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ABSTRACT
Profile Hidden Markov Models (HMMs) are graphical models that

can be used to produce finite length sequences from a distribution.

In fact, although they were only introduced for bioinformatics 25

years ago (by Haussler et al., Hawaii International Conference on

Systems Science 1993), they are arguably the most commonly used

statistical model in bioinformatics, with multiple applications, in-

cluding protein structure and function prediction, classifications

of novel proteins into existing protein families and superfamilies,

metagenomics, and multiple sequence alignment. The standard use

of profile HMMs in bioinformatics has two steps: first a profile

HMM is built for a collection of molecular sequences (which may

not be in a multiple sequence alignment), and then the profile HMM

is used in some subsequent analysis of new molecular sequences.

The construction of the profile thus is itself a statistical estimation

problem, since any given set of sequences might potentially fit

more than one model well. Hence a basic question about profile

HMMs is whether they are statistically identifiable, which means

that no two profile HMMs can produce the same distribution on

finite length sequences. Indeed, statistical identifiability is a fun-

damental aspect of any statistical model, and yet it is not known

whether profile HMMs are statistically identifiable. In this paper, we

report on preliminary results towards characterizing the statistical

identifiability of profile HMMs in one of the standard forms used

in bioinformatics.
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1 INTRODUCTION
Profile Hidden Markov Models (HMMs) are arguably the most

common statistical models in bioinformatics. Originally introduced

by Haussler and colleagues in [10, 12], and then expanded later

in many subsequent texts [4–6, 9, 11, 21, 25], profile HMMs are

now used in many analytical steps in biological sequence analysis

[15, 17–19, 22].

Profile Hidden Markov models are graphical models with match

states, insertion states, and deletion states; and the match and in-

sertion states emit letters from an underlying alphabet Σ (i.e., Σ
may be the 20 amino acids, the four nucleotides, or some other

set of symbols). In the standard form presented in [4] (widely in

use in bioinformatics applications), each profile Hidden Markov

model has a single start state and a single end state, and every path

through the model produces a string from Σ∗. The topology of this

standard model as seen in Figure 1 shows directed edges between

certain pairs of states, and each such directed edge has a non-zero

transition probability.

In this paper, we address the question of statistical identifiability

of profile Hidden Markov models, which in essence asks whether

the model is reconstructible given the probability distribution it

defines [23]. Thus, if there are two sets of parameters of the model

that generate the same joint distribution, then the model is not

identifiable. Note that if a model is not identifiable, then it is im-

possible for any algorithm designed to estimate the model from a

finite dataset to be statistically consistent: that is, it is not possible
for the method to converge in probability to the true model with

increasing amounts of data.

Statistical identifiability is a basic property of statistical mod-

els, and is the subject of rigorous study [1–3, 7, 13, 16, 20]. Indeed,

the importance of identifiability is evident in the following quotes:

“Unidentifiable models are pathological, usually due to conceptual

error in model formulation” [24] and “Many statisticians frown

on the use of under-identified models: if a parameter is not iden-

tifiable, two or more values are indistinguishable, no matter how

much data you have” [8]. However, to the best of our knowledge,

nothing has yet been established about the statistical identifiability

of profile Hidden Markov Models (HMMs), although the question

of identifiability of parameters in HMMs more generally has also

been specifically addressed [14].

In this paper, we partially characterize the conditions under

which profile HMMs are statistically identifiable. Our study in-

cludes a characterization of identifiable profile HMMs when no

deletion states are permitted but also shows two profile HMMs

in the standard format that define the same probability distribu-

tion. Hence, we show that profile HMMs are not identifiable. We

conclude our study with a discussion of the implications of this

research and future directions.
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2 RESULTS
2.1 Preliminary material and notation
The question we address in this paper is whether profile HMMs

(in this standard format, as described in Figure 1) are statistically

identifiable. We present profile HMMs for modeling collections of

DNA sequences (i.e., strings over {A,C,T ,G}), which is one of their

uses; however, the results we present here are independent of the

choice of alphabet. As shown in Figure 1, the standard topology

profile HMM with n match states has a single begin state “begin”

and a single end state “end”; every path through the profile HMM

thus begins and ends at these states. The standard profile HMM also

hasnmatch states,n+1 insertion states, andn deletion states. Every

match stateMj (with j ∈ [n]) emits a letterA,T ,G, or C according to

some fixed but unknown probability distribution Pj . All insertion

states Ij′ (with j
′ ∈ {0} ∪ [n]) emit a letter with the same known

distribution Pins . Note therefore that the emission probabilities

can be different for different match states, but all insertion states

have the same emission probabilities. Finally, the deletion states

are “silent” (i.e., they do not emit any letters), and are denoted

by D j . The probability of transition from one state to another is

represented by the positive values on the edges (also referred to as

edge weights); hence, the sum of the weights on the edges leaving

any given node is 1.0. Note that under this standard profile HMM,

once you know the number of match states you also know the

entire topology.

We introduce some notation to simplify the rest of the exposition.

We let xi denote the transition probability fromMi−1 toMi (with

M0 denoting the start state andMn+1 denoting the end state) and

yi denote the transition probability from Ii−1 to Mi . We let ziY
denote the emission probability of letter Y from match stateMi , i.e.,
P[Y |match state = i] = ziY . We use Pins [j] to denote the emission

probability of letter j ∈ {A,C,T ,G} at the insertion states, and

constrain all insertion states to have the same emission probability

distribution.

Let ∗ denote an arbitrary length string. Thus, A∗ denotes all

sequences that begin with A. Let ? denote an arbitrary letter, and

let ?
[k ]

denote k contiguous arbitrary letters. Thus, ?A∗ denotes all
sequences whose second letter is A. Let pS denote P[ sequence S],
the probability of the model emitting sequence S , and let pS denote

the probability of emitting all sequences in the set S. We drop the

stylized notation when the set S is clear from context.

2.2 No deletion nodes
Here, we consider the standard profile HMM topology with the

probability of transitioning to any deletion node being 0. In other

words, we consider a profile HMM topology without deletion nodes,

as shown in Figure 2.

Consider the path that begins at the start state and ends at Mi
and that only goes through match states; the probability of picking

that path is denoted by p(match:i)
, and is easily seen to be

∏i
k=1 xk .

Note that this is the only path with i edges that begins at the start
state and ends atMi . Similarly, the probability of picking the path

from the start state to Ij that passes only through match states is

denoted by p(insrt:j) and is equal to

∏j−1
k=1 xk · (1 − x j ). As before,

this is the only path with j + 1 edges that begins at the start state
and ends at Ij .

Theorem 2.1. Consider a standard profile HMM topology with
n match states and no deletion states. Then, the model is identifi-
able if and only if no match state has the same emission probability
distribution as the insertion states.

Proof. ⇐: We begin by proving that if no match state has the

same distribution as the insertions states, then the model is iden-

tifiable. Note that when there are no deletion states, the length of

the shortest sequence with non-zero probability of being generated

is the number of match states. Hence, given the distribution of

sequences defined by a profile HMM that has no deletion states,

we immediately know the number of match states, and hence also

the topology. We will show that we can use the topology of the

profile HMM to compute all the numerical parameters, and hence

define the entire model, once we are given the distribution of strings

defined by the model.

So let the length of the shortest sequence (with non-zero proba-

bility) ben. We provide the proof of identifiability for the case where

all nucleotides have equal probability of being generated at the in-

sertion states (i.e., Pins [A] = Pins [C] = Pins [T ] = Pins [C] = 1

4
).

For the more general case where the emission probabilities at the

insertion states are different, the proof is a simple modification of

the one provided below.

We now show how to compute the emission probabilities ziA,

ziT , z
i
G , and z

i
C . Note that the probability that a string of length n

generated by this model has an A in the ith position is given by

p
?
[i−1]A?[n−i ] = ziA

n∏
j=1

x j (1)

and hence

ziA =
p
?
[i−1]A?[n−i ]∑

X ∈{A,T ,G,C } p?[i−1]X ?
[n−i ]
. (2)

The next equation follows since every path that emits an A as

the first letter either goes through the first match state or through

the first insertion state:

pA∗ = x1z
1

A + (1 − x1)
1

4

. (3)

We will refer to this equation as the 0
th

system; note that it is a

linear system in one variable, x1. Furthermore, if not all z1X (for

X ∈ {A,C,T ,G}) are equal to
1

4
then there is a unique solution

for x1; however, if all are equal to
1

4
then every value for x1 is a

solution. Also, the same equations hold where A is replaced by the

other nucleotides.

Recall that yi is the transition probability from Ii−1 toMi . Con-

sider the probability of a string that has A as its second letter.

Equations (4) and (5) below (both straightforward to establish) will

be referred to jointly as the “1
st
system”:

p?A∗ = x1

(
x2z

2

A + (1 − x2)
1

4

)
+ (1 − x1)

(
y1z

1

A + (1 − y1)
1

4

)
(4)

p?T ∗ = x1

(
x2z

2

T + (1 − x2)
1

4

)
+ (1 − x1)

(
y1z

1

T + (1 − y1)
1

4

)
(5)
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Figure 1: The topology of the standard profile Hidden Markov Model (according to [4]) with n match states. Note that only
certain pairs of nodes are connected by edges; every such edge has strictly positive transition probability, and the sum of the
transition probabilities on the edges leaving any single node is 1. Thematch states (denoted byM) and insertion states (denoted
by I ) emit letters from an underlying alphabet Σ, and hence have associated emission probabilities for each letter in Σ. The
deletion states (denoted by D) are silent and do not emit anything. Each such profile HMM is a generative model, since every
path from the start state to the end state produces a string from Σ∗. Hence each profile HMM defines a probability distribution
on Σ∗.

The 1
st
system of equations given by Equations (4) and (5) is linear

in (x2,y1) as long as Equation (3) is solved. The system can be

written as p(1) = M(1)w(1)
where

M(1) =
[
x1(z2A − 1/4) (1 − x1)(z1A − 1/4)
x1(z2T − 1/4) (1 − x1)(z1T − 1/4)

]
, (6)

w(1) =
[
x2
y1

]
, and (7)

p(1) =
[
p?A∗ − (1/4)
p?T ∗ − (1/4)

]
. (8)

Without loss of generality, let’s assume z1A , 0, and z1A, z
1

T ,
1

4
;

this implies thatM
(1)
12
,M

(1)
22

are always non-zero. When any of the

other entries ofM(1)
are zero, y1 is trivially obtained. Furthermore,

using the equation for p?X ∗ for the letter X such that z2X ,
1

4
,

x2 can be computed. Thus, the only case left to be considered is

when z1A, z
1

T , z
2

A, z
2

T , 0. However, x2,y1 can be computed using

Equations (4) and (5) whenM(1)
is invertible, which holds when

z1T − 1/4
z2T − 1/4

,
z1A − 1/4
z2A − 1/4

.

WhenM(1)
is singular, we append the system with another equa-

tion linear in (x2,y1). To that end, the probability of generating

sequences of the form AA∗ is given by:

pAA∗ = x1z
1

Ax2z
2

A + x1z
1

A(1 − x2)
1

4

+ (1 − x1)
1

4

y1z
1

A

+(1 − x1)
1

4

(1 − y1)
1

4

, (9)

Rearranging,

pAA∗ = x1z
1

A

(
z2A − 1

4

)
x2 + (1 − x1)

1

4

(
z1A − 1

4

)
y1 + x1z

1

A
1

4

+(1 − x1)(
1

4

)2 (10)

Consider the system p(1)
′
= M(1)′w(1)

formed by appending Equa-

tion (10) to the 1
st
system of equations:

M(1)′ =
[
x1(z2A − 1/4) (1 − x1)(z1A − 1/4)

x1z
1

A(z
2

A − 1/4) (1 − x1)(1/4)(z1A − 1/4)

]
, (11)

w(1) =
[
x2
y1

]
, and (12)
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Figure 2: The standard profile HMM topology with n match states and no deletion nodes.

p(1)
′
=

[
p?A∗ − (1/4)

pAA∗ − x1z
1

A(1/4) − (1 − x1)(1/4)2
]
. (13)

M(1)′
is invertible if z1A, z

2

A ,
1

4
, which is the assumption that

we began with. Thus, the appended system can be used to compute

x2,y1 whenever the 1
st
system is rank deficient.

We let дm (B) denote the probability of generating a string s

whosemth
letter is B (where B ∈ {A,C,T ,G}), but subject to the

constraints that (a) s[m] is not generated by Mm or Im−1, and (b)

s[m − 1] is not generated by Im−2. Then, for all B ∈ {A,C,T ,G},
p
?
[m−1]B∗ (the probability that a randomly generated string s has

s[m] = B) satisfies:

p
?
[m−1]B∗ = дm (B) + p(match:m−1)

(
xmzmB + (1 − xm )1

4

)
+ p(insrt:m−2)

(
ym−1zm−1

B + (1 − ym−1)
1

4

)
.

(14)

Thus, the (m − 1)th system is given by Equations (15) and (16):

p
?
[m−1]A∗ = дm (A) + p(match:m−1)

(
xmzmA + (1 − xm )1

4

)
+ p(insrt:m−2)

(
ym−1zm−1

A + (1 − ym−1)
1

4

)
,

(15)

p
?
[m−1]T ∗ = дm (T ) + p(match:m−1)

(
xmzmT + (1 − xm )1

4

)
+ p(insrt:m−2)

(
ym−1zm−1

T + (1 − ym−1)
1

4

)
(16)

Thus, the (m − 1)th system of equations is linear in variables

xm ,ym−1. Furthermore, the matrixM(m−1)
associated with Equa-

tions (15) and (16), whenwritten asp(m−1) = M(m−1)w(m−1)
, where

w(m−1) = [xm ym−1]T, is given by:

M(m−1) = c0

[
xm−1(zmA − 1/4) (1 − xm−1)(zm−1

A − 1/4)
xm−1(zmT − 1/4) (1 − xm−1)(zm−1

T − 1/4)

]
, (17)

where c0 =
(∏m−2

i=1 xi
)
.

WhenM(m−1)
is not invertible, consider the strings that have A

in the (m−1)th andmth
positions. Thus, when the equation obtained

by expressing the probability of generating the string ?
[m−2]AA∗ in

terms of the transition probabilities and the emission probabilities

is appended to the system, the new matrixM(m−1)′
associated with
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the system p(m−1)′ = M(m−1)′w(m−1)
is given by

M(m−1)′ =
[

xm−1(zmA − 1/4) (1 − xm−1)(zm−1
A − 1/4)

xm−1zm−1
A (zmA − 1/4) (1 − xm−1)(1/4)(zm−1

A − 1/4)

]
.

(18)

Following the argument presented for the 1
st
system, we con-

clude thatw(m−1)
can be computed.

To find yn , consider all sequences of length n + 1 .

p[?]n+1 =
n∑
i=1

(1 − xi )yi
©­«
n∏
j=1

x j
ª®¬ /xi . (19)

Thus, yn is obtained from this equation.

We point out that the letters A,T are representatives. In general,

we pick the letters that give unique solutions to the systems of

linear equations that are obtained in the proof. Hence, we have

proved that if each of the match states is different (in distribution)

from the insertion states, then the model is identifiable.

⇒: We now prove the other direction. We show that if the emis-

sion probabilities for a match state are identical (in distribution) to

the insertion states, then the profile HMM is not identifiable. Specif-

ically, we show (Figure 3) two different profile Hidden Markov

models (each with a single match state) where the emission prob-

ability distribution for the match state is identical to that of the

insertion states, and for which the two models define the same

distribution on strings. In both models shown in Figure 3,

pA = x1
1

4

x2, (20)

pAA = (1 − x1)
1

4

y1
1

4

x2 + x1
1

4

(1 − x2)
1

4

y2, (21)

and

pA[n] = x1
1

4

(1 − x2)
1

4

(1 − y2)n−2
1

4
n−2y2

+ (1 − x1)
1

4

(1 − y1)n−2
1

4
n−2y1

1

4

x2

+
∑

n1+n2=n−3
(1 − x1)

1

4

(1 − y1)n1

1

4
n1

y1
1

4

(1 − x2)
1

4

(1 − y2)n2

1

4
n2

y2,

(22)

where n ≥ 3 and n1,n2 ≥ 0 in Equation (22). Thus, the profile HMM

with one match state whose emission probability distribution is

identical to that of the insertion states is not identifiable.

This proof can be extended to show that a profile HMM with no

deletion nodes and arbitrary number of match states that has at

least one match state whose distribution is identical to that of the

insertion states is not identifiable. Consider a profile HMM with n
match states as depicted by Model 1 in Figure 4. Without loss of

generality, we assume that match stateM3 has the same distribution

as that of the insertion states. Note that the highlighted region is

exactly the toy example that we described above, so that Model 1

and Model 2 have identical sequence distributions. □

2.3 The standard profile HMM with one match
state

We begin with a proof of non-identifiability of the standard profile

HMM with one match state. We then identify the parameters that

can be computed uniquely for the the standard profile HMM with

one match state.

Theorem 2.2. The standard profile HMM topology with one match
state is non-identifiable.

Proof. Consider the two models as shown in Figure 5. The

emission distribution at the match state is the same across the

models and is equal to {zA = a, zT = t , zG = д, zC = c}. The emis-

sion distribution at both the insertion states is equal to Pins [A] =
Pins [C] = Pins [T ] = Pins [C] = 1

4
. Let α

′
i , i ∈ {1, . . . , 12}, denote

the transmission probabilities for Model 1 and α
′′
i , i ∈ {1, . . . , 12},

denote the transmission probabilities for Model 2, both as shown in

Figure 5. Let X1X2 . . .Xk be an arbitrary DNA sequence of length

k ; we will show that the two models emit this sequence with the

same probability. Let p
′
X1X2 ...Xk

denote the probability with which

Model 1 emits the sequence X1X2 . . .Xk ; p
′′
X1X2 ...Xk

denotes the

the probability with which Model 2 emits the same sequence. When

k = 1 we obtain:

p
′′
X1

− p
′
X1

=
1

4

(α ′′
3
α
′′
10
α
′′
11

− α
′
3
α
′
10
α
′
11
+ α

′′
9
α
′′
12
α
′′
6
− α

′
9
α
′
12
α
′
6
) = 0.

(23)

When k = 2 we obtain:

p
′′
X1X2

− p
′
X1X2

=

(
1

4

)
2

(0.3(α ′′
3
α
′′
10
α
′′
11

− α
′
3
α
′
10
α
′
11
) + 0.6(α ′′

3
α
′′
10
α
′′
12

− α
′
3
α
′
10
α
′
12
)

+ 0.4(α ′′
9
α
′′
12
α
′′
6
− α

′
9
α
′
12
α
′
6
))

= 0. (24)

Finally, for k ≥ 3 we obtain:

p
′′
X1X2 ...Xk

− p
′
X1X2 ...Xk

= (α ′′
3
α
′′
10
α
′′
11

− α
′
3
α
′
10
α
′
11
)0.3k−1 + (α ′′

9
α
′′
12
α
′′
6
− α

′
9
α
′
12
α
′
6
)0.4k−1

+

(
1

4

)k
(α ′′

3
α
′′
10
α
′′
12

− α
′
3
α
′
10
α
′
12
)

∑
n1+n2=k−2

0.3n1
0.4n2

=
9

400

(0.4k−1 − 0.3k−1) − 9

400

(0.4k−1 − 0.3k−1) = 0, (25)

□

Theorem 2.3. Consider the standard profile HMM topology with
one match state. If the model topology is given, then some (but perhaps
not all) of the transition probabilities can be identified if the emission
probabilities at the match state are not equal to that of the insertion
states.

Proof. Consider the standard profile HMM topology with one

match state as shown in Figure 6. We will show that under the

assumption of the theorem, α2,α4,α6,α7, and α8 can be computed

uniquely. Further, if α2 , α6,α3α5 , α7α1, then α1 and the emis-

sion probabilities at the match state can be determined. We provide

the proof for the case wherein Pins [A] = Pins [C] = Pins [T ] =
Pins [C] = 1

4
. For the more general case where the emission proba-

bilities of the letters at the insertion states are different, the proof is

a modification of the one provided. Let αi , i ∈ {1, . . . , 12}, denote
the transmission probabilities as shown in Figure 6. Consider a

sequence of length one. The letter is emitted either by insertion
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Figure 3: Two profile HMMs that have the same sequence distribution.

Figure 4: Two profile HMMs with n match states (but no deletion states) that have the same sequence distribution.
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Figure 5: Two standard profile HMMs with one match state that define the same distribution on sequences, establishing that
profile HMMs in the standard format are not identifiable (see Theorem 2.2).

states I0 or I1, or by the match state M1. Thus the probability of

emitting the letter B is given by

pB = α3
1

4

α10α11 + α1z
1

Bα2 + α9α12
1

4

α6. (26)

Assume without loss of generality that z1A , z1T . Therefore,

pA − pT = α1(z1A − z1T )α2 , 0. (27)

We now consider sequences that begin with a particular letter B.
Again, the first letter is generated either by insertion states I0 or I1,
or by the match stateM1. Thus,

pB∗ = α1z
1

B + α3
1

4

+ α9α12
1

4

. (28)

Therefore,

pA∗ − pT ∗ = α1(z1A − z1T ) , 0. (29)

Dividing (27) by (29), we find

α2 =
pA − pT
pA∗ − pT ∗

. (30)

Thus, α4 = 1 − α2 is also computed. Consider all sequences of the

form B1B2.

pB1B2
= α1z

1

B1

α4
1

4

α6 + α3
1

4

α7
1

4

α10α11 + α3
1

4

α5z
1

B2

α2 (31)

+α3
1

4

α10α12
1

4

α6 + α9α12
1

4

α8
1

4

α6.

Therefore,

pAA − pTA = α1(z1A − z1T )α4
1

4

α6 , 0, (32)

pAA − pAT = α3
1

4

α5(z1A − z1T )α2 , 0. (33)

We now consider sequences that begin with two letters B1B2.

pB1B2∗ = α1z
1

B1

α4
1

4

+ α3
1

4

α7
1

4

+ α3
1

4

α5z
1

B2

+ α3
1

4

α10α12
1

4

+α9α12
1

4

α8
1

4

. (34)

Therefore,

pAA∗ − pTA∗ = α1(z1A − z1T )
1

4

α4 , 0. (35)

Dividing (32) by (35), we find

α6 =
pAA − pTA
pAA∗ − pTA∗

. (36)

Thus, α8 = 1− α6 is also computed. We now consider all sequences

of form B1B2B3.

pAAA − pAAT = α3
1

4

α7
1

4

α5(z1A − z1T )α2 (37)

Dividing (37) by (33), we get

α7 = 4

pAAA − pAAT
pAA − pAT

(38)
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Figure 6: The standard profile HMM with one match state.

Dividing (33) by (27), we find that

α2α3 = α14
pAA − pAT
pA − pT

(39)

Let pϵ denote the probability of not emitting any letter. To find

α1,α9,α11, consider the following equations:

p? = α1α2 + α3α10α11 + α9α12α6 (40)

p[?]2 = α1α4α6 + α3α7α10α11 + α3α5α2 + α3α10α12α6 + α9α12α8α6
(41)

α10 = 1 − α5 − α7 (42)

α12 = 1 − α11 (43)

α11 =
pϵ
α9

(44)

Substituting equations (39), (42), (43) and (44) in (40) and (41), we

obtain the following:

p? = α1α2 + (α3(1 − α7) − γα1)
pϵ
α9
+ (α9 − pϵ )α6 (45)

p[?]2 = α4α6α1 + α7
pϵ
α9

(α3(1 − α7) − γα1) + α6α8(α9 − pϵ )

+ α6

(
1 − pϵ

α9

)
(α3(1 − α7) − γα1) + γα2α1 (46)

where γ = 4
pAA−pAT
pA−pT . Thus, equations (45), (46) together with the

equation α1 +α3 +α9 = 1 form a system of three equations in three

variables (α1,α3, and α9). Wolfram|Alpha returns a unique solution

for α1 and two pairs of solutions for (α3,α9) under the condition

that α1α7 , α3α5 and α2 , α3. Since α1 is unique, we can compute

the emission distribution.

Equations (47), (48), and (49) are obtained from (27).

pA − pT = α1(z1A − z1T )α2, (47)

pA − pG = α1(z1A − z1G )α2, (48)

pA − pC = α1(z1A − z1C )α2, (49)

1 = z1A + z
1

T + z
1

G + z
1

C . (50)

Equations (47), (48), (49), and (50) together are a linear system of

4 equations with 4 unknowns, and can be expressed as Mz1 = p
where

M =


1 −1 0 0

1 0 −1 0

1 0 0 −1
1 1 1 1

 , (51)

z1 =


z1A
z1T
z1G
z1C

 , and (52)

p =


(pA − pT )/(α1α2)
(pA − pG )/(α1α2)
(pA − pC )/(α1α2)

(1)/(α1α2).

 (53)

SinceM is invertible, z1 can be obtained. □
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2.4 Estimating parameters from finite data
Identifiability results establish what can be known from the true

distribution, but do not directly imply that a statistically consistent

method is possible. Here we describe how to estimate what can

be estimated from data for the standard model, modified so that

there are no deletion nodes, and discuss the amount of data that are

needed to estimate the true topology and the numeric parameters

(within some error threshold) with high probability.

One could leverage the ideas used in our proof techniques to

reconstruct the model using empirical joint distributions obtained

from the data. However, since the number of paths doubles from one

system of equations to the next, such an approach is not efficient.

Yet, some parameters of the model can still be estimated efficiently

using our techniques. For example, the number of match states, and

therefore the topology can be estimated from the shortest string

produced.

Suppose we had N independent sequences that were generated

by a specific profile HMM with n match states and no deletion

states. The probability of not observing any sequence of length n is

given by

P[all sequences have length >n] =
(
1 −

n∏
i=1

xi

)N
≤

(
1 − xn

min

)N
≤ exp{−xn

min
N }, (54)

where xmin = min1≤i≤n xi . The probability of error decays expo-

nentially with the number of sequences. Thus, if the transition

probabilities from one match state to the next were all bounded

from below, then a finite number N
′
= 1

xn
min

log

(
1

δ

)
of indepen-

dently generated sequences are sufficient for reconstructing the

topology with confidence at least 1 − δ .
Other parameters such as emission probabilities of the match

state, and a constant number of transition probabilities xi ’s andyi ’s
can also be computed efficiently from the empirical distributions of

sequences,- and their errors can be bounded.

3 CONCLUSION
In this text, we made the first strides towards completely charac-

terizing the identifiability of profile hidden Markov models. We

analyzed identifiability for the case where there are no deletion

states, but otherwise all the properties of the standard model hold.

For this case, Theorem 2.1 shows that the model is identifiable if

and only if no match state has the same emission probability dis-

tribution as the insertion states. Further, we analyzed the question

of identifiability for the special case of only one match state un-

der the standard topology, and proved that it is not identifiable. In

particular, we presented two models with different transition prob-

abilities and showed that the probability of emitting any particular

sequence is the same for the two models. This in turn implies that

the standard profile HMM is non-identifiable. For the model with

the standard topology and one match state, we also identified the

parameters that can be computed uniquely. Characterizing partial

identifiability for the standard topology with an unknown number

of match states is still open.
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