
IPEXI, A LIBRARY OF DYNAMIC INTRODUCTORY PROGRAMMING EXAMPLES

Linda Lewis

Department of Computer Science
Southeast Missouri State University

Cape Girardeau, Missouri 63701

Robert J. McGlinn
Department of Computer Science
Southern Illinois University
Carbondale, Illinois 62901

This paper describes IPEXI, a library of dynamic Pascal examples for use in an introductory Pascal
course. Several modules of examples are designed to help students overcome conceptual difficulties. Addi-
tionally, the examples should direct students toward a better understanding of the constructs available in
Pascal. Finally, visualizing the execution of the examples should give the students a better feel for what
goes on inside the computer as a program executes.

Keywords: computer aided instruction, computer science education, Pascal.

INTRODUCTION

Most computer science instructors use the
textbook method to teach programming. Also called
the static approach by Ross [8], this method
challenges students to read static examples in
texts in order to learn about the constructs of a
programming language. However, there are two very
separate aspects to every p~ogram - static and dy-
namic. As Ross points out,

The novice programmer must understand and
be able to differentiate between these two
facets clearly in order to learn program-
ming. Presentation of new programming
concepts in a textbook requires the use of
examples which are printed in static form.
An attempt must then be made to explain
in writing what happens when the example
is executed on a computer. This is where
the textbook fails; explaining something
which is inherently dynamic in static
textbook form is only marginally helpful
[8] .

The current solution involves having the in-
structor trace the execution on an overhead pro-
jector or on the blackboard. Of course, students
take notes, but again, they have only a static
representation of dynamic concepts.

A better approach would be the use of a teach-
ing aid which allows a student to view the execu-
tion of a program through a truly dynamic inter-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 A C M 0-89791-152-0 /85 /003 /0072 $00.75

face - the computer itself. Students should be
able to proceed at their own pace, noticing the
effects of variable declarations, conditional
branching, looping, and other operations. Such a
tool should also allow fast and easy repetition of
the execution of a given program. This would
eliminate the student's need to take notes during
the trace of a program's execution, thereby break-
ing the chain of having a static representation of
dynamic concepts.

There are many systems in existence which pre-
sent lessons dynamically through the computer.
Access to lessons through such systems as the well
known PLATO system can be rather expensive, and
their use often requires special equipment [2].
Others are intended as course supplements, and in-
clude lesson plans and a small number of examples
in an effort to repeat everything the instructor
has presented [i]. However, this type of educa-
tional software adds little to what students al-
ready have in their notes and textbooks. Still
other systems consist of interpreters, mainly for
use as graphic support of software development
[3,4,7]. Unfortunately, students can make effec-
tive use of these systems only after they have
acquired the ability to write correct ~ programs.

These deficiencies point to the need for a low
cost system that includes a library of correct
programs and allows the beginning student to actu-
ally see the internal effects of program execution
For example, such a system could be used to view
the effects of a new construct before students
attempt to use it in their programs. Also, stu-
dents experiencing difficulty in understanding
the flow of control with various decision and
looping constructs could benefit from using this
type of teaching aid.

It is for these reasons that we have chosen
to design and implement a library of dynamic in-
troductory Pascal examples (IPEXI) for use by
beginning students in computer science.

72

http://crossmark.crossref.org/dialog/?doi=10.1145%2F323287.323291&domain=pdf&date_stamp=1985-03-01

PEDAGOGICAL CONSIDERATIONS

The library is divided into seven modules,
which are arranged in the order in which the
statement constructs are typically presented in an
introductory Pascal course. The modules become
increasingly more difficult as the student pro-
gresses from one to the next. Additionally,
within each module, the examples progress in
difficulty.

Having taught computer science courses, and
in particular introductory courses, for several
years, we have become aware of many conceptual
difficulties which beginning students often ex-
perience. We have attempted, through the use of
well chosen examples, to address these difficul-
ties. A brief description of the modules, in-
cluding the pedagogical considerations which
entered into their design, follows:

Hodule 1 - Input Versus Assignment Statements

Early in an introductory course, many students
seem unable to cope with the concept of a variable.
They are unable to conceptualize a variable as a
location in the Computer's memory which stores a
value. Additionally, recognizing how and when
the value of a variable changes causes much
difficulty.

Interestingly, we have observed an anomaly in
several students' learning behavior. Early in an
introductory course many students do not readily
distinguish between using an input statement and
using an assignment statement to change the value
of a variable. If the input statement is intro-
duced early, then students seem to think that

every program must have such a statement. There-
after, they are uncomfortable with examples that
use only assignment statements. This difficulty
is so deeply rooted that several students never
overcome it.

The examples in the first module are designed
to assist the student in overcoming these problems.
Each example is intended to visually demonstrate
the effects that assignment and input statements
have on variables. By repeatedly witnessing
these effects, we feel that students will become
more comfortable with the notion of a variable.

Module 2 - Input and Output Statements

The major goal of this module is to further
acquaint the students with the differences be-
tween READ and READLN and between WRITE and
WRITELN. We do, of course, recognize that the
EOLN and EOF functions do cause students some con-
cern and we have developed examples illustrating
the behavior of these functions. However, by
necessity, they are presented in a later module on
WHILE loops.

Module 3 - Decision Statements

This module is designed to help the students
learn the mechanics of the various decision state-
ments (IF-THEN, IF-THEN-ELSE, and CASE).

In this module, as well as in the others, the

student should gain a a appreciation for the value
of tracing the execution of a program. Indeed,
the execution of each example is visually traced
on the monitor as the computer single seeps
through it. Since the student can delay the ex-
ecution of the next instruction as long as s/he
wishes the student has ample time to predict the
result produced by each statement. Thus, the
student can use this as a test of his/her under-
standing of the concepts involved.

Module 4 - WHILE Loops

In this module we demonstrate some situations
where it is most natural to use WHILE loops. In
particular, we illustrate the EOF and EOLN logic.

Additionally, we present the two troublesome
pathological situations which arise when working
with WHILE loops, a loop in which the body never
executes and, of course, an infinite loop. Stu-
dents refuse to believe they can write an infi-
nite loop. We show them how easily it can be
done.

Module 5 - REPEAT-UNTIL Loops

Situations which lend themselves naturally to
solutions using REPEAT-UNTIL loops are presented.

We feel that significant parts of the learning
process are reading and understanding well written
solutions to meaningful problems. And so, rather
than use obscure examples to illustrate Pascal
constructs, we frame the constructs in solutions
to typical programming problems.

Module 6 - FOR Loops

One of the topics that causes the intro-
ductory students a good deal of conceptual diffi-
culties is array manipulation. Since FOR loops
and arrays blend together nicely, a significant
portion of this module is devoted to arrays. In
particular, the last example (determining election
results) does a good job of illustrating the use
of two-dimensional arrays.

Module 7 - PROCEDUREs and FUNCTIONs

Undoubtedly, the hardest topic for the begin-
ner is the manipulation of procedures and func-
tions. There are many sources of problems (e.g.,
transfer of control to and from the subprogram,
argument-parameter correspondence, and VAR versus
value parameters). The early examples in this
module address these topics. The latter examples
serve as a review of some important algorithms
which the introductory student should be comfort-
able with before going on to a second course:
the linear search, the binary search, the selec-
tion sort, and the insertion sort.

OPERATION OF THE SYSTEM

The hardware and software required to run our
software are minimal. An IBM-PC was chosen as the
computer on which we developed our software with
TURBO Pascal 2.0 [9] used as the implementation
language. However, the TURBO Pascal system is not
required to run our software since all of our code

73

: i,~: ~I/~::: •

is compiled into machine language and Borland Inc.,
the company which developed and which markets
TUP~O, does not require a royalty for programs
developed with their system. The machine code

occupies 196K of storage on diskette. Hence, a
double-sided, double-density disk drive is re-
quired. However, since we use the "chain-and-
execute" feature of TURBO Pascal, only 41K of
main memory is needed to run our software.

Additionally, a printer is recommended, but
it is not required. A window in the upper right
hand corner of the screen is used to display the
program which is "executing". If an example ex-
ceeds the size of the window, a listing of the
program is offered prior to execution. The
student can then use this listing to more easily
follow the trace of execution. Our system is
designed to detect the availability of a printer,
and no listings are offered if the printer is not
accessible (i.e., there must be a parallel
printer interface card installed, the printer
must be turned on, and there must be paper loaded

in the printer).

The user does not need experience with either
the IBM-PC or its operating system. The diskette
is configured so that our software boots auto-
matically from drive A when the computer is
powered on (assuming, of course, that the diskette

has been inserted into drive A).

Furthermore, many qualities desired in educa-
tional software in general were taken into con-
sideration during the design and development of
the software. Instructors normally ask the fol-
lowing questions when selecting software:

1. Is it accident proof?
2. Are the directions easy and simple

to understand?
3. Are the instructions presented

through the computer interactively
(no manual to read)?

4. Is help provided following an
incorrect response? [5]

Indeed, since every response is checked for its
validity, it is not possible for the student to
"crash" the system by entering an incorrect res-
ponse. Of course, if an incorrect response is
entered, the error is explained and the user is
gently asked to reenter it. The entire system is
menu-driven and the directions are presented in a
clear and straightforward manner. There is no
manual to read; after booting the diskette, the
main menu appears and the system is up and running.
Finally, suggestions from students to "avoid
technical jargon, and stay at our level" [6] were
also kept in mind, and the final result, we be-
lieve, is a user-friendly, easy-to-use package.

A TYPICAL SESSION

We now demonstrate what the user experiences
as s/he works through the menus and examples of
our software.

After the system is booted the following menu
appears on the screen:

Library of Dynamic Pascal Examples
Written by Linda Lewis and Bob McGlinn

SIU-C, 1984

MENU
0 Exit (quit)
I General tips for using this system
2 Input versus Assignment Statements
3 Input and Output Statements
4 Decision Statements
5 WHILE loops (conditioned controlled)
6 REPEAT-UNTIL loops
7 FOR loops (count controlled)
8 Procedures and functions

Note: Each group contains its own introduc-
tion.

Type item number, and press return.

There are nine valid responses. Entering a
0 terminates the execution of the system. En-
tering a i leads to an overall introduction to the
use of the system and to some helpful hints on how
to make effective use of the system. For example,
screen layout is explained, instructions for going
through the examples are given, and if a printer
is available, a method for obtaining a listing of
any screen is described. Of course, each of the
remaining choices corresponds to one of the seven

modules.

Having selected one of the seven modules, a
menu of the examples in the chosen module appears.
This menu includes a list of example descriptions
as well as options which allow the user to view
the introduction for the module or return to the
main menu. For example, if the student selects
the module dealing with WHILE loops by entering
a 5, then the following menu appears on the
screen:

~IILE loops (condition controlled)

MENU
0 Return to main menu
1 Introduction and general hints
2 Print characters until trailer 'Z' is

reached
3 Print even numbers (infinite loop)
4 Given your input of up to 3 character

strings, use EOLN and EOF to print them
5 Given your input of up to 5 integers,

print their squareroots (using sentinel
of 0)

6 Determine the final balance of a bank
statement

Type item number, and press return.

If, at this point, the student selects an
example (2-6), the screen is cleared and, if the
chosen example is one of the more difficult ones,
then a slightly more detailed description of the
logic involved in the example is displayed on the
screen. For example, if the student selects the
last WHILE example (selection 6) which deals with
balancing a bank statement, then the following
more detailed explanation is presented:

74

This example determines a final balance for a bank
statement. The beginning balance is read first,
and each following line of data contains a code
letter and a dollar amount. A code of D indicates
a deposit and W indicates a withdrawal. The final
line contains only a code letter, N, to indicate
the end of data.
Press any key to continue.
This particular example is too large to fit On the
screen completely, and will be scrolled up as the
line pointer advances. To view it as a whole,
would you like a listing? (y/n)

This particular example is too long to fit in
the window which is devoted to the display of the
program, and so if a printer is available, a
listing is offered. Most of the rest of the dis-
cussion in this section centers around this banking
example.

It should be pointed out that most examples
allow the students' to enter their own data there-
by allowing the program to be run several times
using different data values.

In any case, when all preliminary preparations
are complete, the screen is initialized and the
trace of the example begins. The screen is
initialized as in Figure I for the banking example.

The static versus dynamic aspects are further
emphasized by dividing the screen approximately
in half, with the right portion being used for the
static aspects (the program itself and the data
file), and the left portion for the dynamic
effects (e.g., the variables and output).

OUTPUT >> PROGRAM BANKSTATEMENT;
VAR

CODE : CHAR;
AMOUNT : IHTEGER;
BALANCE : INTEGER;

BEGIN
READLN(BALANCE);
READ (CODE) ;
~ILE (CODE <> 'N') DO

BEGIN
READLN(~UNT);

BOOLEAN TEST RESULT DATA FILE

I, I I - ; ; ;
+

D 200

W 125

D 500

N

Whenever printing stops, press any key to continue.

Figure i. Screen Initialization

Two pointers are shown in a different color
than that used for the listings of the program and
the data file. The program pointer (>>) indi-
cates which statement is currently "executing",
while the data pointer (+) specifies the next
value to be read from the data file.

End-of-line and end-of-file characters are not
shown so that the data file appears visually the
same as it did when it was created, thus pre-
serving its static nature.

The dynamic effects of execution appear on the
left portion of the screen. A window for output
is defined, as well as a comparator for those
examples using boolean expressions in WHILE loops,
REPEAT-UNTIL loops, and decision statements.

During the trace of the example, the system
pauses after each statement is simulated (i.e.,
the program pointer remains fixed on the state-
ment). Pressing return or any other key advances
the pointer to the next line and it is then simu-
lated. As each variable in the VAR section is
encountered, a labeled storage box is created in
the dynamic area of the screen to illustrate the
allocation of the corresponding memory location.
Figure 2 approximates the appearance of the screen
after the three variables in the banking example
are "declared".

OUTPUT

>>

BOOLEAN TEST RESULT

I. I

CODE AMOUNT B ALA~NCE

i i[[l i

PROGRAM BANKSTATEMENT;
VAR

CODE : CIlAR;
AMOUNT : INTEGER;
BALANCE : INTEGER;

BEGIN
RE~LN (BALANCE) ;
READ(CgDE) ;
WI~ILE (CODE <> 'N') DO

BEGIN
READLN (AMOUNT) ;

DATA FILE

50O
+

D 200

W 125

D 500

Whenever printing stops, press any key to continue.

Figure 2. Variable Declarations

The "execution" of the initial READLN state-
ment causes the initial balance of 500 <cents) to
appear in the storage box labeled "BALANCE". In
order to call attention to this change in the
value of the variable, its new value is displayed
in a color different from that used for the rest
of the dynamic display. Additionally, the new
value blinks briefly. Of course, the data pointer
is advanced to the next line. All of these
changes are illustrated in Figure 3.

75

OUTPUT

BOOLEAN TEST RESULT

>>

CODE AMOUNT BALANCE

I i[i

PROGRAM BANKSTATEMENT;
VAR

CODE : CHAR;
AMOUNT : INTEGER;
BALANCE : INTEGER;

BEGIN
READLN (BALANCE) ;
READ (CODE) ;
WHILE (CODE <> 'N') DO

BEGIN
READLN (AMOUNT) ;

DATA FILE

500

D Z00
+

W 125

D 500

N

Whenever printing stops, press any key to continue.

Figure 3. A New Value for a Variable

Each of the remaining lines in the data file,
except for the last, corresponds to a deposit (D)
or a withdrawal (W). The last line (N) signals
the end of the data. After each code is read,
the Boolean expression in the WHILE statement
tests to see if the code is the trailer, the ex-
pression is displayed in the BOOLFEAN TEST box,
and its value (TRUE or FALSE) is displayed in the
RESULT box.

Assuming the code is not N, then the body of
the WHILE loop "executes". Eventually, as the
statements in the loop are simulated, the remain-
ing statements in the body of the loop will scroll
into the program-display window (see Figure 4).

~TPUT READLN(BALANCE);
READ(CODE);
WHILE (CODE <> 'N') DO

BEGIN
READLN (AMOUNT) ;
IF CODE = 'D' THEN

BALANCE := BALANCE
+AMOUNT

ELSE
BALANCE := BALANCE

- AMOUNT;
READ (CODE)

> > END ;

BOOLEAN TEST RESULT DATA FILE

D 200

CODE AMOUNT BALANCE W 125

N ¸

~enever printing stops, press any key to continue.

Figure 4. The Effects of Scrolling

Since the body of the loop is small enough to fit

in the window, no more scrolling will take place
until the statement following the loop is simu-
lated.

After the output statements are simulated the
final configuration of the screen is displayed
(see Figure 5).

OUTPUT

FINAL BALANCE: 10.75

BOOLEAN TEST RESULT

I 'N' <> 'N' IFALSE I

CODE AMOUNT BALANCE

I 001> q
1 ii

BEGIN
READLN (AMOUNT) ;
IF CODE = 'D' THEN

BALANCE := BALANCE
+ AMOUNT

ELSE
BALANCE := BALANCE

- AMOUNT ;
READ (CODE)

END;

WRITE('FINAL BALANCE: ');
WRITE(BALANCE/100 : 7 : 2)

>> END.

DATA FILE

50O

D 200

W 125

D 500

N

+

Whenever printing stops, press any key to continue.

Figure 5. The Final Screen Configuration

Upon pressing return, the user is given the
option to repeat the example. If the student
chooses not to do so, then the menu for the WHILE
loop category reappears on the screen. The stu-
dent can then select another example or return to
the main menu.

Although this example does illustrate most of
the features we have incorporated into the layout
of the screen, a brief discussion of how proce-
dures and functions are handled is in order. The
early examples in that module are designed so that
the entire program and all the internal procedures
and functions of an example fit in the program
display window, thereby allowing the student to
visually observe the transfer of control to and
from the subprograms. The latter examples are so
long that this is not possible, and so we only
display the currently executing program, proce-
dure, or function.

The main goal of the procedure and function
module is to familiarize students with the trans-
fer of control to and from subprograms, argument-
parameter correspondence, and VAR versus value
parameters. For this reason, the area of the
screen which is normally used for output is used
instead for the local variables and value param-
eters of the subprogram which is currently
"executing". In order to convey the notion of a
VAR parameter, we display the name of the param-
eter in parentheses alongside the name of the

76

corresponding argument. This correspondence is
further highlighted by using a different color for
the name of the parameter.

CONCLUSION

The current approach to teaching programming
leaves a gap in the area of understanding the dy-
namic aspects of a program. The good students
are usually able to visualize the dynamic aspects
of a program on their own, but less capable stu-
dents may be greatly helped by using a teaching
aid which allows them to see "what really happens
inside the computer" during program execution.
Such students have much to gain from viewing
correct programs as they execute before they
attempt to use a given statement construct. In
this rapidly growing age of computers, any such
teaching aid which may help produce better pro-
grammers is certainly worth the efforts of
designing, implementing, and, most importantly,
using.

REFERENCES

[i] Bitzer, D.L., "Wide World of Computer-Based
Education", Advances in Computers, Vol. 15,
pp. 239-283, Academic Press, 1976.

[2] Denenberg, Stewart, "A Personal Evaluation of
the PLATO System", SIGCUE Bulletin, Vol. 12,
No. 2, April 1978.

[3] Dionne, M.S., and Mackworth, A.K., "ANTICS: A
System for Animating LISP Programs", Computer
Graphics and Image Processing, Vol. 7, pp. 105-
119, 1978.

[4] Kramlich, D., Brown, G.P., Carling, R.T°, and
Herot, C.F°, "Program Visualization: Graphics
Support for Software Development", Twentieth
Design Automation Conference, IEEE, pp. 143-
149, 1983.

[5] Olds, H.F. Jr., "The Making of Software ~t,
Classroom Computer News, Vol. i, No. 6,
August 1981.

[6] Pepper, Jeff, "Following students' suggestions
for rewriting a computer programming textbook",
American Educational Research Journal~ Vol. 18,
pp. 259-269, Fall 1981.

[72 Reiss, Steven D., "Graphical Program Develop-
ment with PECAN Program Development Systems",
Proceedings of the A~I SIGSOFT/SIGPLAN
Symposium on Practical Software Development
Environment, pp. 30-41, May 1984.

[8] Ross, R.J., "A Dynamic Library of Interactive
Programs", Technical Report CS-81-073,
Department of Computer Science, Washington
State University, April 1981.

[9] Turbo Pascal Version 2.0 Reference Manual,
Third Edition, Borland International, May 1984.

77

