy equilibrium in which some agents participate with certainty and the remaining agents do

not participate; furthermore, all participating agents choose the same level of effort.

We now investigate the nature of optimal thresholds. In general, different thresholds may result
in different levels of participation in equilibrium, and the principal will face a tradeoff between the
equilibrium number of participants and their level of effort. In the following theorem, we address
the question of how a principal who desires a certain level of participation can choose the optimal
threshold that maximizes effort from these participants. Let t∗ (k ) denote the optimal threshold
when exactly k agents participate.

Theorem 7.2. Suppose that f (·) is single-peaked at 0, and k is such that there exists some threshold

t such that it is an equilibrium for exactly k agents to participate in the mechanism (A1,A2, . . . ,An )
modified by the threshold t . To maximize equilibrium effort subject to the constraint that exactly k
agents participate, the principal chooses the largest threshold less than or equal to t∗ (k ) at which there

is an equilibrium in which exactly k agents participate.

Theorem 7.2 indicates that it will never be optimal for the principal to use a threshold greater
than t∗ (k ) to maximize equilibrium effort if he wants exactly k agents to participate. We now
illustrate how equilibrium participation levels vary with the threshold t for such t ≤ t∗ (k ).

Theorem 7.3. Suppose that f (·) is single-peaked at 0. Fix a rank-order mechanism

M (A1,A2, . . . ,An ), and restrict attention to thresholds t ≤ t∗ (k ), where k denotes the equilibrium

number of participants. Suppose that at the threshold t1, there exists an equilibrium in which exactly
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k1 agents participate. Then for all thresholds t2 ≤ t1, there exists some equilibrium in which exactly

k2 agents participate for some k2 ≥ k1.

Participation-effort tradeoffs. In general, different thresholds could lead to different equilibrium
participation levels, since Theorem 7.3 indicates that equilibrium participation may increase as a
result of decreasing the threshold. These equilibria with lower thresholds and higher participa-
tion will also lead to lower levels of effort—from Theorem 4.4, equilibrium effort decreases in the
number of contestants, and from Theorem 4.3, equilibrium effort is increasing in the threshold
for thresholds t ≤ t∗ (k ) (by Theorem 7.2, these are the only thresholds that the principal should
consider under endogenous entry). Thus, while the principal will generally have several feasible
levels of participation that he can induce by appropriately choosing the threshold, he will also face
a participation-effort tradeoff—he can induce higher levels of participation by choosing a lower
threshold, but this will come at the cost of lower equilibrium effort. The choice of which point to
choose in the participation-effort tradeoff curve, and consequently the value of the optimal thresh-
old, will be determined by how the principal values participation versus effort, which in turn can
depend strongly on the context in which the contest is being held.17

8 CONCLUSION

In this article, we addressed the problem of how a principal running a contest might opti-
mally incorporate cardinal information regarding the absolute qualities of contestants’ entries
into an existing rank-order tournament. We found that threshold mechanisms, which com-
pare a submission’s score against an absolute threshold—in fact, the same threshold for each
prize—are optimal amongst the class of all mixed cardinal-ordinal mechanisms where the agent
with the jth-ranked submission with quality qj obtains an arbitrary quality-dependent frac-
tion дj (qj ) of the prize Aj . Therefore, using cardinal information by comparing against a sin-
gle threshold provides the optimal modification of a rank-order mechanism for incentivizing
effort. Finally, we saw that the gains from incorporating cardinal information are highest for
small contests with more than one prize and with participants whose costs to effort are not too
convex.

A number of open questions remain for further research. First, the specific question we ask about
modifying given rank-order mechanisms to incorporate cardinal information is motivated by the
fact that practical considerations beyond incentives for effort—such as simplicity, sponsorships
of various prize levels, media or publicity considerations—might cause a principal to choose a
particular prize structure for his contest. However, it is also interesting to study the more general
optimal contest design problem in such contests with access to absolute measurements of quality.
What mechanismM (q1, . . . ,qn ) incentivizes the highest effort over all mechanisms with access
to cardinal, and not just ordinal, information about outputs?18 And how does the answer to this
question depend on the specifics of the model such as agents’ risk preferences and the objective
function of the mechanism designer?

A second intriguing question regards a connection to optimal auctions and reserve pricing.
There is a formal connection between auctions and contests [8, 9, 12] in an alternative model for
contests where effort deterministically translates into output. At first glance, this might suggest a

17It is worth noting that the equilibrium in Theorem 7.1 is not necessarily the only equilibrium, as there may also be a

symmetric mixed-strategy equilibrium in which all agents participate with the same probability in equilibrium. Analyzing

such an equilibrium would result in identical substantive conclusions to those in Theorem 7.3. Choosing a lower threshold

will increase the probability with which agents participate in equilibrium, while decreasing the level of effort that such

agents exert in equilibrium.
18Reference [8] addresses this question in a specific (but different) model; see Section 1.1.
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mapping between the analysis in our article and that in the literature on sponsored search auctions
[13, 37]. However, this mapping is a fallacious analogy in contests where output is a stochastic
perturbation of effort, because the fact that an agent’s output is determined by a noise-perturbed
version of effort completely changes both the structure of the problem and all the underlying
analysis relative to auctions.19 Nevertheless, the parallels between our results on optimality of
thresholds in contests and auctions raise the question of whether there is a way to formally relate
our results on contests to the optimality of reserve prices in auctions. A deeper understanding of
the connection between threshold mechanisms and optimal auctions is an interesting direction for
further research.

APPENDIX

A PROOFS OF MAIN RESULTS

A.1 Equilibrium Existence

Theorem A.1. There exists some constantC = C (n,Aj , F ) independent of the functions дj (qj ) such

that if c ′′(·) > C , then for any mixed-cardinal ordinal mechanism, there is a unique symmetric pure-

strategy equilibrium.20

Proof. Define a ladder function lj (q) to be a function characterized by a set ofmj cutoffs q∗1, j <

q∗2, j < · · · < q∗mj , j
such that lj (q) = r0, j forq < q∗1, j , lj (q) = rm, j for allq ∈ [q∗m, j ,q

∗
m+1, j ), and lj (q) =

rmj , j for q ≥ q∗mj , j
, where 0 ≤ r0, j < r1, j < · · · < rmj , j ≤ 1. Note that any non-decreasing function

дj (q) such that дj (q) is an integral multiple of δ j and 0 ≤ дj (q) ≤ 1 for all q can be written in
this form. Thus, to prove that a symmetric pure-strategy equilibrium exists and is unique for any
mixed-cardinal ordinal mechanism, it suffices to show that such an equilibrium exists and is unique
amongst the set of all mechanisms induced by ladder functions.

Let yj (e, ei , ϵi ) denote the probability that agent i finishes in jth place for a given realization of
ϵi given that agent i exerts effort ei and all other agents exert effort e . If the prize for being ranked
in jth place with a contribution of quality q is lj (q)Aj for some ladder function lj (q), then an agent
i’s expected utility from exerting effort ei when all other agents are exerting effort e is

E[ui ] =

n∑
j=1

∫ ∞

−∞
v (дj (ei + ϵi )Aj )yj (e, ei , ϵi ) f (ϵi ) dϵi − c (ei )

=

n∑
j=1

mj∑
k=0

∫ q∗
k+1, j

−ei

q∗
k, j
−ei

v (rk, jA)yj (e, ei , ϵi ) f (ϵi ) dϵi − c (ei ),

where we abuse notation by letting q∗0, j ≡ −∞ and q∗mj+1, j ≡ ∞. From this it follows that the de-

rivative of the agent’s utility with respect to ei is given by

n∑
j=1

mj∑
k=0

v (rk, jA)[yj (e, ei ,q
∗
k, j − ei ) f (q∗k, j − ei ) − yj (e, ei ,q

∗
k+1, j − ei ) f (q∗k+1, j − ei )

+

∫ q∗
k+1, j

−ei

q∗
k, j
−ei

∂yj (e, ei , ϵi )

∂ei
f (ϵi ) dϵi ] − c ′(ei ).

19Note that this is true even if we do not restrict attention to mechanisms that modify a particular rank-order mechanism

in the manner we have considered in our article.
20One can prove that a symmetric equilibrium will always exist by applying the general equilibrium existence result in

Reference [3]. However, if the cost function does not satisfy the condition in Theorem A.1, it may be that any symmetric

equilibrium is in mixed strategies.
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Similarly, the second derivative of the agent’s utility with respect to ei is

n∑
j=1

mj∑
k=0

v (rk, jA)

[ ∂[yj (e, ei ,q
∗
k, j
− ei )]

∂ei
f (q∗k, j − ei ) − yj (e, ei ,q

∗
k, j − ei ) f ′(q∗k, j − ei )

−
∂[yj (e, ei ,q

∗
k+1, j

− ei )]

∂ei
f (q∗k+1, j − ei ) + yj (e, ei ,q

∗
k+1, j − ei ) f ′(q∗k+1, j − ei )

+
∂yj (e, ei , ϵi )

∂ei

�����ϵi=q∗
k, j
−ei

f (q∗k, j − ei ) −
∂yj (e, ei , ϵi )

∂ei

�����ϵi=q∗
k, j+1

−ei

f (q∗k, j+1 − ei )

+

∫ q∗
k+1, j

−ei

q∗
k, j
−ei

∂2yj (e, ei , ϵi )

∂e2
i

f (ϵi ) dϵi

]
− c ′′(ei ), (3)

where
∂[yj (e,ei ,q

∗
k, j
−ei )]

∂ei
denotes the partial derivative of yj (e, ei ,q

∗
k, j
− ei ) with respect to ei , and

∂yj (e,ei ,ϵi )
∂ei

|ϵi=q∗
k, j
−ei

denotes the partial derivative of yj (e, ei , ϵi ) with respect to ei evaluated at

ϵi = q
∗
k, j
− ei . But yj (e, ei , ϵi ) is just the probability that an agent finishes in jth place for given

values of e , ei , and ϵi and is therefore a continuous and bounded function with bounded first and
second derivatives (for fixed and finite n). Similarly, f (·) is just a continuous and bounded density
with bounded first derivative. From this it follows that there exists some bound C independent
of e , ei , and all the functions дj (qj ) such that if c ′′(e ) > C for all e , then the second derivative
of the agent’s utility with respect to effort is always negative. This implies that if the first-order
conditions for a given level of effort ei to be a local optimum are satisfied, then this level of effort
ei is also a global optimum. From this it follows that if c (·) is a sufficiently convex function, then
any level of effort e that satisfies

n∑
j=1

mj∑
k=0

v (rk, jA)[(yj (e, e,q∗k, j − e ) f (q∗k, j − e ) − yj (e, e,q∗k+1, j − e ) f (q∗k+1, j − e ))

+

∫ q∗
k+1, j

−e

q∗
k, j
−e

∂yj (e, ei , ϵi )

∂ei

�����ei=e

f (ϵi ) dϵi ] − c ′(e ) = 0 (4)

can indeed be sustained in a symmetric pure-strategy equilibrium.
To prove that there exists a unique symmetric pure-strategy equilibrium, it thus suffices to show

that there is a unique value of e that satisfies Equation (4). To see that such a value exists, note
that when e = 0, then c ′(e ) = 0, but the derivative of a player’s expected prize with respect to
effort is positive, so the derivative in Equation (4) is positive. But in the limit as e → ∞, c ′(e ) → ∞,
but the derivative of a player’s expected prize with respect to effort must remain bounded, so
Equation (4) becomes negative. Since the expression in Equation (4) is a continuous function of e ,
it then follows that there is some intermediate value of e for which this equation is satisfied with
equality.

To see that this equilibrium is unique for sufficiently convex c (·), note that similar reasoning to
that used to show the second derivative in Equation (3) is negative also shows that the derivative
of Equation (4) with respect to e is negative for sufficiently convex c (·). This in turn implies that
there is at most one solution to this equation. From this it follows that if c (·) is sufficiently convex,
then there exists a unique symmetric pure-strategy equilibrium. �

In addition to Theorem A.1, we also seek to show that the value of C in the statement of this
theorem that is needed to ensure existence of a unique symmetric pure-strategy equilibrium is
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minimal when the noise terms are drawn from a distribution with sufficiently high variance. First,
we present a preliminary technical lemma about one of the terms in Equation (3) in the above
proof:

Lemma A.2. The probability that agent i will finish in jth place for a given realization of ϵi when

agent i exerts effort ei and all other agents exert effort e is

yj (e, ei , ϵi ) =

(
n − 1

j − 1

)
(1 − F (ei − e + ϵi )) j−1F (ei − e + ϵi )n−j . (5)

Proof. If ϵ[j] denotes the jth-largest of the noise terms ϵ drawn by the n − 1 remaining agents,
then agent i will have the jth-highest quality output if and only if e + ϵ[j] ≤ ei + ϵi ≤ e + ϵ[j−1].
The probability of this event, for a given draw of ϵi , is the probability that the number ei + ϵi − e
lies between the random values of ϵ[j] and ϵ[j−1]. Thus, the probability of this event is equal to
the probability that exactly j − 1 of n − 1 randomly drawn values from the cumulative distribution
function F (·) exceed ei + ϵi − e . Using standard expressions for binomial probabilities, we know
that this event takes place with the probability given in Equation (5). �

With Lemma A.2 in mind, we now show that the value of C that is needed in Theorem A.1
to ensure existence of a unique symmetric pure-strategy equilibrium is minimal when the vari-
ance in the noise terms is sufficiently large. In particular, we parameterize F (·) by Fσ (ϵ ) ≡ F ( ϵ

σ
)

and consider what happens in the limit as σ → ∞. In this setting, we obtain the following
result:

Theorem A.3. If Fσ (ϵ ) ≡ F ( ϵ
σ

), then the minimum value of c ′′(·) needed to ensure existence of a

unique symmetric pure-strategy equilibrium in Theorem A.1, C = C (n,Aj , Fσ ), approaches 0 in the

limit as σ → ∞.

Proof. If fσ (ϵ ) denotes the probability density function corresponding to Fσ (ϵ ), then fσ (ϵ ) =
d

dϵ
F ( ϵ

σ
) = 1

σ
f ( ϵ

σ
) and f ′σ (ϵ ) = 1

σ 2 f
′( ϵ

σ
). Thus, both fσ (ϵ ) and f ′σ (ϵ ) converge to 0 uniformly in

the limit as σ → ∞.
In addition to this, if h(x ) ≡ ( n−1

j−1 ) (1 − x ) j−1xn−j , then we know from Equation (5) that

yj (e, ei , ϵi ) = ( n−1
j−1 ) (1 − Fσ (ei − e + ϵi )) j−1Fσ (ei − e + ϵi )n−j = h(Fσ (ei − e + ϵi )). It then follows

that
∂yj (e,ei ,ϵi )

∂ei
= h′(Fσ (ei − e + ϵi )) fσ (ei − e + ϵi ) and

∂2yj (e,ei ,ϵi )

∂e2
i

= h′′(Fσ (ei − e + ϵi )) f 2
σ (ei −

e + ϵi ) + h′(Fσ (ei − e + ϵi )) f ′σ (ei − e + ϵi ). Thus,
∂yj (e,ei ,ϵi )

∂ei
and

∂2yj (e,ei ,ϵi )

∂e2
i

both converge to 0 uni-

formly in the limit as σ → ∞ as well.
But these results in turn imply that the expression in brackets in Equation (3) also converges to

0 uniformly in the limit as σ → ∞. Thus, in the limit as σ → ∞, the minimum value ofC needed to
ensure that the expression in Equation (3) will be negative if c ′′(e ) > C approaches 0, which in turn
implies that the minimum value of c ′′(·) needed to ensure existence of a symmetric pure-strategy
equilibrium approaches 0 in the limit asσ → ∞. A similar argument shows that the minimum value
of c ′′(·) needed to ensure any such equilibrium is unique approaches 0 in the limit as σ → ∞. �

A.2 Optimality of Threshold Mechanisms

Proof of Theorem 3.1: As in the proof of Theorem A.1, to prove that threshold mechanisms are
optimal amongst all mechanisms, it suffices to show that threshold mechanisms are also optimal
amongst the set of all mechanisms induced by ladder functions. We also know from this proof that
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in a pure-strategy equilibrium, the equilibrium effort e must satisfy

c ′(e ) =
n∑

j=1

mj∑
k=0

v (rk, jA)
⎡⎢⎢⎢⎢⎣(yj (e, e,q∗k, j − e ) f (q∗k, j − e ) − yj (e, e,q∗k+1, j − e ) f (q∗k+1, j − e ))

+

∫ q∗
k+1, j

−e

q∗
k, j
−e

∂yj (e, ei , ϵi )

∂ei

�����ei=e

f (ϵi ) dϵi

⎤⎥⎥⎥⎥⎦ . (6)

But note that the right-hand side of this equation is a linear function of v (rk, jA) for all k and j.
From this it follows that for allk ≤ mj , the right-hand side of this equation is either non-decreasing
in rk, j or non-increasing in rk, j . Thus, ifmj ≥ 2, then one can instead set the value of r1, j to either
be equal to r0, j or r2, j without decreasing the right-hand side of Equation (6), meaning that one
can make this change without decreasing equilibrium effort.

But setting the value of r1, j to equal r0, j or r2, j would be equivalent to replacing the ladder
function lj (q) with a ladder function that hasmj − 1 points of discontinuity rather thanmj points of
discontinuity. From this it follows that if one is using a mechanism based on ladder functions lj (q)
such that some lj (q) has mj ≥ 2 points of discontinuity, then the mechanism designer can induce
at least as large a level of effort by instead using some mechanism based on ladder functions such
that lj (q) hasmj − 1 points of discontinuity. By induction, it follows that the mechanism designer
can also induce at least as much effort by instead using some mechanism based on ladder functions
such that each lj (q) has no more than one point of discontinuity.

To complete the proof, it suffices to show that if the mechanism designer is using a mechanism
based on ladder functions lj (q) that each have no more than one point of discontinuity, then these
single-step ladder functions must correspond to threshold mechanisms, i.e., that r0, j ∈ {0, 1} and
r1, j ∈ {0, 1}. Since equilibrium effort is given by the solution to Equation (6), and the right-hand
side of this equation is a linear function of v (rk, jA) for all k and j, we again have that the right-
hand side of this equation is either non-decreasing in r0, j or non-increasing in r0, j . Thus, if lj (q)
has exactly one point of discontinuity, then one can set the value of r0, j to either be equal to 0 or
r1, j without decreasing the right-hand side of Equation (6), meaning that one can make this change
without decreasing equilibrium effort.

Now, if r0, j = 0, then the same argument illustrates that one can set r1, j equal to 0 or 1 without de-
creasing the right-hand side of Equation (6), meaning one can make this change without decreasing
equilibrium effort. And if r0, j = r1, j , then lj (q) has no points of discontinuity, and the same argu-
ment again illustrates that one can set the value of r0, j = r1, j to be either 0 or 1 without decreasing
the right-hand side of Equation (6), meaning that one can make this change without decreasing
equilibrium effort. Thus, the mechanism designer can induce the agents to exert at least as much
effort by using a threshold mechanism in which r0, j ∈ {0, 1} and r1, j ∈ {0, 1}. The result follows. �

A.3 Optimal Thresholds

Lemma A.4. Consider the threshold mechanismM (A1, t1,A2, t2, . . . ,An , tn ), where the jth-ranked

agent receives prize Aj if and only if her output quality exceeds tj . Under this mechanism, a player’s

expected utility from exerting effort ei if all other players exert effort e is

E[ui ] =

k∑
j=1

v (Aj )

∫ ∞

tj−ei

(
n − 1

j − 1

)
(1 − F (ei − e + ϵi )) j−1F (ei − e + ϵi )n−j f (ϵi ) dϵi − c (ei ).

Proof. The probability that agent i will finish in jth place for a given realization of ϵi when
agent i exerts effort ei and all other agents exert effort e is given by the expression in Equation (5).
Now suppose agent i produces output qi = ei + ϵi . To actually receive the prizeAj in the threshold
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mechanismM (A1, t1,A2, t2, . . . ,An , tn ), i’s output must also exceed the threshold tj , i.e., ei + ϵi ≥
tj . So the probability that agent i finally receives the jth prize, unconditional on the realization of
ϵi , is the integral of the probability in Equation (5) over ϵi ≥ tj − ei , i.e.,∫ ∞

tj−ei

(
n − 1

j − 1

)
(1 − F (ei − e + ϵi )) j−1F (ei − e + ϵi )n−j f (ϵi ) dϵi .

Thus, an agent’s expected utility from exerting effort ei , when other agents exert effort e , is the
sum of her expected benefit over all ranks j minus her cost or

E[ui ] =

k∑
j=1

v (Aj )

∫ ∞

tj−ei

(
n − 1

j − 1

)
(1 − F (ei − e + ϵi )) j−1F (ei − e + ϵi )n−j f (ϵi ) dϵi − c (ei ). �

Proof of Theorem 4.1: If the mechanism designer uses a threshold mechanism in which the
agent who finishes in jth place receives a prize if and only if this agent’s observed quality exceeds
tj , then an agent i’s expected utility from exerting effort ei when all other agents are exerting effort
e is given by

E[ui ] =

n∑
j=1

∫ ∞

tj−ei

v (Aj )yj (e, ei , ϵi ) f (ϵi ) dϵi − c (ei ),

where we let yj (e, ei , ϵi ) ≡ ( n−1
j−1 ) (1 − F (ei − e + ϵi )) j−1F (ei − e + ϵi )n−j denote the probability that

agent i finishes in jth place given that all other agents exert effort e , agent i exerts effort ei , and
the value of agent i’s noise term is ϵi . From this it follows that the derivative of the agent’s utility
with respect to ei is given by the following expression:

n∑
j=1

v (Aj )[yj (e, ei , tj − ei ) f (tj − ei ) +

∫ ∞

tj−ei

∂yj (e, ei , ϵi )

∂ei
f (ϵi ) dϵi ] − c ′(ei ).

By setting this derivative equal to zero when ei = e , it then follows that it is an equilibrium for
all agents to exert effort e if and only if

n∑
j=1

v (Aj )[yj (e, e, tj − e ) f (tj − e ) +

∫ ∞

tj−e

∂yj (e, ei , ϵi )

∂ei

�����ei=e

f (ϵi ) dϵi ] = c
′(e ). (7)

In the optimal threshold mechanism, the thresholds tj must be chosen in such a way as to make
the expression in Equation (7) as large as possible for a given e . A necessary condition for this is
that the derivative of the left-hand side of this equation with respect to tj must be zero for all j.
Differentiating the left-hand side of this equation with respect to tj gives

v (Aj )yj (e, e, tj − e ) f ′(tj − e ) + v (Aj )
⎡⎢⎢⎢⎢⎣
∂[yj (e, e, tj − e )]

∂tj
−
∂yj (e, ei , ϵi )

∂ei

�����ei=e,ϵi=tj−e

⎤⎥⎥⎥⎥⎦ f (tj − e )

= v (Aj )yj (e, e, tj − e ) f ′(tj − e ), (8)

where the equality follows from the fact that the partial derivatives of yj (e, ei , ϵi ) = ( n−1
j−1 ) (1 −

F (ei − e + ϵi )) j−1F (ei − e + ϵi )n−j with respect to ei and ϵi are equal.
Now note that the principal would never have an incentive to choose a value of tj equal to−∞ or
∞. To see this, note that for values of tj that are arbitrarily negative, it must be the case that tj − e <
0 in equilibrium, meaning f ′(tj − e ) > 0 and the derivative of the left-hand side of Equation (7) with
respect to tj is positive. Thus, for any sufficiently negative values of tj , the principal can always
increase the left-hand side of Equation (7) by increasing tj , and thereby increase the equilibrium
level of effort. From this it follows that a threshold of tj = −∞ can never be optimal for any j. A
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similar argument shows that a threshold of tj = ∞ can also never be optimal. Thus, there is some
large finite value of T > 0 such that all thresholds tj � [−T ,T ] are dominated by some threshold
tj ∈ [−T ,T ] for all j. Since this set of feasible thresholds is compact, and the equilibrium level of
effort varies continuously with the thresholds, it then follows that some set of optimal thresholds
exists.

Now if the optimal threshold tj is not equal to −∞ or∞, then the derivative in Equation (8) must
be zero at the optimal tj . Now, we know that f (·) is single-peaked at 0, so when tj is not equal to
−∞ or∞, the above derivative is only zero when tj = e . Thus, the optimal thresholds satisfy tj = e
for all j and the optimal thresholds are always equal for all prizes. �

Proof of Theorem 4.3: Note that a player i’s expected value for her prize from exerting effort
ei when all other players are exerting effort e is just equal to the sum, over all j = 1, . . . ,n, of
the difference between the value the player obtains from receiving the jth prize Aj and her value
from the j + 1th prize Aj+1, multiplied by the probability that she finishes in at least jth place and
meets the threshold t . Now let G j (q) denote the probability that no more than j − 1 of the n − 1
values of ϵk are greater than q. Then the probability that agent i finishes in at least jth place for
any given realization of ϵi when she exerts effort ei and all other players are exerting effort e is
G j (ei − e + ϵi ). From this it follows that the probability that agent i finishes in at least jth place
and meets the threshold t unconditional on the realization of ϵi is∫ ∞

t−ei

G j (ei − e + ϵi ) f (ϵi ) dϵi .

From the previous paragraph, it follows that player i’s expected utility from exerting effort ei

when all other players are exerting effort e is

n∑
j=1

(v (Aj ) −v (Aj+1))

∫ ∞

t−ei

G j (ei − e + ϵi ) f (ϵi ) dϵi − c (ei ).

By differentiating this expression with respect to ei , setting the derivative equal to zero, and
using the fact that ei = e must hold in any symmetric pure-strategy equilibrium, it follows that
the following relationship must be satisfied by the equilibrium level of e:

n∑
j=1

(v (Aj ) −v (Aj+1))[G j (t − e ) f (t − e ) +

∫ ∞

t−e

dG j (ϵ )

dϵ
f (ϵ ) dϵ] = c ′(e ). (9)

Now the derivative of the left-hand side of Equation (9) with respect to t − e is

n∑
j=1

(v (Aj ) −v (Aj+1))G j (t − e ) f ′(t − e ),

which is positive when t − e < 0. Note that if t < t∗, where t∗ denotes the optimal threshold, then
the equilibrium effort corresponding to that threshold, e∗ (t ), must satisfy t < e∗ (t ) < t∗ for the
following reason: If we had e = t , then the value of the left-hand side of Equation (9) would be
the same at t as it is at t∗ but the value of the right-hand side would be strictly lower. Similarly,
if we had e = t∗, then the right-hand side of Equation (9) would be the same at t as it is at t∗,
but the left-hand side would be strictly lower at t than it is at t∗. By combining these facts, the
continuity of f (·), f ′(·), and G (·), and the intermediate value theorem, it follows that there must
exist some e∗ (t ) satisfying t < e∗ (t ) < t∗ such that the left and right-hand sides of Equation (9) are
equal. Thus, equilibrium effort satisfies t < e∗ (t ) < t∗.

Next, we seek to show that equilibrium effort is increasing in t when t < t∗. To prove this,
consider two thresholds t1 and t2 such that t1 < t2 < t∗. It suffices to show that e (t1) < e (t2). To see
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that this holds, note that it must be the case that Equation (9) is satisfied with equality when t = t2
and e = e (t2). Now if e (t1) ≥ e (t2), then it must be the case that the left-hand side of Equation (9)
is lower when t = t1 and e = e (t1) than when t = t2 and e = e (t2), since the derivative of the left-
hand side of this equation with respect to t − e is positive when t − e < 0. And it must also be
the case that the right-hand side of Equation (9) is no smaller when e = e (t1) than when e = e (t2),
since the right-hand side of this equation is increasing in e . But this would imply that the left-hand
side of Equation (9) is lower than the right-hand side of this equation when t = t1 and e = e (t1),
contradicting the possibility that e (t1) is an equilibrium level of effort. Thus, e (t1) ≥ e (t2) cannot
hold.

Next, we show that if t > t∗, then e∗ (t ) < t∗ < t . To see this, note that the definition of t∗ is that
t∗ is the threshold that results in the highest equilibrium effort. Thus, e∗ (t ) < e∗ (t∗) for any t � t∗.
Since e∗ (t∗) = t∗ from Corollary 4.2, it then follows that e∗ (t ) < t∗ < t .

Finally, we show that if t > t∗, then equilibrium effort is decreasing in t . To see this, consider
some thresholds t1 and t2 satisfying t∗ < t1 < t2. Note that when t = t1 and e = e (t1), the equilib-
rium condition Equation (9) is satisfied. Now t1 > e (t1), so t1 − e (t1) > 0, and we know that the
derivative of the left-hand side of Equation (9) with respect to t is negative. Thus, when t = t2 and
e = e (t1), the left-hand side of Equation (9) is less than the right-hand side of Equation (9). But
when t = t2 and e = 0, then the left-hand side of Equation (9) is greater than the right-hand side of
Equation (9) (since c ′(0) = 0). By the intermediate value theorem, it then follows that there exists
some e (t2) ∈ (0, e (t1)) such that Equation (9) is satisfied with equality when t = t2 and e = e (t2).
Thus, t∗ < t1 < t2 implies e (t2) < e (t1), meaning that if t > t∗, then equilibrium effort is decreasing
in t . �

Proof of Theorem 4.4: Recall from Equation (9) applied to the case where there are k prizes
that if G j (q) denotes the probability that no more than j − 1 of the n − 1 values of ϵk are greater
than q, then the following equality must hold for the equilibrium effort e when the principal uses
the threshold t :

k∑
j=1

(v (Aj ) −v (Aj+1))[G j (t − e ) f (t − e ) +

∫ ∞

t−e

dG j (ϵ )

dϵ
f (ϵ ) dϵ] = c ′(e ). (10)

From Corollary 4.2, the equilibrium effort e (t ) at the optimal threshold t∗ satisfies t∗ = e (t∗),
so t − e = 0 in the equation above. Substituting, we have that equilibrium effort in the optimal

threshold mechanism is the solution to

k∑
j=1

(v (Aj ) −v (Aj+1))[G j (0) f (0) +

∫ ∞

0

dG j (ϵ )

dϵ
f (ϵ ) dϵ] = c ′(e ). (11)

Here,
dG j (ϵ )

dϵ
represents the density corresponding to the distributionG (ϵ ). WriteG j (ϵ ;n) to de-

note the dependence ofG j onn. Then, the distributionG j (ϵ ;n′) first-order stochastically dominates
G j (ϵ ;n) for all n′ > n. Further, f (ϵ ) is non-increasing in ϵ for all ϵ ≥ 0, since f (·) is single-peaked
at 0. From this it follows that increasing n decreases the value of

G j (0) f (0) +

∫ ∞

0

dG j (ϵ )

dϵ
f (ϵ ) dϵ = Eϵ∼G j

[f (max{0, ϵ })]

for all j. Therefore, for equality to hold in Equation (11), the equilibrium effort e (n) must be such
that c ′(e (n)) also decreases withn, i.e., e (n) decreases withn. Since the equilibrium effort in the op-
timal threshold mechanism decreases with the number of players, and the optimal threshold equals
equilibrium effort in the optimal threshold mechanism, by Corollary 4.2, the optimal threshold
t∗ (n) is also decreasing in n. �
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Proof of Theorem 4.5: We know from Equation (11) in the proof of the previous theorem that
if G j (q) denotes the probability that no more than j − 1 of the n − 1 other values of ϵk are greater
than q, then the following condition must be satisfied by the equilibrium level of effort e in any
pure-strategy equilibrium of the optimal threshold mechanism:

k∑
j=1

(v (Aj ) −v (Aj+1))

[
G j (0) f (0) +

∫ ∞

0

dG j (ϵ )

dϵ
f (ϵ ) dϵ

]
= c ′(e ).

Substituting in the fact that Aj = Ak for j ≤ k and Aj = 0 for j > k , it then follows that the
equilibrium level of effort e satisfies the following equation in any pure-strategy equilibrium:

v (Ak )

[
Gk (0) f (0) +

∫ ∞

0

dGk (ϵ )

dϵ
f (ϵ ) dϵ

]
= c ′(e ),

which can be rewritten as

v (Ak )Eϵ∼Gk
[f (max{0, ϵ })] = c ′(e ). (12)

Now if one increases the number of prizes by awarding additional prizes that are the same as
those originally awarded to agents who finished in the top k and met the threshold, then v (Ak )
is independent of k . And if one increases the number of prizes by splitting the same total prize
pool amongst a larger number of players, then in the limit as the minimum coefficient of absolute

risk aversion, α ≡ infA −v ′′(A)
v ′ (A) , becomes arbitrarily large, v (Ak )

v (A) becomes arbitrarily close to 1, and

v (Ak ) approaches a function that is also independent of k .
We also know that Eϵ∼Gk

[f (max{0, ϵ })] is increasing in k for the following reason: The fact that
Gk (ϵ ) is a distribution corresponding to the probability that no more than k − 1 of the n − 1 values
of ϵj are greater than ϵ implies that G j first-order stochastically dominates Gk for all j < k . And
we also know that f (max{0, ϵ }) is decreasing in ϵ for all ϵ > 0. By combining these facts, it follows
that Eϵ∼Gk

[f (max{0, ϵ })] is increasing in k .
Thus, under either of the conditions of the theorem, it must be the case that v (Ak )

Eϵ∼Gk
[f (max{0, ϵ })] is increasing in k . By combining this fact with Equation (12), it then follows

that under either of these conditions, equilibrium effort in the optimal threshold mechanism is
increasing in k . Since the optimal threshold is equal to equilibrium effort in the optimal threshold
mechanism, it then follows that the optimal threshold is also increasing in k under the conditions
of the theorem. �

A.4 How Useful is Cardinal Information?

Proof of Theorem 5.1: (1) Recall from Equation (10) that if G j (q) denotes the probability that
no more than j − 1 of the n − 1 values of ϵk are greater than q, then equilibrium effort e is pinned
down by the following equation:

k∑
j=1

(v (Aj ) −v (Aj+1))[G j (t − e ) f (t − e ) +

∫ ∞

t−e

dG j

dϵ
(ϵ ) f (ϵ ) dϵ] = c ′(e ).

Now, if c (e ) = e2

2 , then c ′(e ) = e . We also know that under the optimal threshold, t = e in equi-
librium, so the equilibrium effort e is given by

eopt =

k∑
j=1

(v (Aj ) −v (Aj+1))[G j (0) f (0) +

∫ ∞

0

dG j

dϵ
(ϵ ) f (ϵ ) dϵ].
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When there is no threshold, we have t − e = −∞, so

e0 =

k∑
j=1

(v (Aj ) −v (Aj+1))

[∫ ∞

−∞

dG j

dϵ
(ϵ ) f (ϵ ) dϵ

]
. (13)

By combining the results in the two previous equations, we see that

eopt − e0 =

k∑
j=1

(v (Aj ) −v (Aj+1))

[
G j (0) f (0) −

∫ 0

−∞

dG j

dϵ
(ϵ ) f (ϵ ) dϵ

]

=

k∑
j=1

(v (Aj ) −v (Aj+1))

[∫ 0

−∞

dG j

dϵ
(ϵ ) ( f (0) − f (ϵ )) dϵ

]
. (14)

Now, ifG j (q) denotes the probability that no more than j − 1 of the n − 1 values of ϵk are greater

than q, then we know that
dG j

dϵ
(ϵ ) = (n−1)!

(j−1)!(n−j−1)! (1 − F (ϵ )) j−1F (ϵ )n−j−1 f (ϵ ). Thus, increasing n by

one changes the value of the integrand in this expression by a factor of n
n−j

F (ϵ ) < 1, where the

inequality follows from the facts that n
n−j
≤ 2 whenever there are at least twice as many players

as the number of prizes and F (ϵ ) < 1
2 for ϵ < 0. But this means that eopt − e0 decreases when n

increases by one. The result then follows.
(2) Since the prizes are equal,v (Aj ) −v (Aj+1) = 0 for all j � k andv (Ak ) −v (Ak+1) = v (Ak ). We

also know that dGk

dϵ
(ϵ ) = (n−1)!

(k−1)!(n−k−1)! (1 − F (ϵ ))k−1F (ϵ )n−k−1 f (ϵ ). From Equations (13) and (14),

we then know that

e0 = v (Ak )

[∫ ∞

−∞

(n − 1)!

(k − 1)!(n − k − 1)!
(1 − F (ϵ ))k−1F (ϵ )n−k−1 f 2 (ϵ ) dϵ

]
and

eopt − e0 = v (Ak )

[∫ 0

−∞

(n − 1)!

(k − 1)!(n − k − 1)!
(1 − F (ϵ ))k−1F (ϵ )n−k−1 f (ϵ ) ( f (0) − f (ϵ )) dϵ

]
.

Thus, we know that the ratio

eopt − e0

e0
=

∫ 0

−∞ (1 − F (ϵ ))k−1F (ϵ )n−k−1 f (ϵ ) ( f (0) − f (ϵ )) dϵ∫ ∞
−∞ (1 − F (ϵ ))k−1F (ϵ )n−k−1 f 2 (ϵ ) dϵ

(15)

=

∫ 0

−∞Hn,k (ϵ ) ( f (0) − f (ϵ )) dϵ∫ 0

−∞Hn,k (ϵ ) f (ϵ ) dϵ +
∫ ∞

0
Hn,k (ϵ ) f (ϵ ) dϵ

, (16)

where Hn,k (ϵ ) ≡ (1 − F (ϵ ))k−1F (ϵ )n−k−1 f (ϵ ). Increasing n by one would then change the value of
this ratio to

eopt − e0

e0
=

∫ 0

−∞ (1 − F (ϵ ))k−1F (ϵ )n−k f (ϵ ) ( f (0) − f (ϵ )) dϵ∫ ∞
−∞ (1 − F (ϵ ))k−1F (ϵ )n−k f 2 (ϵ ) dϵ

(17)

=

∫ 0

−∞Hn,k (ϵ )F (ϵ ) ( f (0) − f (ϵ )) dϵ∫ 0

−∞Hn,k (ϵ )F (ϵ ) f (ϵ ) dϵ +
∫ ∞

0
Hn,k (ϵ )F (ϵ ) f (ϵ ) dϵ

. (18)
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Now, f (0) − f (ϵ ) is decreasing in ϵ for ϵ ≤ 0 and f (ϵ ) and F (ϵ ) are increasing in ϵ for ϵ ≤ 0.
Thus, ∫ 0

−∞Hn,k (ϵ )F (ϵ ) ( f (0) − f (ϵ )) dϵ∫ 0

−∞Hn,k (ϵ )F (ϵ ) f (ϵ ) dϵ
<

∫ 0

−∞Hn,k (ϵ ) ( f (0) − f (ϵ )) dϵ∫ 0

−∞Hn,k (ϵ ) f (ϵ ) dϵ
,

since multiplying the terms in the
∫ 0

−∞Hn,k (ϵ ) ( f (0) − f (ϵ )) dϵ integral by F (ϵ ) puts relatively
more weight on the values of ϵ where the integrand is relatively smaller than multiplying the

terms in the
∫ 0

−∞Hn,k (ϵ ) f (ϵ ) dϵ integral by F (ϵ ). Further, note that∫ 0

−∞Hn,k (ϵ )F (ϵ ) f (ϵ ) dϵ∫ ∞
0

Hn,k (ϵ )F (ϵ ) f (ϵ ) dϵ
<

∫ 0

−∞Hn,k (ϵ ) f (ϵ ) dϵ∫ ∞
0

Hn,k (ϵ ) f (ϵ ) dϵ
,

since F (ϵ ) < (>) 1
2 for all ϵ < (>)0. Combining these results shows that∫ 0

−∞Hn,k (ϵ )F (ϵ ) ( f (0) − f (ϵ )) dϵ∫ 0

−∞Hn,k (ϵ )F (ϵ ) f (ϵ ) dϵ +
∫ ∞

0
Hn,k (ϵ )F (ϵ ) f (ϵ ) dϵ

=
a
∫ 0

−∞Hn,k (ϵ ) ( f (0) − f (ϵ )) dϵ

b
∫ 0

−∞Hn,k (ϵ ) f (ϵ ) dϵ + c
∫ ∞

0
Hn,k (ϵ ) f (ϵ ) dϵ

for some positive constants a, b, and c satisfying a < b < c . Thus,∫ 0

−∞Hn,k (ϵ )F (ϵ ) ( f (0) − f (ϵ )) dϵ∫ 0

−∞Hn,k (ϵ )F (ϵ ) f (ϵ ) dϵ +
∫ ∞

0
Hn,k (ϵ )F (ϵ ) f (ϵ ) dϵ

<

∫ 0

−∞Hn,k (ϵ ) ( f (0) − f (ϵ )) dϵ∫ 0

−∞Hn,k (ϵ ) f (ϵ ) dϵ +
∫ ∞

0
Hn,k (ϵ ) f (ϵ ) dϵ

.

Thus, the value of the ratio
eopt−e0

e0
decreases when n increases by one, which proves the result.

(3) We have seen in the proof of part (2) that

eopt − e0 = v (Ak )

[∫ 0

−∞

(n − 1)!

(k − 1)!(n − k − 1)!
(1 − F (ϵ ))k−1F (ϵ )n−k−1 f (ϵ ) ( f (0) − f (ϵ )) dϵ

]
.

Increasing k by one changes the value of the integrand in this expression by a factor of
n−k−1

k
1−F (ϵ )

F (ϵ )
v (Ak+1 )
v (Ak ) >

n−k−1
k

k
k+1 =

n−k−1
k+1 , where the inequality follows from the fact that F (ϵ ) < 1

2

and
1−F (ϵ )

F (ϵ ) > 1 for all ϵ < 0. Since n−k−1
k+1 ≥ 1 for n ≥ 2(k + 1), it then follows that if the number of

players is at least twice as large as the number of prizes, then the expression for eopt − e0 increases
when k increases by one.

(4) The proof of this part is substantively identical to that in part (2) and thus omitted.
(5) Note that the values of c ′(eopt ) and c ′(e0) are independent of the cost function c (·), because

under the optimal threshold, t = e in equilibrium, so Equation (10) implies that equilibrium effort
is given by the equation

c ′(eopt ) =
k∑

j=1

(v (Aj ) −v (Aj+1))

[
G j (0) f (0) +

∫ ∞

0

dG j

dϵ
(ϵ ) f (ϵ ) dϵ

]
,

and when there is no threshold, we have t − e = −∞, so

c ′(e0) =
k∑

j=1

(v (Aj ) −v (Aj+1))

[∫ ∞

−∞

dG j

dϵ
(ϵ ) f (ϵ ) dϵ

]
.

Thus, the values of c ′(eopt ) and c ′(e0) are the same for all c (·).
Now, suppose c ′′ (e )

c ′ (e ) = h(e ) for some function h(e ). In that case, we know that ln(c ′(eopt )) −
ln(c ′(e0)) =

∫ eopt

e0
h(e ) de . Since c ′(eopt ) and c ′(e0) are the same for all c (·), this implies that for

any cost function c (·),
∫ eopt

e0
h(e ) de is equal to some constant independent of c (·).
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But if c2 (·) is more convex than c1 (·) in the sense that the ratio
c ′′ (e )
c ′ (e ) is greater for c = c2 (·) than it

is for c = c1 (·), then if h2 (e ) ≡ c ′′2 (e )

c ′2 (e ) and h1 (e ) ≡ c ′′1 (e )

c ′1 (e ) , we have h2 (e ) > h1 (e ) for all e . And if eopt,1

and eopt,2 denote the equilibrium levels of effort under the optimal threshold for the cost functions

c1 (·) and c2 (·), then we know from the previous paragraph that
∫ eopt,1

e0
h1 (e ) de =

∫ eopt,2

e0
h2 (e ) de .

But sinceh2 (e ) > h1 (e ) for all e , it follows that for this equality to hold, we must have eopt,1 > eopt,2.

This in turn implies that both eopt − e0 and the ratio
eopt−e0

e0
are larger for c1 (·) than for c2 (·). �

A.5 Optimal Prize Structures

Proof of Theorem 6.1: (1) We know from Equation (7) that the equilibrium level of effort is
given by the solution to the equation

c ′(e ) =
n∑

j=1

v (Aj )

[(
n − 1

j − 1

)
(1 − F (tj − e )) j−1F (tj − e )n−j f (tj − e )

+

∫ ∞

tj−e

[
(n − 1)!

(j − 1)!(n − j − 1)!
(1 − F (ϵ )) j−1F (ϵ )n−j−1

− (n − 1)!

(j − 2)!(n − j )! (1 − F (ϵ )) j−2F (ϵ )n−j

]
f 2 (ϵ ) dϵ

]
.

Under the optimal threshold mechanism, tj = e for all j in equilibrium, so the equilibrium effort e
is given by

c ′(e ) =
n∑

j=1

v (Aj )

[(
n − 1

j − 1

) (
1

2

)n−1

f (0) +

∫ ∞

0

[
(n − 1)!

(j − 1)!(n − j − 1)!
(1 − F (ϵ )) j−1F (ϵ )n−j−1

− (n − 1)!

(j − 2)!(n − j )! (1 − F (ϵ )) j−2F (ϵ )n−j

]
f 2 (ϵ ) dϵ

]
. (19)

And when there is no threshold, tj − e = −∞ for all j, so the equilibrium effort e is given by

c ′(e ) =
n∑

j=1

v (Aj )

[∫ ∞

−∞

[
(n − 1)!

(j − 1)!(n − j − 1)!
(1 − F (ϵ )) j−1F (ϵ )n−j−1

− (n − 1)!

(j − 2)!(n − j )! (1 − F (ϵ )) j−2F (ϵ )n−j

]
f 2 (ϵ ) dϵ

]
. (20)

Thus, regardless of whether the mechanism designer uses the optimal threshold or no threshold,
the equilibrium level of effort is pinned down by an equation of the form c ′(e ) =

∑n
j=1 bjv (Aj ) for

some constants bj .
Now, when v (A) = A, the equilibrium level of effort is pinned down by an equation of the form

c ′(e ) =
∑n

j=1 bjAj for some constants bj , so c ′(e ) and thus the equilibrium level of effort e must be

maximized by setting Aj = A for one particular j and Aj = 0 for all other j. And since a winner-
take-all prize structure elicits higher effort than awarding all of the prize to some other place, it
then follows that the equilibrium level of effort must be maximized by using a winner-take-all
prize structure regardless of whether the mechanism designer uses the optimal threshold or no
threshold.

(2) As in part (1), regardless of whether the mechanism designer uses the optimal threshold or
no threshold, the level of effort is pinned down by an equation of the form c ′(e ) =

∑n
j=1 bjv (Aj )

for some constants bj . However, since the constants bj are different under the optimal threshold
than under no threshold, in general the division of the prizes that maximizes c ′(e ) =

∑n
j=1 bjv (Aj )
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subject to the constraint that
∑n

j=1 Aj = A will be different under the optimal threshold than under

no threshold for strictly concave v (·).
In particular, suppose there are at most two prizes, let bj,opt denote the value of the constant bj

under the optimal threshold, and let bj,0 denote the value of bj under no threshold. We know from
Equations (19) and (20) that

bj,opt − bj,0 =

[(
n − 1

j − 1

) (
1

2

)n−1

f (0) −
∫ 0

−∞

[
(n − 1)!

(j − 1)!(n − j − 1)!
(1 − F (ϵ )) j−1F (ϵ )n−j−1

− (n − 1)!

(j − 2)!(n − j )! (1 − F (ϵ )) j−2F (ϵ )n−j

]
f 2 (ϵ ) dϵ

]

=

∫ 0

−∞

[
(n − 1)!

(j − 1)!(n − j − 1)!
(1 − F (ϵ )) j−1F (ϵ )n−j−1

− (n − 1)!

(j − 2)!(n − j )! (1 − F (ϵ )) j−2F (ϵ )n−j

]
f (ϵ ) ( f (0) − f (ϵ )) dϵ .

Thus, b1,opt − b1,0 =
∫ 0

−∞ (n − 1)F (ϵ )n−2 f (ϵ ) ( f (0) − f (ϵ )) dϵ and b2,opt − b2,0 =
∫ 0

−∞ (n −
1)F (ϵ )n−3[(n − 2) (1 − F (ϵ )) − F (ϵ )]f (ϵ ) ( f (0) − f (ϵ )) dϵ . Thus, the ratio of the terms in the in-

tegrands corresponding to b2,opt − b2,0 and b1,opt − b1,0 is
(n−2)(1−F (ϵ ))−F (ϵ )

F (ϵ ) = (n − 2) 1−F (ϵ )
F (ϵ ) − 1 >

n − 2 − 1 = n − 3 ≥ 1 for n ≥ 4, where the first inequality follows from the fact that F (ϵ ) < 1
2 and

1−F (ϵ )
F (ϵ ) > 1 when ϵ < 0. Thus, b2,opt − b2,0 > b1,opt − b1,0.

Now, we also know that b1,0 ≥ b2,0, because it is optimal to give more of the prize pool to
the winner than to the second-place finisher. By combining this with the result in the previous

paragraph, we know that
b2,opt

b2,0
>

b1,opt

b1,0
. Thus, the division of the prizes Aj that will maximize

c ′(e ) =
∑2

j=1 bjv (Aj ) subject to the constraint that A1 +A2 = A will give a larger value to the sec-
ond prize under the optimal threshold than under no threshold. �

A.6 Endogenous Entry

Proof of Theorem 7.1: We know from our results on exogenous entry in Theorem A.1 that when
exactly k agents participate in a threshold mechanism with rank-order rewards (A1,A2, . . . ,An )
and threshold t , there is a unique pure-strategy equilibrium in which all these k agents exert the
same level of effort e∗ (t ,k ) (under appropriate conditions on c (·)). Since each agent observes the
number of other participants prior to choosing her effort level, we will assume henceforth that if k
agents participate (for any 0 ≤ k ≤ n), each of these agents chooses this equilibrium level of effort
e∗ (t ,k ).

Now, let k∗ = k∗ (t ) denote the largest non-negative integer less than or equal to n such that
if exactly k∗ agents participate with effort e∗ (t ,k∗), then no participating agent can profitably
deviate by not participating. Some suchk∗ exists, because ifk∗ = 0, then this condition is vacuously
satisfied. In this case, it is an equilibrium for exactly k∗ agents to participate, for the following
reason: When k∗ agents participate, then no participant can profitably deviate by not participating
in the contest, by the definition of k∗. Also, no non-participating agent can profitably deviate by
participating in the contest—if an additional agent participated in the contest, then there would
be exactly k∗ + 1 agents participating, and each of these agents would choose effort e∗ (t ,k∗ + 1).
But by the definition of k∗, we would then know that none of these participating agents would
prefer to participate (since all agents are symmetric), meaning it was never profitable for this non-
participating agent to deviate in the first place. Thus, there exists an equilibrium in which exactly
k∗ agents participate and all of these agents exert the same level of effort upon participating. �
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Proof of Theorem 7.2: If setting the threshold to t∗ (k ) would not create an incentive for one
of the k participating agents not to participate, then we know from our results on exogenous entry
that such a threshold would be optimal. If not, then some participating agent has an incentive not
to participate at threshold t∗ (k ). But we have seen in the proof of Theorem 4.3 that for any fixed
level of participation, equilibrium effort e∗ (t ) is increasing in the threshold t for all thresholds
t ≤ t∗ (k ). From this it follows that if the principal wants to maximize equilibrium effort subject
to the constraint that exactly k agents participate, and there is no equilibrium in which k agents
participate at threshold t∗ (k ), then the maximum equilibrium effort with k participants occurs at
the largest threshold less than t∗ (k ) at which there is an equilibrium in which exactly k agents
participate. �

Proof of Theorem 7.3: To prove this result, we first illustrate that for any fixed level of partic-
ipation, k , the expected utility of the agents in equilibrium is decreasing in the principal’s choice
of threshold for values of the threshold below t∗, the threshold where equilibrium effort and the
threshold are equal. To see this, recall from Equation (10) that the equilibrium level of effort e
for a given threshold mechanism with threshold t and prizes A1, . . . ,Ak is given by the following
equation:

k∑
j=1

(v (Aj ) −v (Aj+1))

[
G j (t − e ) f (t − e ) +

∫ ∞

t−e

dG j (ϵ )

dϵ
f (ϵ ) dϵ

]
= c ′(e ), (21)

where G j (q) denotes the probability that no more than j − 1 of the n − 1 values of ϵk are greater
than q. The derivative of the left-hand side of this equation with respect to t − e is

k∑
j=1

(v (Aj ) −v (Aj+1))G j (t − e ) f ′(t − e ),

which is positive when t − e < 0. Now note that when t < t∗ that both equilibrium effort e∗ (t ) and
t − e∗ (t ) are increasing in t for the following reason: We have already seen in Theorem 4.3 that
when t < t∗ that we have both e∗ (t ) > t and that e∗ (t ) is increasing in t . Thus, to prove this claim,
we only need show that t − e∗ (t ) is increasing in t when t < t∗.

To see this, consider two thresholds t1 and t2 satisfying t1 < t2 < t∗. Let e∗ (t ) denote the equi-
librium level of effort when the mechanism designer uses a threshold t , and suppose by means
of contradiction that t1 − e∗ (t1) ≥ t2 − e∗ (t2). Since we have seen that the left-hand side of Equa-
tion (21) is increasing in t − e when t − e < 0, it follows that the left-hand side of Equation (21) is
greater when t = t1 and e = e∗ (t1) than when t = t2 and e = e∗ (t2). But since the right-hand side
of Equation (21) is increasing in e , we also know that the right-hand side of Equation (21) is lower
when e = e∗ (t1) than when e = e∗ (t2). This implies that Equation (21) cannot be simultaneously
satisfied at t = t1 and e = e∗ (t1) as well as at t = t2 and e = e∗ (t2). This contradicts our assumption
that e∗ (t1) and e∗ (t2) are equilibrium levels of effort corresponding to the thresholds t1 and t2, and
illustrates that t1 − e∗ (t1) ≥ t2 − e∗ (t2) cannot hold. Thus, t − e∗ (t ) is increasing in t when t < t∗.

But this implies that both the equilibrium level of effort is increasing in t for t ≤ t∗ and the
probability that the agents will meet the threshold in equilibrium is decreasing in t for t ≤ t∗ (since
this probability is decreasing in t − e∗ (t )). Thus, the expected utility of the agents is decreasing in
the principal’s choice of threshold for thresholds t ≤ t∗. Now, we know that if there exists an
equilibrium in which exactly k1 agents participate when the threshold is t1, then these k1 agents
all obtain non-negative utility in equilibrium when the threshold is t1. And from the previous result
in this paragraph, it follows that if the threshold is some t2 ≤ t1, then all k1 of these agents would
obtain non-negative utility in equilibrium if exactly k1 agents participated. Thus, if it is not an
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equilibrium for exactly k1 agents to participate when the threshold is t2, then it must be the case
that some non-participating agent can profitably deviate by participating when exactly k1 agents
participate. If we then let k2 > k1 denote the largest integer such that no non-participating agent
can profitably deviate by participating when the threshold is t2 and exactly k2 agents participate,
then it is an equilibrium for exactly k2 agents to participate when the threshold is t2. The result
then follows. �
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