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ABSTRACT
We introduce an algorithm for selectively aligning high-throughput
sequencing reads to a transcriptome, with the goal of improv-
ing transcript-level quantification in difficult or adversarial sce-
narios. This algorithm attempts to bridge the gap between fast
non-alignment-based algorithms and more traditional alignment
procedures. We adopt a hybrid approach that is able to produce
accurate alignments while still retaining much of the efficiency of
non-alignment-based algorithms. To achieve this, we combine edit-
distance-based verification with a highly-sensitive read mapping
procedure. Additionally, unlike the strategies adopted in most align-
ers which first align the ends of paired-end reads independently,
we introduce a notion of co-mapping. This procedure exploits rele-
vant information between the “hits” from the left and right ends
of paired-end reads before full mappings for each are generated,
improving the efficiency of filtering likely-spurious alignments. Fi-
nally, we demonstrate the utility of selective alignment in improving
the accuracy of efficient transcript-level quantification from RNA-
seq reads. Specifically, we show that selective-alignment is able
to resolve certain complex mapping scenarios that can confound
existing non-alignment-based procedures, while simultaneously
eliminating spurious alignments that fast mapping approaches can
produce. Selective-alignment is implemented in C++11 as a part
of Salmon, and is available as open source software, under GPL v3, at:
https://github.com/COMBINE-lab/salmon/tree/selective-alignment
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1 INTRODUCTION
Since the introduction of high-throughput, short read sequencing
technologies, many algorithms and tools have been designed to
tackle the problem of aligning short sequenced reads to a reference
genome or transcriptome accurately and efficiently. While there
exist “full-sensitivity” aligners (e.g. mrFAST [1], mrsFAST [8, 33],
RazerS3 [31], Masai [27]) which guarantee to find all reference
positions within a given edit-distance threshold of a read sequence,
the most widely-used tools ([11], [17]) employ heuristic strategies
to enable much faster alignment of reads in the typical case (i.e.,
only a small number of easy-to-find candidate locations exist for
each alignment). The common procedure followed by these tools
for aligning reads can be divided into two major steps. The first
is finding potential alignment locations for the read using a pre-
processed index that is generated from the reference genome or
transcriptome. Then, in the second step, the potential locations are
filtered, and reads are aligned to the positions that pass the initial
filtering, based on a variety of heuristics. The exact method for
generating the initial index varies for each tool. For example, tools
like Bowtie [12], Bowtie2 ([11]), BWA [15], and BWA-mem [14] use
Burrows-Wheeler transformation (BWT) based indices, whereas,
k-mer based indices are used by tools such as Subread-aligner [17],
Maq [16], SNAP [35], and GMAP and GSNAP [32].

Similarly, the heuristic for choosing the most probable locations
is also different. However, each method is based on the principle of
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trying to find the reference loci that support the best (or near-best)
alignment score between the read and the reference. Repeating
this for a large number of reads comes with a considerable cost
in terms of computation. Some tools, like STAR [6], considerably
speed up the alignment process by combining efficient heuristics
with data structures (like the uncompressed suffix array) that trade
working memory for exact pattern lookup speed. Recently, tools
like HISAT [10] have also demonstrated that cache-friendly com-
pressed indices (the hierarchical FM index in this case) can provide
similarly efficient pattern search, even with a very moderate mem-
ory budget. The alignment of sequenced reads to the reference is
the first step in pipelines leading to various downstream studies,
such as estimation of transcript abundances and differential expres-
sion analysis, calculation of splicing rates [26, 30], and detection of
fusion events [5, 21].

While alignment is a staple of many genomic analyses, it some-
times represents more information than is actually necessary to
address the analysis at hand. For example, recent tools like Sail-
fish [23], RNAskim [37], kallisto [3], Salmon [22], and Fleximer [9],
demonstrate that accurate quantification estimates can be obtained
without all of the information encoded in traditional alignments.
By avoiding traditional alignment procedures, these tools are much
faster than their alignment-based counterparts. Furthermore, by
building the mapping phase of the analysis directly into the quan-
tification task, they dispense with the need to write, store, and read,
large intermediate alignment files. However, these non-alignment-
based tools, while highly-efficient, have the disadvantage of po-
tentially losing sensitivity or specificity in certain cases where
alignment-based methods would perform well. For example, in the
presence of paralogous genes, with high sequence similarity, there
is an increased probability that the mapping strategies employed
by such tools, and the efficient heuristics upon which they rely, will
mis-map reads between the paralogs (or return a more ambiguous
set of mapping locations than an aligner, which expends computa-
tional resources to verify the returned alignments) [2]. Similarly,
in the case of de novo assemblies, poorly assembled contigs may
have a larger number of mis-mapped reads due to lower sensitivity
(here, the issue would be primarily due to aberrant exact matches
masking the true origin of a read).

Other than suffering from spurious mappings, these fast non-
alignment-based approaches can also miss true mappings of a read
in rare cases where errors are positioned adversarially on the read.
An obvious case of losing the true mapping is if a read contains
no subsequence of sufficient length from the true transcript. In
another case, the true mapping of the read might be lost from
the set of potential mapping loci due to the greedy nature of the
mapping procedures. For some reads, multiple positions might be
found on the same transcript where the read maps. In such cases,
improved heuristics are required to address these challenges. In
this paper, we present a novel algorithm, selective-alignment, that
extends quasi-mapping to compute and store edit distance informa-
tion where necessary. The reads for alignment are chosen based on
certain criteria calculated during mapping. This strikes a balance
between speed and accuracy; not compromising the superior speed
of non-alignment-based algorithms, while also addressing some of
the challenges mentioned above. Specifically, the motivation for

selective-alignment is to enhance both the sensitivity and speci-
ficity of fast mapping algorithms by reducing or eliminating cases
where spurious exact matches mask true mapping locations as well
as cases where small exact matches support otherwise poor align-
ments. Selective-alignment algorithm is built atop the framework
of RapMap [29], which uses an index that combines a fixed-length
prefix hash table and an uncompressed suffix array [19]. We intro-
duce a coverage-based consensus scheme to identify critical read
candidates for which alignment is necessary.

Furthermore, we explore the challenging cases where the heuris-
tics employed by fast mapping algorithms may fail to locate the
correct locations for a read, while the traditional aligners do not.
We do this by making a number of modifications to the underlying
mapping algorithm to increase its sensitivity. We also introduce
multiple filters and scoring schemes designed to eliminate spuri-
ous mappings (i.e., situations where the best mapping is unlikely
to represent the true origin of the read). In this work, we focus
on the effect of selective-alignment on transcript quantification
estimates, and we leave a thorough evaluation of the alignment
qualities themselves as future work. In particular, the evaluation of
alignment qualities is considerably complicated due to prevalent
multi-mapping in the transcriptome.

2 METHODS
The process of selective-alignment builds upon the basic data struc-
tures of Srivastava et al. [29], but there are a number of important
algorithmic distinctions. Specifically, compared to the algorithm of
RapMap, selective-alignment introduces the k-safe longest common
prefix (k-safe-LCP), replaces maximum mappable prefixes (MMP)
with maximum mappable safe prefixes (MMSP), increases mapping
sensitivity by adopting a different consensus rule over hits, makes
use of co-mapping to filter and prioritize potential mapping loci,
introduces a new mechanism for selecting a mapping position for
a read when multiple candidates exist on the same transcript, and,
finally, introduces a fast edit distance filter (with alignment sub-
problem caching) to remove spurious mappings and provide quality
scores for mappings that pass the filter. A block diagram of different
steps used in the selective alignment pipeline is shown in S1.

Below, we recapitulate the basic data structures and concepts
that will be required to explain the selective alignment algorithm.
To start with, the index built on the transcriptome in selective-
alignment is a combination of a suffix array and a hash table con-
structed from unique k-mers (substrings of length k) and suffix
array intervals. The suffix array of a sequence,T— denoted SA(T )—
is an array of starting positions of all suffixes fromT in the original
sequence. The values in the array are sorted lexicographically by
the suffixes they represent. Therefore, all suffixes starting with
the same prefix are located in adjacent positions of the suffix ar-
ray. Formally, given a suffix array, SA(T ) = Λ, constructed from
the transcriptome sequence, T , we construct a hash table, h, that
maps each k-mer, κ, to a suffix array interval, I (κ) = [b, e ), if and
only if all the suffixes within interval [b, e ) contain the k-mer κ
as a prefix. We define Λ[i], for every 0 ≤ i ≤ |Λ|, to be the suffix
T [SA[i]] (i.e., the suffix of T starting from position SA[i]). In the
selective-alignment index, in addition to suffix array intervals, we
store two extra pieces of information for each interval; the longest
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Figure 1: Calculation of k-safe-LCP from the suffix array
data structure. The transcripts present in each suffix array
interval determine the relevant transcript sets, and which
k-mers will be considered as intruders. To determine the k-
safe-LCP of the suffix array interval starting with the k-mer
CGTCA, we check all the k-mers sequentially. Some k-mers
do not yield an interval with transcripts other than t1 and t2,
e.g.,CAACG. Detection of a k-mer (AACGG) (as intruder) that
maps to suffixarray interval labeled (t1, t2, t3) determines the
k-safe-LCP here.

common prefix (LCP) and the k-safe-LCP corresponding to the in-
terval. The longest common prefix (LCP) of any pair of suffixes in
the suffix array is simply the length of the prefix that these suffixes
share. Though the LCPs for the suffixes in the suffix array can be
pre-computed, we instead compute them on demand using a lin-
ear scan. These methods are detailed below. As an alternate to the
suffix array and the LCP array, one could make use of other data
structures which also encode this information. For example, the
recently-introduced method, Fleximer [9] makes use of the suffix
tree for selecting informative sig-mers [37] from the transcriptome,
and matching reads against them.

2.1 Defining and computing k-safe-LCPs
Here, we formally define the concept of k-safe-LCPs (see figure 1).
The determination of k-safe-LCPs starts by labeling each suffix
array interval with the length of its corresponding longest com-
mon prefix and the associated transcript set it represents. Formally,
LCP(Λ[b],Λ[e − 1]) for an interval [b, e ) is the length of the com-
mon prefix of the suffixes Λ[b] and Λ[e − 1]. Given k-mer κ, where
κ ∈ K andK is the set of all k-mers from the reference sequenceT ,
and the related interval I (κ) = [b, e ), for all p ∈ [b, e ), we consider
each transcript t such that the suffix Λ[p] starts in transcript t in
the concatenated text. Then, for this interval, we can construct a

set Cκ = {ti , tj , . . . }, which denotes the set of distinct transcripts
that appear in the suffix array interval, indicated by κ. We note that
this notion discards duplicate appearances of the same transcript
in this interval.

We compute the k-safe-LCP for an interval indicated by k-mer
κi iteratively. The initial length for the k-safe-LCP of the interval is
k , length of a k-mer. We check, sequentially, each of the k-mers in
the longest common prefix of the interval. For each new k-mer, the
k-safe-LCP is increased by one character. We terminate the k-safe-
LCP extension if any of the following conditions is encountered: (1)
we reach the last k-mer contained in the LCP of this interval, (2) we
encounter a k-mer κj such that Cκj ⊈ Cκi or (3) we encounter a
k-mer κj such that the reverse complement of κj appears elsewhere
in the transcriptome. When we encounter case (2) or (3), we call
the k-mer κj an intruder. That is, the k-mer will potentially alter
our belief about the set of potential transcripts to which a sequence
containing this k-mer maps (by strictly expanding this set), or the
orientation with which it maps to the transcriptome. We denote the
k-safe-LCP of a particular interval I (κi ) as k-safe-LCP(I (κi )).

As shown in figure 1, the k-safe-LCP determination for the top
suffix array interval starts with matching k-mers within the longest
common prefix. The k-mer “CAACG” maps to a suffix array inter-
val labeled with (t1, t2). The next k-mer “AACGG”, on the other
hand, maps to a suffix array interval (shaded in green) labeled with
(t1, t2, t3), thereby implying the k-safe-LCP, shown as a dotted line.
For each k-mer in the hash table, we store the length of the LCP
and k-safe-LCP, along with the corresponding suffix array interval.

2.2 Discovering relevant suffix array intervals
As shown in figure 2, the selective-alignment approach can be
broken into three major steps: collecting suffix array intervals, co-
mapping, and selecting the high quality mappings. Gathering the
suffix array intervals for a query read closely follows the quasi-
mapping approach. It involves iterating over the read from left to
right and repeating two steps. First, hashing a k-mer from the read
sequence and then discovering the corresponding suffix array inter-
vals. The process of k-mer lookup is aided by the k-safe-LCP stored
in the index (discussed in 2.1). The inbuilt lexicographic ordering of
the suffixes in the suffix array, and the computed k-safe-LCP values
of intervals enable safely extending k-mers to longer matches with-
out the possibility of masking potentially-informative substring
matches. Given a matching k-mer, κr , from the read sequence r ,
we extend the match to find the longest substring of the read that
matches within k-safe-LCP(I (κr )). The matched substring can
be regarded as maximum mappable prefix (MMP) [6], that resides
within the established k-safe-LCP. We call this a maximal mappable
safe prefix (MMSP — eliding k where implied). For a k-mer, κr ,
and interval, [b, e ), we note that k-safe-LCP(I (κr )) ≥ ℓMMSPκr ,
where ℓMMSPκr is the length ofMMSPκr , the MMSP between the
read’s suffix starting with κr and the interval I (κr ). The next k-mer
lookup starts from the (MMSPκr −k + 1)-th position. By restricting
our match extensions to reside within the MMSP, we ensure that
we will not neglect to query any k-mer that might expand the set of
potential transcripts where our read may map. We note here both
the theoretical and practical relation between theMMSP matching
procedure, and the concept of a uni-MEM, as introduced by Liu et al.
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Figure 2: The three main steps of the selective-alignment process are demonstrated here. First, suffix array “hits” are collected.
Then, in co-mapping, spurious mappings are removed by the orientation filter and then distance filter. At most a single locus
per-transcript is selected based on the coverage filter. Finally, an edit-distance-based filter is used to select the valid target
transcripts.

[18]. The k-safe-LCP for suffix array intervals are closely related to
the lengths of unipaths in the reference de Bruijn graph of order k .
Thus, our procedure for findingMMSPs, that limits match exten-
sion by the k-safe-LCP, is similar to the uni-MEM seed generation
procedure described in deBGA [18], with the distinction that in
our method, we only consider extending seeds in one direction,
and that we also choose not to terminate the k-safe-LCP when the
set of implied reference transcripts corresponding to the interval
decreases in cardinality.

Given all the suffix array intervals collected for a read end (i.e.
one end of a paired-end read), we take the union of all the transcripts
they encode. Formally, if a read r maps to suffix array intervals
labeled with Cr1 , . . . ,Crn , then we consider all transcripts in the
set Cr1 ∪ Cr2 ∪ . . . ∪ Crn , and the associated positions implied by
the suffix array intervals. As shown in figure 2; this step is done
before co-mapping.

We adopt a heuristic to avoid excessive k-mer lookups when we
encounter a mismatch. When extension of an MMP is no longer
possible, it is most probable that the mismatch results from an error
in the read. If the mismatch is due to the presence of an error, then
checking each k-mer overlapping this error can be a costly process.
Instead, we move forward by a distance of k/2 in the read, and
check the k-mer from the read such that the mismatch occurs in
the middle position. If this k-mer lookup leads to another suffix
array interval, we continue with the MMP extension process there;
otherwise, we move again to the first k-mer that does not overlap
this mismatch position. We observe that, in practice, the k-safe-LCP,
and hence the MMSP lengths can be quite large (Figure 3).

2.3 Co-Mapping
After collecting the suffix array intervals corresponding to left and
right ends of the read, we wish to exploit the paired-end informa-
tion in determining which potential mapping locations might be
valid. Hence, from this step onward, we use the joint information
for determining the position and target transcripts. Given the suffix
array intervals for individual ends of a paired-end read, the prob-
lem of aligning both ends poses a few challenges. First, a single
read can map to multiple transcripts, and we wish to report all
equally-best loci. Second, there can be multiple hits from a read on
a single transcript (e.g., if a transcript contains repetitive sequence),
and extra care must be taken to determine the correct mapping
location. Finally, there may be hits that do not yield high-quality
alignments (i.e. long exact matches that are nonetheless spurious).
To address the first and third points, we employ an edit distance
filter to discard spurious and sub-optimal alignments. To address
the second challenge, we devise a consensus strategy to choose at
most one unique position from each transcript.

Before applying the above mentioned strategy, we remove tran-
scripts that do not contain hits from both the left and right ends
of the read. Formally, given two ends of a read r , re1 and re2 , and
the corresponding suffix array intervals labeled with Cr

e1
1 , . . . ,Cr

e1
n

andCr
e2
1 , . . . ,Cr

e2
m respectively, we only consider transcripts present

in the set (Cr
e1
1 ∪ . . . ∪ Cr

e1
n ) ∩ (Cr

e2
1 ∪ . . . ∪ Cr

e2
m ). We further

refine this set by checking the validity of the alignments these hits
might support. Currently, we use two validity checks illustrated in
figure 2. First, we apply an orientation-based check, and second,
we employ a distance-based check. The orientation check removes
potential mappings which have an orientation inconsistent with the
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Figure 3: The distribution of k-safe-LCP lengths and LCP
lengths are similar and tend to be large in practice (human
transcriptome). Here, we truncate all lengths to amaximum
value of 100 (so that any LCP or k-safe-LCP longer than 100
nucleotides is placed in the length 100 bin).

underlying sequencing library type (e.g., both ends of a read map-
ping in the same orientation). The distance check removes potential
alignments where the implied distance between the read ends is
larger than a given, user-defined threshold (1, 000 nucleotides by
default).

2.3.1 Coverage based consensus. In selective-alignment, the po-
tential positions on a transcript are scored by their individual cov-
erage on the target transcript. Figure 4 depicts the mechanism
of choosing the best postion on a transcript from multiple prob-
able mappings to the same transcript. The coverage mechanism
employed in selective-alignment makes use of the MMSP lengths
collected during a prior step of the algorithm rather than simply
counting k-mers. In figure 4, the transcript t2 has two potential
mapping positions given the reads: position 10 and 20. The coverage
consensus mechanism selects position 20 over position 10 due to
the higher coverage by tiling MMSPs on the read.

2.3.2 Selecting the best candidate transcripts. Once the posi-
tional ambiguity within a transcript is resolved, the next step is se-
lecting the best candidate transcripts from a set of mappings. Since
mapping relies on finding exact matches, the length of the matched
subsequence between the read and reference can sometimes be
misguiding when comparing different candidate transcripts. That
is, the transcripts with the longest exact matches do not always su
A block diagram of the steps described below are depicted in Figure
pport optimal alignments for a read. At this point in our procedure,
we follow the approach taken by many conventional aligners, and
use an existing optimal alignment algorithm to compute the edit
distance, by which we select the best candidate transcripts.

When performing alignment, we assume that a given read aligns
starting at the position computed in the previous steps. This helps
us to reduce the search space within the transcript where we must
consider aligning the read, and thereby considerably reduces the
cost of alignment. To align the read at a specific position on the

transcript and calculate the edit distance between them, we use
Myer ′s bounded edit distance bit-vector algorithm [20], as imple-
mented in edlib [28]. For a fixed maximum allowable edit distance,
this algorithm is linear in the length of the read. We note that the
bounded edit distance algorithm we employ will automatically ter-
minate an alignment when the required edit distance bound is not
achievable.

We remove all alignments with edit distance greater than a user-
provided threshold. This is similar to the approach used by many
existing aligners, and allows us to specify that even the best map-
ping for a given read may have too many edits to believe that it
reasonably originated from a known transcript in the index. An
appropriate threshold should be based on the expected error rate
of the instrument generating the sequenced reads, and a very low
threshold can lead to a decreased mapping rate.

2.3.3 Enhancement of quantification accuracy based on edit dis-
tance. We investigated the effect of incorporating edit distance
in downstream quantification. Since we integrated the selective-
alignment scheme into the quantification tool Salmon [22], the
edit distance scores from selective-alignment can be used as a new
parameter to Salmon’s inference algorithm.

In the framework of abundance estimation, we define the condi-
tional probability of a generating a particular fragment, fj , given
that it comes from a specific transcript, ti , as P ( fj | ti ). Given the
edit distance between the fragment and the transcript, we can incor-
porate this parameter into this conditional probability. Soft filtering
introduces a new term in the conditional probability based on di, j ,
which is the sum of the edit distances between the read ends of
fragment fj and transcript ti . We set this probability according to
an exponential function, P (aj | fj , ti ) = e−4di, j . The aggregate of
threshold filtering and soft filtering can be described as follows:

Pr
(
aj | di, j , ti

)
=



0 di, j > threshold

e−4di, j di, j ≤ threshold
. (1)

2.4 Shared LCPs prevents redundant
alignments

Exploiting the common subsequences in the transcriptome is instru-
mental to the superior speed of fast mapping, non-alignment-based
tools. Reads generated from exonic sequences common to multiple
transcripts from the same gene or paralogous genes are the main
source of ambiguous mappings. As we rely on the suffix array data
structure to obtain the initial set of transcripts to which a read maps,
there are cases where exactly identical reference sequences all act
as mapping targets for the read. For a suffix array interval [b, e ),
we identify such common subsequences by examining the longest
common prefix (LCP) of the interval. If the length of the LCP is equal
or greater than the length of the read, then the actual alignment
against the underlying reference at these positions will be identical.
We observed (Table 1) that for almost half of the read-transcript
pairs, the alignment process can be avoided. Note that if the read
sequence shares a complete match with the common prefix, mean-
ing that maximum mappable safe prefix length is equal to read
length (i.e., the read matches the reference exactly at some set of
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position of the MMSPs. The total score takes into account the positions where matches overlap. The final position is chosen
by selecting the locus with maximum coverage.

Table 1: The percentage of hits that skip the full alignment
process onfive different experimental samples, due to exten-
sion by the maximummappable safe prefix (MMSP), or pro-
jection of duplicate alignments given the longest common
prefix (LCP) sequences.

Sample (SRR121) 5996 5997 5998 5999 6000
Skipped
alignments 50.36% 54.85% 47.92% 48.06% 50.80%

positions), we can also bypass the Meyer’s edit distance algorithm
call completely.

Caching alignment sub-problems further avoids redundant work.
We also extend a similar idea to the scenario where only part of the
reference sequence is shared between references. Specifically, when
performing an alignment between anchoring exact matches, we
store the result in a hash table where the key is a tuple (i, j,h (i ′, j ′))
and the associated value is the computed edit distance. Here, i and
j denote the start and end of the read interval being aligned and i ′
and j ′ denote the start and end of the reference sequence; h(i ′, j ′) is
a hash of the corresponding reference sequence (we use xxhash [4]).
This allows us to detect when a redundant alignment sub-problem
for a read is shared between references, and to reuse the cached
result in such cases.

3 RESULTS
To evaluate the effectiveness of selective-alignment, we coupled
it with the quantification tool Salmon (branching from the v0.9.1
release). This enables us to measure the effect of different alignment
based and non-alignment based algorithms on transcript-level quan-
tification results directly, holding the statistical estimation proce-
dure fixed.We also include kallisto (v0.43) in our benchmarks, which
provides a perspective on pseudoalignment-based quantification.
Furthermore, we compare the performance of selective-alignment
with the recent, fast, hashing and alignemnt-based, abundance es-
timation tool (currently un-published) Hera 1. We note, this is an
early version of the Hera (v1.2) software, which is already per-
forming very well in our testing, but is subject to changes and
improvements. Given it’s impressive performance (in both time
and accuracy), we decided to include Hera in our comparisons with
the consent of its authors (personal communications). We measure
the Spearman correlation and Mean Absolute Relative Differences
(MARD) of read counts as performance metrics when comparing
the different methods (further metrics are also provided for some
of the experiments in the supplementary material). All experiments
were performed on an Intel(R) Xeon(R) CPU (E5-2699 v4 @2.20GHz
with 44 cores and 56MB L3 cache) with 512GB RAM and a 4TB
TOSHIBA MG03ACA4 ATA HDD running ubuntu 16.10 and each
method was run using 16 threads.
1https://github.com/bioturing/hera
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Mutation
Rate

Correlation (Spearman) MARD

Kallisto Hera
Selective
Alignment

STAR
Salmon

Bowtie2
Salmon Kallisto Hera

Selective
Alignment

STAR
Salmon

Bowtie2
Salmon

0.01 0.906 0.935 0.946 0.942 0.948 0.161 0.116 0.100 0.104 0.096
0.02 0.871 0.925 0.942 0.939 0.945 0.193 0.132 0.108 0.109 0.100
0.03 0.844 0.910 0.935 0.933 0.942 0.215 0.172 0.120 0.115 0.107
0.04 0.817 0.880 0.925 0.925 0.937 0.236 0.231 0.143 0.127 0.118
0.05 0.793 0.845 0.904 0.909 0.927 0.257 0.291 0.186 0.150 0.142

Table 2: Synthetic dataset quantified against themutated reference transcriptomewith differentmutation rates. The spearman
correlation and MARD (mean absolute relative difference.) are calculated with respect to the ground truth.

In all our experiments, reads are mapped to the transcriptome
using using Bowtie2, kallisto, Hera, selective-alignment and STAR.
Subsequently, transcripts are quantified by Salmon (v0.9.1) using
the relevant mappings (from alignment or the non-alignment-based
methods) as input (except in the cases of kallisto (0.43) andHera (1.2),
which include implementations of their quantification algorithms).
The alignment mode of Salmon enables us to use STAR (v2.5) and
Bowtie2 (v2.3) output as a direct input to the quantification module
— thereby reducing variability due to differences in the underlying
methodology used for quantification. To achieve the most sensitive
alignment, Bowtie2 is run with the alignment options suggested for
use with RSEM [13]. For aligning reads to the transcriptome using
STAR, we used the same options described in [29]. When process-
ing alignments, Salmonwas run with --rangeFactorizationBins
4 [36] and --useErrorModel. With selective-alignment, Salmon
was run using the --softFilter flag (discussed in 2.3.3), a range
factorization value of 4 and an edit distance threshold of 7. kallisto
was run with default parameters. Both the selective-alignment and
kallisto indices were built with k = 25; Hera does not include k-mer
size as a user-defined parameter.

3.1 Quantification of simulated reads against
mutated transcriptomes

We explored the performance of different alignment-based and
alignment-free methods by quantifying simulated short RNA-seq
reads against mutated reference sequences. The simulation process
consists of two steps. In the first step, we mapped an experimental
RNA-seq sample (accession number SRR5638585) to the human
transcriptome (Ensembl release 80 [34] ) using Salmon. The result-
ing abundance vector, in conjunction with the full transcriptome
sequence generated from the full human genome and the corre-
sponding annotations (version GRCh37.p13), is used to simulate five
batches of 100bp paired-end RNA-seq samples, where each batch
contains ∼ 47M reads. We used the sequence simulator Polyester
[7] for generating the read datasets.

While the simulated dataset enables comparison with the ground
truth, the quality of the reads is high and does not show the sub-
tle nuances that arise when mapping reads from experimental se-
quencing datasets. In reality, the sequenced reads could differ from
the annotated reference sequence due the presence of mutations
(variants) in the sequenced organism. In other cases, a reference
sequence from one species could be used to analyze data from a
phylogenetically closely related species, for which an annotated

reference in unavailable. Therefore, to recapitulate these adversar-
ial situations, instead of mapping the simulated reads to the exact
underlying transcriptome used for read generation, we map them
against references mutated at a controllable rate.

The mutated version of the transcriptome is derived from the
underlying reference genome that was subject to randommutations.
The nucleotides of the reference genome were randomly altered
based on a Poisson process with a tunable rate parameter. The rate
parameter enables controling the rate of mutation that we want to
introduce in the reference genome. For the current manuscript we
have used 5 equally spaced rate parameters from 0.01 to 0.05. The
mutated genome sequences and the original annotation are used
to generate the mutated reference transcriptomes. As the resulting
transcriptomes contain devations from the indexed reference, we
believe that mapping to these references will capture some aspects
of the difficulties encountered when applying such tools to certain
experimental datasets.

To evaluate the performance we have measured the quantifica-
tion accuracy of different tools with respect to the ground truth pro-
vided to Polyester. As explained earlier, tools such as kallisto, Hera
and selective-alignment have a quantification pipeline attached
to the mapping module and are, therefore, capable of generating
abundance vectors directly. On the other hand, Bowtie2 and STAR
generate alignment files that we have coupled with Salmon (run in
alignment-based mode) to obtain abundance estimates.

Performance of the various methods on a simulated sample is
shown in Table 2. In this case, the simulated sample is mapped
against 5 different mutated transcriptomes with increasing error
rates and the corresponding spearman correlation and MARD val-
ues calculated using the ground truth. As shown in Table 2, the cor-
relation between quantification estimates using selective-alignment
and the ground truth is higher than the other self-contained quan-
tification methods, kallisto and Hera. This gap between correlation
values increases as the rate of mutation in the reference transcrip-
tome is increased, showing the ability of selective-alignment to
accurately map reads against diverging transcriptomes. The MARD
values for selective-alignment are lower in comparison with other
non-alignment-based methods as well. Several other metrics have
been shown in section S1.4 to elaborate on the performance of
selective-alignment in comparison to the other approaches on these
datasets. Scatter plots of these results — provided in section S1.5 —
show that these relative metrics are not skewed due to outliers in
the quantification estimates.

To measure the variation in quantification about a single random
instance of simulated data (i.e., data generated with a particular
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Figure 5: Performance variation of different tools on paired
end read files produced with five random seeds.

random seed), we have also generated five different simulated RNA-
seq datasets by passing different seeds to Polyester. To minimize
external variation, we used the least mutated transcriptome (rate
0.01) as reference. By plotting the spearman correlations, as shown
in Figure 5, we observe that, given that all the tools perform well
on the random samples, the performance of selective-alignment is
grouped with the alignment-based methods, such as Bowtie2 and
STAR. Further, the variation in quantification performance of all
methods (i.e. the standared error) across these different simulated
replicates is very small.

Note, that we also repeated this experiment by aligning the
simulated reads against the original transcriptome used for the
simulation. Under these circumstances, where the simulated reads
and coverage profiles accord with the ideal assumed by the quan-
tification models, and where there is no divergence between the
reference being used for quantification and the sample being quan-
tified, all the methods perform well, with small differences in quan-
tification accuracies. The result from this analysis are presented
in Section S1.3. To further investigate how sequencing error-rate
(as opposed to transcriptomic variation) affects selective-alignment
and other alignment-based or non-alignment-based methods, we
have generated human transcriptome-wide reads with different

sequencing error rates as an input to the Polyester simulator; the
results and discussion of that experiment are in Section S1.2.

3.2 Experimental reads from human
transcriptome

Wehave also benchmarked our proposed selective-alignmentmethod
on experimental data from SEQC(MAQC-III) consortium [25] sam-
ples (SRA accession SRR1215996 - SRR1216000). Each of the five
technical replicates consists of ∼11M, 100bp, paired-end reads, se-
quenced on an Illumina Hiseq 2000 platform.

We follow the same basic assessment methodology as discussed
in Section 3.1, and report the mean Spearman correlation and
MARD value for each method. However, we note that, since this
is experimentally-derived data, there is no knowledge of ground
truth transcript abundances. Instead, we have measured the over-
all concordance between different approaches. Given the results
obtained in all of our other testing, we expect the Bowtie2-based
pipeline to be the most accurate, so we are generally looking for
high concordance with those quantifiaction estimates.

In Table 3, we compare the quantification results produced by dif-
ferent methods. Each individual cell contains the average obtained
across the five samples. High Spearman correlation and low MARD
value between Bowtie2 and selective-alignment show that selective-
alignment produces results most similar to those based on Bowtie2.
Interestingly, the concordance between the selective-alignment
and Bowtie2-based pipelines is even higher than the concordance
between the two pipelines based on more traditional alignment
approaches (i.e. Bowtie2 and STAR). While we cannot assess the
accuracy with respect to known ground truth on these samples,
we nonetheless believe assessments based on real data like this
are important to perform, as the complexity of experimental data
seems to be considerably higher than that of simulated data and its
characteristics can be markedly different. Finally, Table 4 provides
timing and memory assessments of all the methods running on sam-
ple SRR1215996. Since the mapping phase of selective-alignment
is not distinct from the quantification phase, the memory and time
footprints include the mapping part of the pipeline. Further, disk
space is not comparable to alignment-based methods, since align-
ment files are not written directly as output of selective-alignment
(rather, the selective-alignment algorithm informs the mappings
and provides edit-distance-based scores — as described in Eq. (1) —
directly to the quantification algorithm).

4 CONCLUSION
Recently, fast non-alignment-based approaches have been devel-
oped for mapping RNA-seq reads to transcriptomes. Rather than
generating full alignments, these approaches compute “mapping”
information that is often sufficient for a number of given analysis
tasks (e.g., transcript quantification [3, 9, 22, 23, 37] or metage-
nomic abundance estimation [24]). Yet, there exist scenarios where
such non-alignment-based approaches can go awry; either failing,
by the greedy nature of their procedures, to find the true target
of origin of a read, or by allowing spurious mappings to targets
supported by exact matches that would nonetheless fail reason-
able alignment scoring filters. Moreover, it is sometimes desirable
to be able to produce, on demand, the edit distance or alignment

Session 2: Sequence Analysis I ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

34 



Table 3: The Spearman correlation and MARDS between
transcript abundances computed by all methods on exper-
imental data. Each number is the mean on 5 different sam-
ples; the numbers in the lower left triangle of thematrix are
the Spearman correlations and the ones in upper right are
the MARD values. "selective " refers to selective-alignment.

Method kallisto Hera selective STAR Bowtie2
kallisto 1 0 0.19 0.16 0.15 0.17
Hera 0.87 1 0 0.13 0.15 0.14
selective 0.90 0.90 1 0 0.13 0.06
STAR 0.90 0.90 0.91 1 0 0.13
Bowtie2 0.89 0.90 0.97 0.91 1 0

Table 4: Comparison of timing and memory foot-print
of selective-alignment with other alignment and non-
alignment methods on experimental sample SRR1215996.
The timing performance for STAR and Bowtie2 is the sum of
mapping and quantification (with salmon) steps (first num-
ber is the mapping step) and memory footprint is the max
memory footprint of these two steps (first number is for the
mapping step).

Method time (s) memory (KB)

kallisto 61 4006284
Hera 38 6736576
selective-alignment 65 7994324
STAR 398+96 max(8342444,5513432)
Bowtie2 977+125 max(1020032,9949380)

that would result from a given mapping location. The recently-
introduced Hera validates mapping quality using alignment, which
resolves spurious mappings, though it still suffers a loss of sen-
sitivity compared to traditional alignment methods, and fails to
process denovo assembled transcriptomes. In this paper, we intro-
duce a selective alignment algorithm that attempts to bridge the
gap between these non-alignment-based algorithms and more tra-
ditional alignment approaches. Selective-alignment improves upon
both the sensitivity and specificity of these non-alignment-based
algorithms while making very moderate concessions with respect
to the computational budget. To achieve this level of efficiency, a
number of algorithmic innovations were required, some of which
may be of general interest. In the future, we hope to expand upon
the notion of selective alignment even further, both by improv-
ing the algorithm and implementation, and by exploring use cases
where selective alignment applies. Such situations are those where
fast non-alignment-based approaches are inappropriate and tradi-
tional alignment approaches are too slow. In terms of improving
the method, we hope to add functionality to automatically predict
the optimal edit distance threshold in the read mappings based
on the quality of the alignments, and for selective-alignment to
self-tune to properly handle edge cases, such as soft clipping. The
selective-alignment algorithm currently implements user specified

edit distance threshold for filtering spurious reads. A more data-
driven choice of filter can lead to a more resilient threshold that
can perform gracefully while handling both adversarial reads as
well as high-quality reads in heterogeneous read samples. In high
quality samples, the edit distance bound can be set lower to further
speed-up the algorithm. Future work will also include support for
reporting the actual CIGAR strings for applications that require
this information, such as RNA-seq based variant calling or allele
identification.
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