
Packing Groups of Items into Multiple Knapsacks
Lin Chen1 and Guochuan Zhang∗2

1 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
chenlin198662@gmail.com

2 Zhejiang University, College of Computer Science, Hangzhou, China
zgc@zju.edu.cn

Abstract
We consider a natural generalization of the classical multiple knapsack problem in which instead
of packing single items we are packing groups of items. In this problem, we have multiple
knapsacks and a set of items which are partitioned into groups. Each item has an individual
weight, while the profit is associated with groups rather than items. The profit of a group can be
attained if and only if every item of this group is packed. Such a general model finds applications
in various practical problems, e.g., delivering bundles of goods. The tractability of this problem
relies heavily on how large a group could be. Deciding if a group of items of total weight 2 could
be packed into two knapsacks of unit capacity is already NP-hard and it thus rules out a constant-
approximation algorithm for this problem in general. We then focus on the parameterized version
where the total weight of items in each group is bounded by a factor δ of the total capacity of
all knapsacks. Both approximation and inapproximability results with respect to δ are derived.
We also show that, depending on whether the number of knapsacks is a constant or part of the
input, the approximation ratio for the problem, as a function on δ, changes substantially, which
has a clear difference from the classical multiple knapsack problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics

Keywords and phrases approximation algorithms, lower bound, multiple knapsack, bin packing

Digital Object Identifier 10.4230/LIPIcs.STACS.2016.28

1 Introduction

The classical multiple knapsack problem aims at a most profitable subset of given items
which admits a feasible packing on a given set of knapsacks. In this setting, if an item is
packed, its profit is counted into the objective value. In this paper, we investigate a scenario
in which items appear in groups, and the items in a group share a single profit. In other
words, one can get the profit if and only if all items in the group are packed (can be placed
into different knapsacks). It is obviously a natural generalization of the classical model where
each group consists of exactly one item. More precisely, the problem of packing groups
of items into multiple knapsacks (GMKP) is defined as follows. There are N disjoint sets
(groups) of items Si = {J ij |1 ≤ j ≤ ni} where J ij is the j-th item of the i-th set. Each item
has a weight w(J ij) = wij . There are m identical knapsacks (bins), each having a capacity of
B. There is a profit pi for each set Si, which could be achieved only if every item of the set
is packed. The goal is to pack items into knapsacks such that the total profit is maximized.

∗ Research supported in part by NSFC (11271325).

© Lin Chen and Guochuan Zhang;
licensed under Creative Commons License CC-BY

33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016).
Editors: Nicolas Ollinger and Heribert Vollmer; Article No. 28; pp. 28:1–28:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2016.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 Packing Groups of Items into Multiple Knapsacks

By scaling, we assume that the capacity of each knapsack is 1 and wij ∈ [0, 1]. We define the
weight of Si as wi = w(Si) =

∑
j∈Si w

i
j , and its density ratio as pi/w(Si). Throughout the

paper, “bins” and “knapsacks” are used interchangeably.
Although most of the times it is reasonable to assume that every single item has an

individual profit, as we do in the classical (multiple) knapsack problem, it does happen
in many cases that the profit can only be defined for a group of items, instead of each of
them. Consider several people going for hiking together. All the necessities for building a
tent, like the poles, ropes, sticks and the tent itself, have one uniform value which could be
achieved only when each of them is carried. Another example would be the delivery of huge
equipments, which could be split into smaller parts and carried by multiple trucks. However,
no part of one equipment has an individual value and it only makes sense to carry all the
parts. All of these natural applications motivate us to study the GMKP problem.

In general, GMKP does not admit any constant ratio approximation algorithm as it is
easy to see that deciding whether a single group of items (with the profit of 1) could be
packed into m = 2 bins is exactly the Partition problem and is NP-complete. However, the
intractability of the problem follows from the fact that a single group may have a weight
as large as the total capacity of all the knapsacks (bins), which is often not the case in
practice. For example, all parts of one huge equipment may exceed the capacity of one truck,
however, compared with the total capacity of all the trucks owned by the delivery company,
it is usually small. Hence, we put additionally the constraint that w(Si) ≤ δm for all i and
discuss the approximability of the problem with respect to the parameter δ ∈ (0, 1].

Throughout this paper, we say that an algorithm has an approximation factor c if it
always produces a feasible packing with total profit at least c times the optimal value. Clearly
c < 1. For the sake of conventional convenience, if the factor c is arbitrarily small, we say
such an algorithm does not have a constant ratio.

Related Work

We first provide a brief overview on the classical multiple knapsack problem (MKP). In
MKP, every item j has a weight wj and profit pj , and every knapsack (bin) i has an
individual capacity of Bi. The goal is to pack items into knapsacks such that the total profit
is maximized. In 1999, Kellerer [11] provided a PTAS (Polynomial Time Approximation
Scheme) for the special case of the multiple knapsack problem where all knapsacks have
the uniform capacity, i.e., Bi = B. Later on, Chekuri and Khanna [2] gave a PTAS for
the general multiple knapsack problem where each Bi can be different. This PTAS was
later improved by Jansen [6] [7] to an EPTAS (Efficient Polynomial Time Approximation
Scheme) of a running time 2O(log4(1/ε)/ε) + nO(1). On the other hand, Jansen et al. [9] also
showed that unless the Exponential Time Hypothesis fails, there is no approximation scheme
which has a running time of 2o(1/ε) + nO(1) for the multiple knapsack problem even if there
are only two knapsacks (of the unit capacity). Thus, allowing the number of knapsacks m
to be part of the input as well as allowing each knapsack to have a distinct capacity does
not essentially make the problem harder in the sense that the 2O(log4(1/ε)/ε) + nO(1) time
EPTAS for the general MKP is almost the best possible even for the special case that m = 2.
However, things are substantially different for GMKP where the profit is associated with
groups instead of items. We show in this paper that if m is a constant, GMKP admits a
constant-factor approximation algorithm as long as δ < 1. If m is part of the input, GMKP
admits a constant-factor approximation algorithm only if δ ≤ 2/3. Furthermore, if we allow
knapsacks to have distinct capacities, then even if there are only two kinds of knapsacks, say,
m1 knapsacks of capacity c1 and m2 knapsacks of capacity c2, then for any δ ∈ (0, 1) the

L. Chen and G. Zhang 28:3

Table 1 Overview of the results.

m δ Upper Bound Lower Bound
constant (0, 1) 1 − f(δ) + ε 1 − f(δ) − ε

input

(2/3, 1) ε 0
(1/3, 2/3] 1/2 + ε 1/2 − ε

(1/4, 1/3] 1 − 3δ/(2 + 3δ) + ε 1/2 − ε

(0, 1/4] 1 − 3δ/(2 + 3δ) + ε 1 − 2δ − ε

constraint w(Si) ≤ δ(m1c1 +m2c2) is no longer capable of guaranteeing a constant-factor
approximation (See the full version of the paper). Hence, unlike MKP, the parameter m, as
well as the capacities of knapsacks, influences GMKP substantially. We hope the study in
this line will help reveal the impact of these parameters.

Our problem is closely related to the all-or-nothing generalized assignment problem
(AGAP) [1]. The AGAP problem also asks for a most profitable packing of n groups of items
into m identical knapsacks, where the profit of a group is defined to be the total profit of
items in the group, and is achieved only if every item of this group is packed. The major
difference between AGAP and our GMKP problem is that AGAP further requires that every
knapsack could accommodate at most one item from each group. This additional constraint
allows AGAP to admit an O(1)-approximation algorithm, while GMKP does not admit any
constant approximation algorithm in general.

Our problem is also closely related to the bin packing problem (BPP) in which every
item has a weight and the goal is to pack all the items into the smallest number of bins. In
GMKP, if we know which groups are selected by the optimum solution, we get a bin packing
problem as we need to pack the items of the selected groups into a fixed number of bins. It
is proved in [8] that the problem is W [1]-hard parameterized by the number of bins m even
with unary encoding. This result directly implies the W [1]-hardness of our problem.

Our Contribution

We give a thorough study on the approximability of GMKP with respect to the parameter
δ. From now on we will use GMKP(δ) to specify the parameter. The reader may refer to
Table 1 for an overview, where each lower bound means there exists an algorithm achieving a
profit at least a certain fraction of the optimum, and each upper bound means that there does
not exist a polynomial time algorithm achieving a profit of such a fraction of the optimum
under P 6= NP. Here f(δ) = 1/(1/δ + 1) if 1/δ is an integer and could be divided by m, and
f(δ) = 1/d1/δe otherwise, and ε > 0 is an arbitrarily small constant.

The main contribution of this paper is to give a full characterization of the approximability
of GMKP(δ), and distinguish GMKP(δ) with m being a constant from GMKP(δ) with m
being part of the input based on such a characterization. Our results imply that, if m is a
constant, thenGMKP(δ) could be approximated to a factor of roughly 1− δ, hence it admits
a constant-ratio approximation algorithm as long as δ < 1. However, if m is part of the
input,GMKP(δ) does not admit any constant-ratio approximation algorithm when δ > 2/3
(assuming P 6= NP), and admits a (1/2 − ε)-approximation algorithm as long as δ ≤ 2/3.
Furthermore, when δ is sufficiently small (e.g., δ ∈ (0, 1/4]), the approximation ratio lies
within [1− 2δ− ε, 1− 3δ/(2 + 3δ) + ε], which has a clear difference from the ratio of 1− δ for
the case that m is a constant.

To achieve our results, we study OPT (m) as a function of m, where OPT (m) is the
optimum profit by using m bins. By modifying the classical dynamic programming algorithm

STACS 2016

28:4 Packing Groups of Items into Multiple Knapsacks

for MKP [2], we show that a profit of (1− ε)OPT (m) could be achieved by using (1 + ε)m
bins even for theGMKP(δ) problem. Hence, we could derive in polynomial time a feasible
solution of profit (1− ε)OPT ((1− ε)m). A crucial observation leading to a PTAS for MKP is
that OPT (m) is somehow “continuous” in the sense that OPT ((1− ε)m) ≥ (1− ε)OPT (m).
However, it is no longer true forGMKP(δ). Indeed, if m is part of the input, we prove
that by assuming P 6= NP, for any ε > 0 and c < 3/2, the inequality OPT ((1 − ε)m) ≥
(1− cδ)OPT (m) does not hold, which implies a jump on the optimum. We also show that
OPT ((1 − ε)m) ≥ (1 − 2δ − O(ε))OPT (m), which implies a (1 − 2δ − ε)-approximation
algorithm. To prove such a bound, we will use the configuration LP for bin packing problem
introduced in [4] and apply discrepancy analysis to estimate how the deletion of certain items
influences the whole packing.

2 Packing into a Constant Number of Bins

We give almost tight approximation algorithms for GMKP(δ) when m is a constant. We
start with the upper bound, as is shown by the following theorem.

I Theorem 1. Assuming P 6= NP, there is no (1− f(δ) + ε)-approximation algorithm for
the group packing problem GMKP(δ) for any constant m, where f(δ) = 1/(1/δ + 1) if 1/δ is
an integer and could be divided by m, and f(δ) = 1/d1/δe otherwise.

The approximability of GMKP(δ) relies on the function f which has a jump when 1/δ is
an integer and could be divided by m. This is due to the hardness result of the following
Repartition problem.

Repartition-(x,m). Given x sets of integers S1, S2, · · · , Sx where Si = {bij ∈ Z+|1 ≤ j ≤
ni, ni ∈ Z+},

∑
j∈Si b

i
j = B for every i and m|Bx, the problem asks whether there exists a

repartition of all the integers bij into m disjoint sets such that the integers in each set sum
up to exactly Bx/m.

I Lemma 2. Repartition-(x,m) is NP-complete for any x and m such that x could not be
divided by m, and is polynomially solvable otherwise.

It is easy to see that Partition is actually a special case of the Repartition problem by
taking x = 1 and m = 2.

We complement Theorem 1 by giving an algorithm with the approximation ratio that
almost matches the bound.

I Theorem 3. There is a (1 − f(δ) − ε)-approximation algorithm for the group packing
problem GMKP(δ) if m is a constant, where f(δ) = 1/(1/δ + 1) if 1/δ is an integer and
could be divided by m, and f(δ) = 1/d1/δe otherwise.

To prove Theorem 3, we need the following lemma.

I Lemma 4. If there exists a feasible solution Sol of profit φ for the group packing problem
GMKP(δ) when m is a constant, and the total weight of all the items in the solution is at
most (1− ε)m, then there exists a polynomial time algorithm which returns a feasible solution
of profit at least φ.

The proof of Lemma 4 is a combination of guessing out big items (with weight larger
than ε2), and greedily selecting and packing small items (with weight no more than ε2). The
fact that the total weight of items in Sol is no more than (1 − ε)m ensures that there is

L. Chen and G. Zhang 28:5

enough room (the amount of εm) to offset the errors caused by the possible wrongly selection
and packing of small items.

With Lemma 4, Theorem 3 is proved via selecting out appropriate sets whose total weight
is at least εm and the total profit is at most f(δ)OPT .

Proof of Theorem 3. According to Lemma 4 (for ease of calculation we substitute ε by ε2
in the lemma), if the optimum solution of GMKP(δ) has a total weight at most m(1− ε2)
then the theorem is already proved. Otherwise it suffices to prove that given the optimum
solution, say, Sol, we can always delete some sets such that the total weight of these sets is
at least ε2m, and the total profit is at most f(δ)OPT . In Sol if there exists a single set of
weight at least ε2m and total profit at most f(δ)OPT we are done. Otherwise every set of
weight at least ε2m has a profit strictly larger than f(δ)OPT . We call such sets as critical
sets and there are at most 1/f(δ)− 1 critical sets (recall that 1/f(δ) is an integer).

Suppose 1/δ is not an integer dividable bym, then there are at most 1/f(δ)−1 = d1/δe−1
critical sets, with total weight at most [1− δ(d1/δe − 1)]m. Since δ is a constant, it is always
possible to choose sufficiently small ε such that 1 − δ(d1/δe − 1) ≥ 2ε. As the total
weight of all the sets is larger than (1 − ε2)m, we know that in addition to critical sets
there are also other sets in Sol, and the total weight of these non-critical sets is at least
(1−ε2)m−δ(d1/δe−1)m ≥ εm. Notice that the total profit of non-critical sets is at most OPT ,
hence the average ratio of these sets is upper bounded by OPT/(εm). Hence, by selecting
least profitable (in terms of ratios, i.e., pi/w(Si)) non-critical sets such that their total weight
is in (ε2m, 2ε2m], we know their total profit is at most 2ε2m ·OPT/(εm) ≤ 2εOPT . Overall,
we find sets with total weight at least ε2m and total profit at most 2εOPT ≤ f(δ)OPT ,
which proves the theorem.

Suppose 1/δ = λ is an integer dividable by m, then f(δ) = 1/(1+λ). Recall that every set
of weight at least ε2m has a profit strictly larger than OPT/(1 + λ). Consider the optimum
solution. If there exist λ sets of items such that their total profit is at least λ/(1 + λ) ·OPT ,
then we can guess out these λ sets. As λ could be divided by m, we put items of λ/m sets
into one bin, and their total weight is at most δm · λ/m = 1. Hence we derive a feasible
packing with profit at least λ/(1 + λ) ·OPT = (1− f(δ))OPT . Otherwise, any λ sets in the
optimum solution have a total profit less than λ/(1 + λ) ·OPT , specifically, the λ sets of the
largest weight also have a total profit less than λ/(1 + λ) ·OPT . Hence, among the λ sets of
the largest weight, the one of the smallest profit has a profit at most OPT/(1 + λ), implying
that it is not critical, hence has a weight at most ε2m. Thus, there are at most λ− 1 critical
sets in the optimum, and their total weight is at most δm · (λ− 1) = (1− δ)m. Given that
the total weight of all the sets is at least m(1− ε2), we know that the non-critical sets have a
total weight at least (δ − ε2)m, and total profit at most OPT . Hence, by selecting out least
profitable (in terms of ratios, i.e., pi/w(Si)) non-critical sets such that their total weight
is in (ε2m, 2ε2m], we know their total profit is at most 2ε2m ·OPT/(δm− ε2m) ≤ 2εOPT
(by taking ε sufficiently small such that δ > 2ε). According to Lemma 4 the theorem is
proved. J

3 Packing into an Arbitrary Number of Bins

Extending the PTAS [2] for the multiple knapsack problem, we have the following.

I Theorem 5. There exists a dynamic programming algorithm for GMKP(δ) which returns
a solution of profit OPT (m)/(1 + ε) by using m(1 + ε) bins.

STACS 2016

28:6 Packing Groups of Items into Multiple Knapsacks

Notice that a feasible solution uses m bins, thus the above theorem actually ensures
a feasible solution with profit at least OPT (m(1 − ε))/(1 + ε). In the classical multiple
knapsack problem, the profit is associated with items, hence for each bin in the solution of
OPT (m) we can calculate the total profit of items packed into this bin. If we delete εm bins
with the least total profit of items, we obtain a solution of profit at least (1− ε)OPT (m) with
m(1− ε) bins, implying that OPT (m(1− ε)) ≥ (1− ε)OPT (m), and a PTAS follows directly
from Theorem 5. However, this inequality is no longer true when the profit is associated with
groups instead of items. We will discuss in the following the approximability of GMKP(δ)
with respect to the value of δ.

Throughout this section we let OPT = OPT (m) for simplicity. We assume ε to be an
arbitrary small fractional value such that 1/ε is an integer, and m to be sufficiently large
such that mε is always an integer.

3.1 δ > 2/3
I Theorem 6. Assuming P 6= NP, there is no constant ratio approximation algorithm for
the group packing problem GMKP(δ) when δ > 2/3.

Consider the Bin Packing Problem which asks whether a set of items of weights a1, a2,
· · · , an could be packed into m bins of capacity 1. We denote by BPP (δ) if

∑
aj ≤ δm.

Theorem 6 follows directly from the following lemma.

I Lemma 7. BPP (δ) is strongly NP-complete for δ > 2/3.

Proof. We reduce from 3-Partition. In the 3-Partition problem, we are given a set of 3k
positive integers {b1, b2, · · · , b3k} such that

∑
bj = kB. The problem asks whether there

exists a partition of the integers into k disjoint subsets U1, U2, · · · , Uk such that for every i,
|Ui| = 3 and

∑
bj∈Ui bj = B.

Let ε > 0 be an arbitrarily small positive number with 1/ε being an integer. Given a
3-Partition instance, we let b′i = bi +B/ε and B′ = (1 + 3/ε)B. We construct an instance of
BPP (δ) with δ = 2/3 +O(ε) in the following way.

There are 3k key items of weights ai = b′i/B
′ for 1 ≤ i ≤ 3k. There are 2k/ε dummy

items, each of weight (B +B/ε)/B′. There are m = k + k/ε bins, each of capacity 1. Hence
the total weight of items is (kε + 5k + 2k/ε)/(ε + 3) ≤ (2/3 + O(ε))(k + k/ε), i.e., it is a
feasible instance of BPP (δ) for δ = 2/3 +O(ε).

Suppose the 3-Partition problem admits a feasible solution. Then the bin packing problem
also admits a feasible solution by packing all the key items into k bins, and all the dummy
items into k/ε bins.

Suppose the bin packing problem admits a feasible solution. It is easy to verify that there
are three possibilities with respect to the items packed into a single bin. A bin contains only
key items, and there are at most three of them, or it contains only dummy items, and there
are at most two of them, or it contains one key item and one dummy item. Let x, y, z denote
the number of bins with the above-mentioned three kinds of “configuration”, respectively.
We have the following constraints,

3x+ z ≥ 3k, 2y + z ≥ 2k/ε, x+ y + z = m = k + k/ε.

Let z = k+k/ε−x− y and plug it back into the first two inequalities, simple calculations
show that x ≥ k and y ≥ k/ε. Given that x, y, z ≥ 0, it follows directly that x = k and
y = k/ε. Hence, all the key items are packed into k bins, implying a solution to the 3-Partition
problem. J

L. Chen and G. Zhang 28:7

3.2 1/3 < δ ≤ 2/3
I Theorem 8. Assuming P 6= NP, for any ε > 0 there is no (1/2 + ε)-approximation
algorithm for GMKP(δ) when δ > 1/3.

Proof. Recall that the proof of Lemma 7 shows that it is strongly NP-hard to decide whether
a group of items of total weight (2/3 +O(ε))m could be packed into m bins. To modify it
into a feasible instance of GMKP(δ) for 1/3 < δ ≤ 2/3, we divide these items into two groups
with roughly the same total weight via a simple greedy algorithm, i.e., we open two groups
A and B which are initially empty, and each time we add one item into the group with a
smaller total weight of items. By doing so items could be divided such that the difference of
the total weight between two groups is at most the weight of the largest item, which is O(εm).
Hence, w(A), w(B) ≤ (1/3 +O(ε))m. Let the profit of either group be 1. If there exists a
(1/2 + ε)-approximation algorithm, then it returns a solution with profit strictly larger than 1
if the two groups of items can both be packed into m bins, and returns a solution with profit
at most 1 otherwise. Hence, we can use the approximation algorithm to decide whether all
the items could be packed into m bins, which is a contradiction to Lemma 7. J

We complement Theorem 8 by providing a (1/2−ε)-approximation algorithm for GMKP(δ)
when δ ≤ 2/3. To achieve this, we first consider BPP (δ).

I Lemma 9. BPP (δ) is polynomial-time solvable when δ ≤ 2/3.

The Lemma actually falls as corollary of the following observation for the Longest
Processing Time (LPT) algorithm for the Machine Scheduling problem. In the machine
scheduling problem, given is a set of jobs, each of processing time pj , and the goal is to assign
these jobs onto parallel machines such that the completion time of the job that completes
last is minimized. LPT is the algorithm that orders jobs in non-increasing order of their
processing times, and always assigns a job to the machine with the least load.

I Lemma 10 ([5]). If every job has a processing time larger than OPT/3 where OPT is the
optimum makespan, then LPT produces an optimal schedule.

Proof of Lemma 9. Suppose the optimum uses m bins. We show that FFD (First Fit
Decreasing) [10] uses no more than m bins. FFD is the algorithm that assigns items into
bins in the following way; it sorts items by weight from the largest to the smallest and
sorts bins in an arbitrary way. Then it packs each item into the first bin that still has the
enough remaining capacity to accommodate it. Consider all the items larger than 1/3. FFD
packs them into no more than m bins via Lemma 10. For the remaining items, if FFD
opens an (m+ 1)-st bin for some item j, then at this time all the m bins are filled up to at
least 2/3, hence the total weight of the items, except item j, is at least 2/3m, which is a
contradiction. J

Notice that the proof of the above lemma also shows that items of total weight W can
always be packed into d3/2 ·W e bins, if every item has a weight no more than 1/2. To see
why, consider items of weight larger than 1/3. FFD can always pack two of them into one
bin. Thus in the solution returned by FFD, except for one bin, every bin is filled up to at
least 2/3. This observation leads to the following lemma.

I Lemma 11. A set of items can always be packed into |S>1/2|+ d3/2 ·W≤1/2e bins, where
S>1/2 is the set of items whose weight is strictly larger than 1/2, and W≤1/2 is the total
weight of the remaining items.

STACS 2016

28:8 Packing Groups of Items into Multiple Knapsacks

Now we are ready to prove the following theorem.

I Theorem 12. There exists a (1/2 − ε)-approximation algorithm for GMKP(δ) when
δ ≤ 2/3.

The proof idea is to show that, all the sets selected by the optimum solution of GMKP(δ)
could be divided into two groups such that either group could be packed into αm bins with
some constant α < 1. If the above claim is true, then OPT/2 could be achieved by using at
most αm bins, and we could apply Theorem 5 to derive a feasible solution of profit at least
(1/2− ε)OPT .

Proof. Consider an optimum solution. A set is called huge if its weight is at least εm. There
are at most 1/ε huge sets in the optimum solution and we can guess them (by enumeration).
Suppose we guess the correct sets and let them be S1 to Sh. We partition them into two
groups such that either group has a total weight at most 2/3 ·m. This could be achieved
via a simple greedy strategy, i.e., we treat each set Si as a job of processing time w(Si) and
apply LPT (longest processing time first) to schedule them on two identical machines. The
makespan of the solution returned is either δm ≤ 2/3 ·m if there are only one or two jobs, or
at most 1/2(

∑h
i=1 w(Si)− w(Sj)) + w(Sj) ≤ 1/2 ·m+ 1/2 · 1/3m ≤ 2/3 ·m where Sj is the

job that finishes last and hence of weight at most m/3. Let A and B denotes the two groups
returned by the above procedure. Let C be the group of remaining sets in the optimum
solution, then each set of C has a weight at most εm.

Note that groups A and B are known via guessing (enumeration), while the group C is
unknown. Furthermore, the total weight of items in group A (or B) is at most 2/3 ·m. Thus
according to Lemma 9, all the items of A (or B) could be packed into m bins. If the total
profit of sets in A (or B) is at least OPT/2, the theorem is proved.

Otherwise, we prove the theorem using Theorem 5. Consider items of weight larger than
1/2. Let zA, zB and zC be the number of such items in groups A, B and C respectively. Let
WA, WB and WC be the total weight of remaining items in groups A, B and C. We have
the following inequalities.

zA + zB + zC ≤ m
1/2 · (zA + zB + zC) +WA +WB +WC ≤ m

According to the above two inequalities, we have

zA + zB + zC + 3/2(WA +WB +WC) ≤ 7/4 ·m.

According to Lemma 11, to pack items of groupA or groupB we need at most zA+d3/2·WAe ≤
zA + 3/2 ·WA + 1 or zB + 3/2 ·WB + 1 bins, respectively. There are two possibilities.

Case 1. Either zA + 3/2 ·WA + 1 or zB + 3/2 ·WB + 1 is very large, i.e., at least 7/8 ·m.
Assume w.l.o.g that zA + 3/2 ·WA + 1 ≥ 7/8 ·m. Recall that the profit of A is less than
OPT/2, hence the profit of B∪C is at least OPT/2. Notice that zA+ 3/2 ·WA+ 1 ≥ 7/8 ·m
implies that zB + zC + 3/2 · (WB + WC) + 1 ≤ 7/8 · m + 2 ≤ (7/8 + ε)m, hence the
sets in B ∪ C can be packed into (7/8 + ε)m bins via Lemma 11, which implies that
OPT (m(1−ε)) ≥ OPT ((7/8+ε)m) ≥ 1/2OPT . Using Theorem 5 we know that the dynamic
programming algorithm will return a feasible solution with profit at least (1/2− ε)OPT .

L. Chen and G. Zhang 28:9

Case 2. zA+3/2·WA+1 ≤ 7/8·m and zB+3/2·WB+1 ≤ 7/8·m. We claim that C could be
partitioned into C1 and C2 such that A′ = A∪C1, B′ = B∪C2, zA′ +3/2·WA′ +1 ≤ (7/8+2ε)m
and zB′ + 3/2 ·WB′ + 1 ≤ (7/8 + 2ε)m (Here zA′ , zB′ ,WA′ and WB′ are defined analogously
as before). If the claim is true, then either A′ or B′ has a profit at least OPT/2, implying
that OPT (m(1− ε)) ≥ OPT ((7/8 + 2ε)m) ≥ 1/2OPT , and Theorem 12 is proved. To see
why the claim holds, we consider the sets in C and let them be S1 to Sh. We let zC(Si) be
the number of items with weight larger than 1/2 in Si, and WC(Si) be the total weight of
remaining items in Si. As group C consists of sets whose weight is at most εm, we have
1/2 · zC(Si) + WC(Si) ≤ εm for 1 ≤ i ≤ h. To show the partition of C we again view
each set Si as a job of processing time zC(Si) + 3/2 ·WC(Si) ≤ 2εm. We shall schedule
these jobs onto two identical machines with the initial load of zA + 3/2 ·WA + 1 ≤ 7/8 ·m
and zB + 3/2 ·WB + 1 ≤ 7/8 ·m, respectively. Applying List-Scheduling, we claim that
after all the jobs are scheduled, the makespan is at most (7/8 + 2ε)m since otherwise, the
job that finishes last must be some job Si, and thus the load of either machine is strictly
larger than 7/8 ·m, which contradicts the fact that zA + zB + zC + 3/2(WA +WB +WC) =
zA + zB + 3/2(WA +WB) +

∑
i(zC(Si) + 3/2WC(Si)) ≤ 7/4 ·m. Taking the sets scheduled

on two machines as A′ and B′, we obtain the desired partition. J

3.3 δ ≤ 1/3
With a similar proof as for Theorem 8, we have the following lower bound.

I Theorem 13. Assuming P 6= NP, there is no (1 − 3δ/(2 + 3δ) + O(ε))-approximation
algorithm for GMKP(δ) for any ε > 0 when δ ≤ 1/3.

We complement Theorem 13 with the following theorem.

I Theorem 14. Given an arbitrary ε > 0, there exists a (1 − 2δ − O(ε))-approximation
algorithm for GMKP(δ) when δ ≤ 1/3.

By Theorem 5, it suffices to prove OPT ((1− ε)m) ≥ (1− 2δ−O(ε))OPT (m), as is shown
by the following Lemma 15.

We remark that, although intuitively one might expect to show that OPT (m(1− ε)) ≥
(1−O(ε))OPT (m), or at least OPT ((1− ε)m) ≥ (1− δ−O(ε))OPT (m) for sufficiently small
δ, Theorem 13 already implies that OPT ((1 − ε)m) ≥ (1 − cδ)OPT (m) does not hold in
general for c < 3/2.

I Lemma 15. OPT ((1−Θ(ε2))m) ≥ (1− 2δ −O(ε))OPT (m) for m ≥ 20/ε3.

We remark that the above lemma is actually true for any δ ∈ (0, 1]: for δ > 1/2 it is trivially
true, while for δ ∈ (1/4, 1/2] although a (1− 2δ−O(ε))-approximation algorithm follows, yet
the (1/2− ε)-approximation algorithm presented in the previous subsection performs better.

We give a brief introduction to the proof. Consider the solution with the profit of OPT (m).
In order to prove the inequality, among the sets of items packed in this solution, we need to
select some sets such that their total profit is small (at most (2δ +O(ε))OPT (m)), and the
deletion of them saves many bins (at least Ω(ε2m) bins). Obviously these sets could not be
the sets that consist of items that are very small. To see why, imagine that in OPT (m) each
bin is filled up by a huge item of size larger than 1/2 and a bunch of small items, then even if
we delete all the small items the number of bins required for the remaining huge items is still
m. Hence, we should better delete sets that contain many big items. To show that such a
deletion, combined with the repacking of remaining items could eventually save a significant

STACS 2016

28:10 Packing Groups of Items into Multiple Knapsacks

number of bins, we will iteratively modify the instance and then apply the discrepancy theory
to the Gilmore Gomory LP relaxation [4] for the modified instance. The idea of applying
discrepancy theory to Bin Packing is also used in [3] to derive the relationship between Bin
Packing and the three-permutation-problem.

Proof. We assume that sets packed in OPT (m) are S1 to Sh. We further assume that∑
i w(Si) > (1/2 − ε)m since otherwise OPT ((1 − ε)m) = OPT (m). To see why, suppose∑
i w(Si) ≤ (1/2− ε)m. We let S1/2 be the set of items in S1 to Sh whose weight is larger

than 1/2, and W≤1/2 be the total weight of remaining items. Then 1/2|S>1/2|+W≤1/2 ≤∑
i w(Si) ≤ (1/2 − ε)m, whereas |S>1/2| + d3/2W≤1/2 ≤

∑
i w(Si)e ≤ 2(1/2 − ε)m + 1 ≤

(1 − ε)m. According to Lemma 11 all the sets could be packed into (1 − ε)m bins, hence
OPT ((1− ε)m) = OPT (m).

From now on we will abuse the notation wi a bit to also denote item i, and we may
also abuse the notation OPT (m) to denote the solution that achieves the profit. Let w1 to
wn be all the items of S1 to Sh such that w1 ≥ w2 ≥ · · · ≥ wn. Let γ be the least index
such that w1 + w2 + · · ·+ wγ > (1/2− ε)m. Obviously w1 to wγ should belong to at least
d(1/2− ε)/δe different sets among S1 to Sh. For simplicity let these sets be S1 to S` with
` ≥ d(1/2− ε)/δe.

Let Sγ = {w1, w2, · · · , wγ}, Sγi = Si ∩ Sγ , w(Sγi) =
∑
j∈Sγ

i
wj , p(Sγi) = pi, ρ(Sγi) =

pi/w(Sγi). We assume w.l.o.g that ρ(Sγ1) ≥ ρ(Sγ2) ≥ · · · ≥ ρ(Sγ`).
Consider the following knapsack problem. We take each Sγi as a single item. Then these

` items can be packed into a knapsack of capacity
∑`
i=1 w(Sγi) ≥ (1/2− ε)m with the total

profit of
∑`
i=1 pi ≤ OPT (m). Recall that w(Sγi) ≤ δm. We let `′ ≤ ` be the least index such

that w(Sγ`′) + w(Sγ`′+1) + · · ·+ w(Sγ`) ∈ (8εm, (8ε+ δ)m]. Furthermore, since Sγ`′ to Sγ` are
the least profitable items (in terms of ratios), we know that∑`

i=`′ pi∑`
i=`′ w(Sγi)

≤
∑`
i=1 pi∑`

i=1 w(Sγi)
≤

∑`
i=1 pi

(1/2− ε)m ,

∑̀
i=`′

pi ≤ (8ε+ δ)m ·
∑`
i=1 pi

(1/2− ε)m ≤ (2δ +O(ε))
∑̀
i=1

pi ≤ (2δ +O(ε))OPT (m).

Suppose we delete sets S`′ to S` from the optimum solution OPT (m). The total profit of
the remaining sets is at least (1− 2δ −O(ε))OPT (m), and in the following we show that to
pack all the items of the remaining sets, (1−Θ(ε2))m bins suffice, which proves the lemma.

Notice that directly deleting items of sets S`′ to S` from the solution of OPT (m) leaves
some empty space in the m bins, and we aim to somehow merge these spaces to create
Θ(ε2m) empty bins. Instead of iteratively moving items, we will use a “global approach” by
applying the discrepancy theory to the configuration LP for the bin packing problem.

Consider the instance of packing items w1, w2, · · · , wn. For any set of items X, we denote
by σ(X) the minimum number of bins needed to pack them. Let S = {w1, w2, · · · , wn},
S′ = ∪`i=`′S

γ
i ⊆ Sγ . It is easy to see that σ(S) ≤ m, w(S′) ∈ (8εm, (8ε+ δ)m]. To prove the

lemma, it suffices to prove Claim 1.

I Claim 1. σ(S \ S′) ≤ (1−Θ(ε2))m.

Consider wγ . We claim that, if wγ ≤ 2ε, then σ(S \ S′) ≤ (1− ε)m ≤ (1−O(ε2))m. To
see why, recall the definition of γ, we have w1 +w2 + · · ·+wγ−1 ≤ (1/2− ε)m, implying that
these items could be packed into (1−ε)m bins. We now delete items of S′ ⊆ {w1, w2, · · · , wγ}
from this solution, and then pack items wγ to wn via First-Fit. We claim that, we do not

L. Chen and G. Zhang 28:11

need to open new bins. Suppose the claim is not true, then among these (1− ε)m bins at
least (1 − ε)m − 1 bins are filled up to at least 1 − 2ε. Hence, ((1 − ε)m − 1)(1 − 2ε) ≤
w(S \ S′) ≤ (1− 8ε)m, which is a contradiction.

From now on we assume wγ > 2ε. In this case we do not prove Claim 1 directly. In the
following, we will iteratively give Claim 2 to Claim 5 and show that, for 1 ≤ i ≤ 4, Claim
i+ 1 implies Claim i. We then prove Claim 5 at the end, which suffices to show the truth of
Claim 1, and consequently the lemma.

Consider small items whose weight is at most ε. We modify small items in the following
way. We iteratively agglomerate small items into a big item of weight [ε, 2ε). At last there
may still be some small items left with total weight less than ε, and we simply agglomerate
them into a single item. Let S] be the sets of modified items, then it is easy to see that except
at most one item, each item in S] has a weight at least ε, and w(S) = w(S]). Furthermore,
if we order items of S] in non-increasing order of their weight, the first γ items would still be
w1 to wγ . Hence, S′ ⊆ Sγ ⊆ S]. As the modification procedure only agglomerate items, to
prove Claim 1, it suffices to prove the following Claim 2.

I Claim 2. σ(S] \ S′) ≤ (1−Θ(ε2))m.

Notice that w(S′) ∈ (8εm, (8ε + δ)m] and the weight of each item is at most 1 ≤ εm.
We can easily split S′ into S′1 and S′2 such that w(S′1) ∈ [4εm, 5εm) and w(S′2) ≥ 3εm.
As items are agglomerated, it is no longer true that σ(S]) ≤ m. However, we claim that,
σ(S] \ S′1) ≤ m. To see why, consider the solution of σ(S) ≤ m. We take out all the small
items together with items of S′1. Now we add back the agglomerated items via First-Fit.
We claim that, we do not need to open new bins since otherwise, at least m bins are filled
up to at least 1 − 2ε, implying that w(S] \ S′1) ≥ (1 − 2ε)m, which is a contradiction as
w(S] \ S′1) = w(S)− w(S′1) ≤ (1− 4ε)m.

Let S] = Sγ ∪ Sα. Claim 2 is equivalent to σ(S] \ S′) = σ((Sγ \ (S′1 ∪ S′2)) ∪ Sα) ≤ (1−
Θ(ε2))m. By re-indexing items we assume that Sγ \ S′1 = {w1, w2, · · · , wγ′} for some γ′ < γ,
and Sα = {wγ′+1, wγ′+2, · · · , wn′} where wγ′+1 ≥ wγ′+2 ≥ · · · ≥ wn′ . As w(S′2) ≥ 3εm,
S′2 consists at least 3εm items of Sγ \ S′1. Instead of deleting items of S′2, we consider the
instance of deleting 3εm largest items from Sα, i.e., deleting Ŝα = {wγ′+1, · · · , wγ′+3εm} (if
n′ ≤ γ′ + 3εm then Ŝα = Sα). Compare (Sγ \ (S′1 ∪ S′2)) ∪ Sα with (Sγ \ S′1) ∪ (Sα \ Ŝα).
Since there are at least 3εm items in S′2, each being larger than (or equal to) any item in
Ŝα, we know there exists an injection such that each item in (Sγ \ (S′1 ∪ S′2)) ∪ Sα could
be mapped to a larger or equal item in (Sγ \ S′1) ∪ (Sα \ Ŝα). Hence, to prove Claim 2, it
suffices to prove the following Claim 3.

I Claim 3. σ((Sγ \ S′1) ∪ (Sα \ Ŝα)) ≤ (1−Θ(ε2))m.

Recall that σ((Sγ \ S′1) ∪ Sα) ≤ m. Consider a feasible solution of packing items of
(Sγ \ S′1) ∪ Sα into m bins (empty bins are allowed). We say a bin is critical if items from
Sγ \S′1 occupy the space of at most 1/2, and non-critical otherwise. Hence, there are at most
(1 − ε)m non-critical bins since otherwise the total weight of items from Sγ \ S′1 is larger
than (1− ε)m/2 ≥ (1/2− ε)m ≥ w(Sγ), which is a contradiction.

Let β ≥ εm be the number of critical bins. Let Sc be the set of items packed in critical
bins, Scα = Sc ∩ Sα and τ = |Scα|. For simplicity let w′1 ≥ w′2 ≥ · · · ≥ w′τ be all the items of
Scα. Let Ŝcα = {w′1, · · · , w′3εm} be the largest 3εm items in Scα ⊆ Sα. Compare Ŝα and Ŝcα,
i.e., the largest 3εm items in Sα and the largest 3εm items in Scα ⊆ Sα. Obviously there is
an injection which maps each item in Ŝcα to a larger or equal item in Ŝα. Hence to prove
Claim 3 it suffices to prove the following Claim 4.

STACS 2016

28:12 Packing Groups of Items into Multiple Knapsacks

I Claim 4. σ((Sγ \ S′1) ∪ (Sα \ Ŝcα)) ≤ (1−Θ(ε2))m.

A critical configuration is a configuration for items of Scα, represented by a column vector
ν = (b1, b2, · · · , bτ)T , where bi ∈ {0, 1} denoting whether w′i ∈ Scα is packed. Obviously the
packing of each critical bin could be represented by some items of Sγ \ S′1 together with a
critical configuration, and there are β critical configurations corresponding to the β critical
bins. Let B = (ν1, ν2, · · · , νβ) ∈ {0, 1}τ×β be the matrix of these β configurations. Then
obviously Beβ = eτ where ek is a column vector with k components, each being 1.

We now use the idea of [3] to re-write the equation Beβ = eτ . Let matrix A be
defined as Ai =

∑i
j=1 Bj where Ai (Bj , resp.) denotes the i-th (j-th, resp.) row of the

matrix A (B, resp.), i.e., Aij denotes the total number of items w′1 to w′i in the j-th
configuration νj . Then from Beβ = eτ we derive Aeβ = (1, 2, · · · , τ)T . Furthermore, since
each items, except the smallest one, is of weight at least ε, each configuration consists at
most 1/ε items. As each column of A is monotone, A is a monotone matrix with each
entry Aij ∈ {0, 1, 2, · · · , 1/ε}. Hence, A is a 1/ε-monotone matrix. Let A′ be the matrix of
attaching Aτ+1 = (1/ε, 1/ε, · · · , 1/ε)T as the new last row of A, then A′ is also monotone
with

A′eβ = (1, 2, · · · , τ, β/ε)T .

I Claim 5. There exists a 0-1 vector x = (x1, x2, · · · , xβ)T such that A′x = (ψ, (β−∆)/ε)T ,
where ψ = Ax is a vector with i-th component ψi ≥ max{0, i − 3εm} for 1 ≤ i ≤ τ , and
∆ = Ω(ε2m).

We prove Claim 5 implies Claim 4 by showing that items of (Sγ \ S′1) ∪ (Sα \ Ŝcα) could
be packed into β − ∆/2 bins. Indeed, Ax = ψ means by using xi ∈ {0, 1} copies of the
configuration νi (i.e., the i-th column of B), we can pack a subset S∗ ⊆ Scα = {w′1, · · · , w′τ} of
items such that |S∗∩{w′1, · · · , w′i}| = ψi. As ψi ≥ max{0, i−3εm}, using these configurations
we are able to pack items of Scα \ Ŝcα. Furthermore,

∑
xi = β −∆ means that in total we

save ∆ critical configurations, by removing which we get ∆ bins which are at most half full
since in a critical bin, items that are not in the critical configuration have a total weight at
most 1/2. Hence, we can merge items of two such bins into one bin, i.e., we can save ∆/2
bins and Claim 4 follows if ∆ = Ω(ε2m).

We have shown so far that Claim i + 1 implies Claim i for 1 ≤ i ≤ 4, hence Claim 1,
and consequently the lemma, will follow from the truth of Claim 5. We now prove Claim 5.
We show there exists such an integer solution x. Consider the fractional solution y = θeβ
where θ = 1− εm/τ . Obviously A′y = (θ, 2θ, · · · , τθ, βθ/ε)T . According to the discrepancy
theory [12] there exists an integer solution x ∈ {0, 1}β such that

||A′x−A′y||∞ ≤ lindisc(A′).

It is shown in [3] that for k-monotone m× n matrices the linear discrepancy is bounded
by 5k log2(2 min{m,n}), hence we have

lindisc(A′) ≤ 5/ε · log2(2 min{τ + 1, β}) ≤ 5/ε · log2(2m/ε),

i.e., ||A′x−A′y||∞ ≤ 5/ε · log2(2m/ε) = d. Let A′x = (ψ, ω), then ψi ≥ max{0, iθ − d}. For
i ≥ 3εm, m ≥ 20/ε3, we have

iθ − d ≥ i(1− εm/τ)− 5/ε · log2(2m/ε) ≥ i− εm− 5/ε · log2(2m/ε) ≥ i− 3εm.

For ω, we have ω ≤ βθ/ε+ d. Since each item, except for the smallest one, has a weight at
least ε, we have τ ≤ β/ε+ 1, and thus θ ≤ 1− εm/(β/ε+ 1) ≤ 1− ε2m/(2β). Recall that

L. Chen and G. Zhang 28:13

β ≥ εm, for m ≥ 20/ε3 we have

ω ≤ βθ/ε+ d ≤ β/ε− εm/2 + 5/ε · log2(2m/ε) ≤ β/ε− εm/4.

Thus, ∆ ≥ ε2m/4 = Ω(ε2m) as we desired. J

References
1 R. Adany, M. Feldman, E. Haramaty, R. Khandekar, B. Schieber, R. Schwartz, H. Shach-

nai, and T. Tamir. All-or-nothing generalized assignment with application to scheduling
advertising campaigns. In Proc. of IPCO 2013, pages 13–24, 2013.

2 C. Chekuri and S. Khanna. A polynomial time approximaion scheme for the multiple
knapsack problem. SIAM J. Comput., 35(3):713–728, 2006.

3 F. Eisenbrand, D. Pálvölgyi, and T. Rothvoss. Bin packing via discrepancy of permutations.
ACM Trans. Algorithms, 9(3):39–49, 2013.

4 P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock
problem. Operations Research, 9:39–49, 1961.

5 R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.,
17(2):416–429, 1969.

6 K. Jansen. Parameterized approximation scheme for the multiple knapsack problem. SIAM
J. Comput., 39(4):1392–1412, 2009.

7 K. Jansen. A fast approximation scheme for the multiple knapsack problem. In Proc. of
SOFSEM’12, pages 313–324, 2012.

8 K. Jansen, S. Kratsch, D. Marx, and l. Schlotter. Bin packing with fixed number of bins
revisited. J. Comput. Syst. Sci., 79(1):39–49, 2013.

9 K. Jansen, F. Land, and K. Land. Bounding the running time of algorithms for scheduling
and packing problems. In Proc. of WADS’13, pages 313–324, 2013.

10 D. S. Johnson. Near-optimal bin-packing algorithms. Doctoral Thesis. MIT Press, 1973.
11 H. Kellerer. A polynomial time approximation scheme for the multiple knapsack problem.

In Proc. of APPROX’99, pages 51–62, 1999.
12 J. Matousek. Geometric discrepancy. Springer-Verlag, 1999.

STACS 2016

	Introduction
	Packing into a Constant Number of Bins
	Packing into an Arbitrary Number of Bins
	>2/3
	1/3< 2/3
	1/3

