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ABSTRACT

RNAseq has become a popular technology for biomarker discovery.
However, in many applications, such as single cell sequencing, zero
counts comprise a considerable portion of data. Here we propose a
new RNAseq model that explicitly models zero counts and solve
a previously proposed feature selection framework, called Opti-
mal Bayesian Filter (OBF), for this model and find the posterior
probability of a feature having distributional differences across
classes. As the posterior does not exist in closed form, we propose
Sequence Approximation OBF (SA-OBF) as a closed form approxi-
mation which is based on log transformations of non-zero reads.
We use SA-OBF to study two breast cancer RNAseq datasets.
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1 EXTENDED ABSTRACT

Biomarker discovery aims to find biological markers that differ-
entiate between different groups, are involved in the biological
mechanisms of the disease under study, and can be further utilized
for diagnosis, prognosis, drug development, etc. [6] While current
high throughput technologies provide a deluge of data per point,
research is usually constrained to small samples impeding reliable
and reproducible biomarker discovery [2, 6].

RNA sequencing (RNAseq) has become a popular technology
for biomarker discovery. In many applications, such as single cell
sequencing, zero reads comprise a large portion of data which poses
a challenge for many popular algorithms and transformations used
to study RNAseq data. For example voom transform [7] adds the
constant 0.5 to all reads to avoid taking log of zero, genes with
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zero median expression are typically filtered out when methods
such as DESeq and EdgeR are used [8], and cuffdiff2 removes genes
with zero or low median expression [8]. Many current methods
suffer low power for low expression genes [13], and the need for
methods that better analyze genes with low average expression has
been emphasized in [12]. Recently, models that directly account
for zero/low reads have been proposed [16]. While the model of
[16] explicitly models zero/low reads, it performs two separate sets
of hypothesis tests, one to detect if the probability of a zero/low
read is significantly different between the two classes, and another
to detect if the mean expression of reads deviating from zero are
significantly different.

Here we propose a new RNAseq model that explicitly models
zero reads. We also propose an algorithm for biomarker discovery
based on the proposed RNAseq model using a Bayesian framework
that finds the sample conditioned probability of a feature having
distributional differences across classes [5]. Optimal Bayesian filter
(OBF) is the variation that assumes independent features and has
been solved for Gaussian [5] and categorical features [4]. Extending
OBF for the proposed RNAseq model we observe the posterior does
not exist in closed form. Therefore, we propose an approximate
posterior based on log transformations of non-zero reads and ob-
tain Sequence Approximation OBF (SA-OBF). SA-OBF is fast and
memory efficient, and can handle transcription per million (TPM),
reads per kilobase million (RPKM), and fragments per kilobase
million (FPKM) data as well. SA-OBF detects two modes of distribu-
tional differences across classes: (1) differences in the probabilities
of observing zero reads and (2) distributional differences between
non-zero reads. However, in contrast to the two phase analysis of
[16] this is done at one step, combining information of both modes
of distributional differences.

Data obtained in [1] and [15] are deposited on gene expres-
sion omnibus (GEO) [3] with accession numbers GSE47462 and
GSE58135, containing 24 and 56 healthy, and 48 and 112 breast
cancer points, respectively. GSE47462 provides read counts and
GSE58135 reports FPKM. We use SA-OBF with a non-informative
prior to select the top 1000 genes, and perform enrichment analysis
using PANTHER [9, 10]. PANTHER pathways recognize 106 and 98
genes of GSE47462 and GSE58135, respectively. Top 10 genes and
pathways are listed in Tabs. 1 and 2, respectively, of which many,
such as the DVL1 gene [14] and p38 MAPK pathway [11], have
been suggested to be affected in breast cancer.
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Table 1: Top breast cancer genes

GSE47462 GSE58135
Rank | Gene Rank | Gene Rank | Gene Rank | Gene
1 COL10A1 6 SYT9 1 DVL1 6 ZBTB7A
2 MYL2 7 PIGR 2 NCRNAO00306 | 7 COX7A1
3 HS6ST3 8 EMX1 3 SIRT6 8 RP13-824C8.2
4 NPPA 9 OLR1 4 FAM129C 9 CDH20
5 LOC100127888 | 10 LOC643650 | 5 AMELX 10 PTBP1

Table 2: Over-represented breast cancer pathways

GSE47462 GSE58135
Pathway name P-value |Pathway name P-value
Huntington disease 4.27E-03| Glutamine glutamate conversion |9.28E-03
Alzheimer disease-presenilin p.w. 7.22E-03|p38 MAPK p.w. 1.85E-02
Metabotropic glutamate receptor group III | 2.95E-02| Angiogenesis 2.40E-02
Allantoin degradation 4.15E-02| CCKR sig. map 2.49E-02
Plasminogen activating cascade 4.21E-02| DPP sig. p.w. 2.65E-02
Tonotropic glutamate receptor p.w. 6.36E-02| BMP/activin sig. p.w.-drosophila |2.65E-02
Androgen/estrogene/progesterone biosyn. |6.79E-02| Adenine & hypoxanthine salvage |2.65E-02
Cytoskeletal regulation by Rho GTPase 6.94E-02 | ATP synthesis 2.65E-02
Heterotri. G-prot. sig. rod outer seg. phototr.|7.41E-02 |Endothelin sig. p.w. 3.51E-02
Metabotropic glutamate receptor group I 9.97E-02| Alzheimer disease-amyloid sec. |3.95E-02
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