
SENSITIVITY ANALYSIS OF DISCRETE MODELS

AND APPLICATION IN BIOLOGICAL NETWORKS

by

Gaoxiang Zhou

B.S., Beihang University, 2016

Submitted to the Graduate Faculty of

Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2018

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

Gaoxiang Zhou

It was defended on

April 4, 2018

and approved by

Natasa Miskov-Zivanov, Ph.D., Assistant Professor,

Department of Electrical and Computer Engineering

Zhi-Hong Mao, Ph.D., Associate Professor,

Department of Electrical and Computer Engineering

Samuel Dickerson, Ph.D., Assistant Professor,

Department of Electrical and Computer Engineering

Thesis Advisor: Natasa Miskov-Zivanov, Ph.D., Assistant Professor,

Department of Electrical and Computer Engineering

ii

Copyright c© by Gaoxiang Zhou

2018

iii

SENSITIVITY ANALYSIS OF DISCRETE MODELS AND APPLICATION

IN BIOLOGICAL NETWORKS

Gaoxiang Zhou, M.S.

University of Pittsburgh, 2018

Understanding sensitivity is an important step to study system robustness against pertur-

bations and adaptability to the environment. In this work, we model and investigate intra-

cellular networks via discrete modeling approach, and we propose a framework to study

sensitivity in these models. The discrete modeling approach assigns a set of discrete val-

ues and an update rule to each model element. The models can be analyzed formally or

simulated in a deterministic or a stochastic manner. In our framework, we define element

activity and sensitivity with respect to the state distribution of the modeled system. Previ-

ous sensitivity analysis approaches assume uniform state distribution, which is usually not

true in biology. We perform both static and dynamic sensitivity analysis, the former assum-

ing uniform state distribution, and the latter using a distribution estimated from stochastic

simulation trajectories under a particular scenario.

Within our sensitivity analysis framework, we first compute element-to-element influ-

ences, then we extend the element update functions to include weights according to these

computed influences. Adding weights to element interaction rules helps to identify key el-

ements in the model and dominant signaling pathways that determine the behavior of the

overall model. When studying cellular signaling networks, we are particularly interested in

the response of elements to perturbations, as our goal is often to reach the desired model

state via least number of interventions. We have applied our sensitivity analysis framework

on pathway extraction and evaluation in the intra-cellular networks that controls T cell dif-

ferentiation. Additionally, we propose four different ranking algorithms to extract the most

iv

important pathways from a given source element to a given target element. We then evaluate

these four algorithms using cross validation of corresponding extraction results. Our results

show that, in different application occasions, different pathway extraction and evaluation

algorithms should be adopted to help find “globally valid” or “globally effective” pathways.

Keywords: Discrete Modeling Approach, Static Sensitivity, Dynamic Sensitivity, Pathways

Extraction, T-cell Differentiation.

v

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

2.0 BACKGROUND . 4

2.1 Discrete Modeling Approach . 4

2.2 Model Simulation . 5

2.3 A Dependent Multi-valued Probabilistic Boolean Network 7

3.0 METHODOLOGY . 12

3.1 Element Influence . 13

3.2 Element Sensitivity . 14

3.3 Static Analysis . 14

3.4 Dynamic Analysis . 15

4.0 COMPUTATION . 17

4.1 Binary Decision Diagrams-based Influence Computation 17

4.2 An Improved ROBDD-based Influence Computation 20

5.0 APPLICATION . 23

5.1 Pathways Extraction and Evaluation . 23

5.2 Node Importance . 25

5.3 Self-influence: An Indicator Of Loop Feedback 27

6.0 CASE STUDY: T-CELL DIFFERENTIATION 29

6.1 Element-level Analysis: Element Sensitivity 30

6.2 Interaction-level Analysis: Element Influence 31

6.3 System-level Analysis: Pathways Extraction 33

6.4 Scenarios Comparison . 34

vi

7.0 EXTRACTION ALGORITHMS . 36

7.1 Four Extraction Evaluation Methods . 37

7.2 Cross Validation of Pathways Extraction . 38

7.2.1 Space Cross Validation . 39

7.2.2 Time Cross Validation . 42

8.0 FUTURE WORK . 44

8.1 Possible Development . 44

8.2 Current Bottleneck . 45

9.0 CONCLUSION . 46

BIBLIOGRAPHY . 47

vii

LIST OF TABLES

1 Truth tables of three PBN realizations of the toy example model 9

2 A traditional method to compute element influence using truth table 17

3 Comparison among numbers of active pathways under different scenarios . . . 35

viii

LIST OF FIGURES

1 Discrete modeling approach and a comparison between different simulation

schemes . 6

2 A grouped state transition diagram shows the steady state distribution is highly

dependent on initial states . 10

3 Flowchart diagram of our sensitivity analysis framework 12

4 A binary decision diagram sample and BDDs-based influence computation

method . 18

5 A ROBDD shows its power to compute conditional node influence 21

6 With the influence computation, weighted directed graphs are generated from

the influence map according to state distributions 23

7 A weighted directed graph G(V,E,W) of a real biological model 25

8 Finding out the node importance in a weighted directed graph 26

9 Sensitivity distribution of all elements in T cell model under four scenarios . . 30

10 Element influence matrix of T cell model under four different scenarios 32

11 Pathways from TCR HIGH to FOXP3 under static analysis 33

12 Pathways from TCR HIGH to FOXP3 under high-dose scenario 34

13 Space cross ranking percentage of six system source-target pairs following four

proposed methods under static analysis . 39

14 Space cross ranking percentage of four system source-target pairs following

four proposed methods under high-dose scenario 40

15 Space cross ranking percentage of four system source-target pairs following

four proposed methods under low-dose scenario 41

ix

16 Time cross ranking percentage of extractions under different scenarios following

four proposed methods . 42

x

1.0 INTRODUCTION

The sensitivity analysis of a biological model indicates how sensitive the model and its ele-

ments can be to internal or external changes. Understanding sensitivity is an important step

to study system robustness against perturbations and adaptability to the environment[1],

both of which are considered indispensable for a living organism. Most of the previous

sensitivity studies focused on the probabilistic Boolean networks (PBN)[2], with all nodes

assigned a random update rule selected from several candidate Boolean functions. In this

work, we model and investigate intra-cellular networks via discrete modeling approach, and

we propose a framework to study sensitivity in these models.

Biochemical networks are often modeled as sets of reactions or reaction rules, and then

analyzed using ordinary differential equations (ODEs)[3]. Several issues are commonly en-

countered when using reaction networks as models of intra-cellular networks. First, the

reaction networks grow exponentially with the number of network components (receptors,

ligands, kinases, etc.). Assuming that there are fast methods today that can be used to

numerically solve these large sets of ODEs, the main obstacle that still remains is the lack

of knowledge about all the network details. It is often the case that we are only familiar

with indirect cause-effect relationships for some interactions in the network, and that we do

not know exact mechanisms and the parameters necessary to create ODEs. The discrete

modeling approach assigns to each model element a set of discrete values and a determin-

istic update rule according to its known direct or indirect regulators. The models can be

analyzed formally or simulated in a deterministic or a stochastic manner. Different from the

commonly used simultaneous (synchronous) update schemes[4], we model the stochasticity

by applying random-order sequential update scheme[5], which is better suited for studying

biological networks.

1

There is some prior research work on sensitivity analysis of biological networks. An

influence matrix was introduced in [2] as an affiliation with state transition matrix. With

the help of influence matrix, Markov chains were introduced in [4] and [6] to study the

steady-state probability distribution. Additionally, [4] and [6] also proposed a general way

to induce the network to reach the desired state. It was shown in [7] that the expected aver-

age sensitivity determines the well-known critical transition curve. Detailed proof was given

in [8] to extend the results in [7] to networks with arbitrary connectivity K and to random

networks with biased Boolean functions. Previous applications of sensitivity analysis in bio-

logical networks include network inference[9], intervention[10], and stochasticity/robustness

modeling[11]. Taking sensitivity into account via a penalty term in the inference proce-

dure improves the accuracy of predictions[9]. A long-term sensitivity was introduced in [10],

with some experiments to show the method’s performance in long-run intervention. Element

influence was used in [11] as function failure probability, where the authors proposed the

stochasticity in functions (SIF) model to study stochasticity in Boolean models.

In our framework, we define element influence and sensitivity with respect to the state

distribution of the modeled system, using a discrete modeling approach. Previous sensitivity

analysis approaches assume uniform state distribution, which is usually not true in biology.

We perform both static and dynamic sensitivity analysis, the former assuming uniform state

distribution, and the latter using a distribution estimated from stochastic simulation tra-

jectories under a particular scenario. Under the DiSH simulator scheme[5], we are able to

obtain sufficient trajectories to analyze the model. In addition, we also propose a Binary

Decision Diagrams-based method to compute element influences. Within our sensitivity

analysis framework, we first compute element-to-element influences, then we extend the el-

ement update functions to include weights according to these computed influences. Adding

weights to these interaction rules helps to identify key elements in the model, as well as

dominant signaling pathways that determine the behavior of the overall model.

To the best of our knowledge, previous sensitivity analysis research did not focus on de-

tecting crucial pathways (elements regulations sequence) in a complicated Boolean network.

For a well-studied or informative regulatory model with a large number of elements and

complicated interactions, biologists are interested in extracting important pathways which

2

can dominate the control on a targeted element. In this work, we also discuss how these

pathways can be extracted with the help of sensitivity analysis. We propose two scenarios

to apply sensitivity. First, the static analysis approach assumes that all possible network

states are equally distributed. Note that almost all the previous sensitivity research is based

on this naive assumption. Second, we also investigate the dynamic approach where states

are biased towards specific trajectories, as simulation can provide us the preferred network

states under a given scenario, and the distribution of states which is closer to experimental

observations. We then refine our pathways extraction method by improving the sensitivity

scores propagation algorithm. This ensures the balance between long regulation pathways

and short ones and gives more flexibility for different application occasions. In order to

evaluate the extracted pathways, we also develop cross validation to assess that extractions

are “globally valid” in the regulations of different targeted elements (validation in space)

and are “globally effective” starting from different initial states (validation in time). We

have applied our sensitivity analysis framework on pathway extraction and evaluation in the

intra-cellular networks that controls T cell differentiation, and the examples from the T cell

model are regulation[12] presented throughout the thesis.

In Chapter 2, we describe the background of discrete modeling approach and discuss

and compare the model simulation schemes. In Chapter 3, we give the methodology details

to define element influence and sensitivity and apply these definitions to both static and

dynamic anaylsis. In Chapter 4, we propose a Binary Decision Diagrams-based computation

method which fits the dynamic case quite well and also improve its complexity performance.

In Chapter 5, we use our sensitivity analysis results to generate a weighted directed graph

and give potential applications of this graph. In Chapter 6, we study the case of T cell dif-

ferentiation model using sensitivity analysis and illustrate results in different analysis levels.

In Chapter 7, we refine the pathways extraction algorithms to be adaptive to application

occasions.

3

2.0 BACKGROUND

2.1 DISCRETE MODELING APPROACH

The construction of a model begins with identifying the key system components, and their

interactions, usually through literature reading, data analysis or discussion with experts[13].

The extraction of this information from knowledge sources allows modelers to define the set

of model elements, and for each element, the set of other elements that regulate it, as well as

the polarity (positive or negative) of these regulations. The set of regulators is often called

influence set, and the influence sets in a model can be illustrated as influence map (graph)

G(V,E), where nodes V = {x1, x2, ..., xN} represent model elements, and edges E represent

regulatory interactions between elements.

An influence map G(V,E) alone is not sufficient to study the dynamics of the model. In

order to create an executable model, it is necessary to assign update functions to a subset (or

all) of model elements. In this work, we focus on discrete models. Therefore, we extend graph

G(V,E) to a discrete model, M(V, F), where, for each model element, xi, i = 1, 2, ..., N , we

define its influence set, V Ixi
⊂ V , ||V Ixi

|| = ki, which includes both positive regulators

(activators) and negative regulators (inhibitors) of the element. We also define the number

of all possible values of element xi as ni, representing the number of relevant discrete levels

of activity of the element. In other words, xi can only take values from the set Xi =

{0, 1, ..., ni−1}. Finally, we define element update functions F = {f1, f2, ..., fN}, where fi is

a discrete function mapping a ki-dimensional non-negative vector to a non-negative integer

in the set Xi. Boolean (logical) models are considered a special case of discrete models where

the domain of all elements is B = {0, 1}, and the operators used in Boolean models include

AND (“·”), OR (“+”), and NOT (“¬”).

4

Using the logical model example in Figure 1(a), we illustrate the method that we use to

study the dynamics of the modeled system. In this example, A, B, and C are model elements,

and the influence sets of these three elements are {B,C}, {B}, {A,C}, respectively.

2.2 MODEL SIMULATION

Given a model M(V, F) with all its elements and update functions, we can define a simulation

scenario, and then simulate the model using the DiSH simulator[5]. Simulation scenarios

are used to define: (1) initial values of all non-input model elements (i.e., nodes in the model

graph that have arrows pointing at them), (2) initial values for all model inputs, and (3)

when needed, perturbations that are assumed to happen at a particular model element, at a

specified time point. The simulation is then executed following the scenario, from the initial

state, until a pre-specified final state, which is indicated with the number of simulation time

steps. One simulation run provides a trajectory of each model element between initial and

final states.

The simulation scheme that has been most often used to study logical models of biolog-

ical networks is the simultaneous (synchronous) update scheme[2, 4, 6], where all elements

are updated simultaneously, that is, current state values of all variables are used to simul-

taneously compute next state values. This simulation scheme is, therefore, deterministic,

as for each state, there is only one possible next state that can be computed according to

element update rules. However, in order to model stochasticity which plays an indispens-

able role in biological systems, in this work we use the random sequential update scheme

from DiSH, in which, at a given simulation step, a randomly selected element is updated

according to its update rule. For example, if the initial state of our example model above is

110 (A = 1, B = 1, C = 0), the simultaneous scheme will always lead to 001 as next state,

while the random sequential scheme will lead either to state 010 (when element A is selected

for update), to 100 (when element B is selected for update), or to 111 (when element C is

selected for update). Therefore, the trajectories that elements follow from initial state to a

given final state can vary in the random sequential case.

5

A

B

C
A = B · C

B = ¬B

C = A+ C

(a)

011

001 101

111

100

110

000

010

A,C

B B

C
A

B

C

A

A,C

B

C A

B

C

B

A

A,C

B

A,C

B

(b)

(c)

Figure 1: Discrete modeling approach and a comparison between different simulation schemes

: (a) An influence map G(V,E) and update functions for a small toy model of three

elements A,B,C, they together forms an executable discrete model M(V, F); (b) An STG

of the toy model created for simultaneous and random sequential update schemes [5]; (c)

Trajectories obtained from simulation for the toy model elements A,B,C, when the model

is simulated using simultaneous (red line) and random sequential (black line) approach,

from initial state (A,B,C) = (1, 1, 0).

6

In Figure 1(b), we show the state transition graph (STG) for our example model. The

red arrows in the figure indicate state transitions when the simultaneous update scheme is

used, and black arrows indicate state transitions in the case of random asynchronous up-

date scheme. In Figure 1(c), we show trajectories for elements A, B, and C obtained from

simulation, from the initial state (A,B,C) = (1, 1, 0) at the beginning of simulation, for 15

simulation steps. The red lines in the figure are simulation trajectories when the model is

simulated using simultaneous approach, while the black lines show average trajectories ob-

tained using the random sequential simulation scheme. Since the random sequential scheme

returns trajectories that can vary for the same initial state, average trajectories are obtained

by simulating the model multiple times from the initial state, and computing average ele-

ment values at each simulation time step across all simulation runs. Further details about

the simulation schemes can be found in [5].

2.3 A DEPENDENT MULTI-VALUED PROBABILISTIC BOOLEAN

NETWORK

The Probabilistic Boolean Network (PBN) modeling approach is proposed in [2] to study

the randomness of biological networks, from a perspective that is slightly different from the

one described in Section 2.1, Section 2.2 and applied in [5]. Instead of assembling models

using the information collected from experts or from literature[13], many previous studies

have been done to estimate the structure of gene regulatory networks from gene expres-

sion data[9, 10]. In the latter case, the authors adopted the idea that one deterministic

logic rule per gene may cause incorrect estimation results when inferring rules from gene

expression measurements, as these measurements are sometimes noisy and the data size is

not sufficient[2]. Therefore, they introduced a new model class called Probabilistic Boolean

Networks (PBN). All model elements are assigned a random update rule from several candi-

date Boolean functions (defined as predictors) according to a pre-defined distribution. The

way to select a set of predictors for a given model element is to employ the Coefficient of

Determination[14], which is a method used on the element expression data samples.

7

The basic idea of PBNs is to accommodate more than one possible functions for each

model element, that is, for each element xj, there is a set of update rules Fj = {f (k)
j }, k =

1, 2, ..., l(j) where each f
(k)
j is a possible update rule determining the value of element xj, j =

1, 2, ..., n and l(j) is the number of candidate update rules of xj. A realization of the PBN

at a given time t, R(t), is the choice of predictors for all model elements, which forms a BN

at that time point. It’s not hard to find that there are at most N =
∏n

j=1 l(j) realizations.

In general, the simulation of a PBN is the simultaneous state transition according to the

realization Rs(t), s = 1, 2, ..., N at time t. A PBN is defined to be independent if the

choice of predictors for all model elements are independent from each other, in which the

number of realizations reaches the maximum N =
∏n

j=1 l(j). The number of realizations

in a dependent PBN might decrease as the affection between the choice of predictors can

prevent some realizations from happening.

Considering the discrete modeling approach and the random-order sequential update

scheme we discussed in Section 2.2, our model can be viewed as a dependent simultaneous

PBN such that there are two candidate update rules per element, i.e. (1) regulated by itself

as buffer; (2) regulated by its pre-defined rule. The dependence within the model lies in

the fact that if any model element follows Rule (2), all the other model elements will be

updated according to their corresponding Rule (1). Therefore, the number of realizations

in this dependent simultaneous PBN is n rather than 2n. Taking the model in Figure 1 as

an example, this dependent simultaneous PBN consists of three elements V = {A,B,C},

and the function sets F = {FA, FB, FC}, where FA = {f (1)
A = A, f

(2)
A = B · C}, FB =

{f (1)
B = B, f

(2)
B = ¬B}, FC = {f (1)

C = C, f
(2)
C = A + C}. There are three realizations, that’s

R1 = {f (2)
A , f

(1)
B , f

(1)
C }, R2 = {f (1)

A , f
(2)
B , f

(1)
C }, R3 = {f (1)

A , f
(1)
B , f

(2)
C } shown in the Table 1.

Finding the steady state distribution using PBN is an interesting question to address

as the steady states (defined as attractors) often represent a cell type that has been reach

under a particular scenario. The steady-state question can be addressed through the study

of the state transition matrix A of the underlying Markov chains. The procedure to find A

is described as follows: for each realization Rs as a Boolean Network (BN), we will have a

one-step state transition binary matrix As, for each row (current state) in As, we compute n

times to decide the next state (i.e. where to assign 1), the other entries in that row will be

8

Table 1: Truth tables of three PBN realizations of the toy example model

ABC R1 R2 R3

000 000 010 000
001 001 011 001
010 010 000 010
011 111 001 011
100 000 110 101
101 001 111 101
110 010 100 111
111 111 101 111
p(Rs) 1/3 1/3 1/3

automatically assigned 0. Since there are N realizations, we sum up all realizations weighted

by their BN probabilities p(Rs) to obtain the average state transition matrix. Thus, for an

independent PBN, the computation complexity will be O(n·2n·N) = O(n·2n·2n) = O(n·22n),

while for the discrete modeling approach we use together with the random-order sequential

update scheme, in each row in a certain realization Rs, we only need to compute once to

decide the next state. Also, there are only N = n realizations in total. Therefore, the

computation complexity of obtaining the state transition matrix A under discrete modeling

approach is reduced to O(1 · 2n ·N) = O(1 · 2n · n) = O(n · 2n).

Another property of the state transition matrix A under discrete modeling approach

is that it contains more zero entries compared to the state transition matrix under PBN

modeling. For example, the state transition matrix of the toy example model in Figure 1 is

A =

2/3 0 1/3 0 0 0 0 0

0 2/3 0 1/3 0 0 0 0

1/3 0 2/3 0 0 0 0 0

0 1/3 0 1/3 0 0 0 1/3

1/3 0 0 0 0 1/3 1/3 0

0 1/3 0 0 0 1/3 0 1/3

0 0 1/3 0 1/3 0 0 1/3

0 0 0 0 0 1/3 0 2/3

9

where the rows correspond current states, and the columns correspond next states, and states

are ordered by 000, 001, 010, 011, 100, 101, 110, 111. The entries denote the probabilities.

In linear algebra, sparse matrices tend to be nonsingular and therefore, don’t possess

eigenvectors which means that we cannot find a universal steady state distribution for the

model. However, we can still group some states together to form a nonsingular group-based

transition matrix and maintain the nonsingularity within the group as well. For example,

we can rearrange the order of these eight states to 000, 010, 100, 110, 001, 011, 101, 111 and

obtain transition matrix as

Anew =

2/3 1/3 0 0 0 0 0 0

1/3 2/3 0 0 0 0 0 0

1/3 0 0 1/3 0 0 1/3 0

0 1/3 1/3 0 0 0 0 1/3

0 0 0 0 2/3 1/3 0 0

0 0 0 0 1/3 1/3 0 1/3

0 0 0 0 1/3 0 1/3 1/3

0 0 0 0 0 0 1/3 2/3

and group states (000, 010), states (001, 011, 101, 111) together as shown in Figure 2.

011

001 101

111

100

110

000

010

A,C

B B

C
A

B

C

A

A,C

B

C A

B

C

B

A

A,C

B

A,C

B

Figure 2: A grouped state transition diagram shows the steady state distribution is highly

dependent on initial states

10

Now if we order the groups as (000, 010), 100, 110, (001, 011, 101, 111), we can construct

the new grouped state transition matrix A∗new and inside-group state transition matrixes

Gleft, Gright as

A∗new =

1 0 0 0

1/3 0 1/3 1/3

1/3 1/3 0 1/3

0 0 0 1

 , Gleft =

2/3 1/3 0 0

1/3 1/3 0 1/3

1/3 0 1/3 1/3

0 0 1/3 2/3

 , Gright =

2/3 1/3

1/3 2/3

A∗new, Gleft, Gright are all non-singular matrixes and possess a steady state distribution. Thus,

due to bit changes occurring locally in random sequential scheme, if model starts within any

state in the right dashed box 000, 010, it will be trapped and form a Markov chain within the

box, this Markov chain has a steady state distribution accordingly. The case will be the same

when the model starts within any state in the left dashed box 001, 011, 101, 111. In other

words, instead of universal steady state distributions, we shall obtain initial-state-dependent

steady state distributions, which is more informative for biology studies.

11

3.0 METHODOLOGY

In this chapter, we include the details of the methods that we have developed within our

sensitivity analysis framework. We outline in Figure 3 the flow diagram of the framework.

Discrete Model
M(V, F)

Simulation (DiSH[5])

Influence/Activity Computation

Scenario

Weighted Directed Graph
G(V,E,W) Generation

Static vs.
Dynamic
Analysis

Comparison

Element-
to-Element
Influences;
Element

Sensitivities

Extraction
and

evaluation
of pathways;

Node
importance

Static Dynamic

Figure 3: Flowchart diagram of our sensitivity analysis framework

We use as inputs the model M(V, F), that is, defined sets V and F , and a scenario

under which the model will be analyzed. The model definition is sufficient for the static

sensitivity analysis (described in detail in Section 3.1, 3.2, 3.3), while the scenario definition

is required for the dynamic sensitivity analysis (see Section 3.4). To obtain model trajectories

for the dynamic sensitivity analysis, we run simulations using DiSH simulator[5]. Later in

Chapter 4, we compute element influence based on Binary Decision Diagrams, implemented

with CUDD package[15]. With the computation results, we extend discrete model M(V, F)

to weighted directed graph G(V,E,W) and apply this graph to several studies in Chapter 5.

12

3.1 ELEMENT INFLUENCE

For a given set of model elements V = {x1, x2, ..., xN}, we are interested in computing a

sensitivity of element xj to changes in the value of element xi, where i, j ∈ {0, 1, ..., N},

and i 6= j. To find the sensitivity of function xj = fj(x1, x2, ..., xN) to element xi, we need

to calculate the partial derivative of function fj with respect to xi. Since in this work we

are focusing on logical models with Boolean variables and Boolean functions, the partial

derivative is defined as an exclusive OR (XOR) of the co-factors of fj with respect to xi[1]:

∂fj
∂xi

= (fj|xi=0)⊕ (fj|xi=1)

= fji(x1, x2, ..., xi−1, xi+1, ..., xN)

(3.1)

In other words,
∂fj
∂xi

does not depend on xi, and can depend on any other model element

xk ∈ V, k 6= i, which is determined by the xj’s update function, fj. Therefore, to find whether

model element xj can be influenced by xi, we need to identify all possible values of vector

(x1, x2, ..., xi−1, xi+1, ..., xN), for which the partial derivative
∂fj
∂xi

is true (i.e., equal 1). It can

be seen from Equation (3.1), that the partial derivative will be equal 1 iff, for given values

of xk, (k = 1, 2, ...i− 1, i+ 1, ..., N), functions fj|xi=0 and fj|xi=1 have different values, which

means that in such cases, function fj changes when xi changes. This is consistent with our

intuition of xj being sensitive to xi, or we can say that there exist conditions under which

model element xi can influence model element xj.

The influence/activity of element xi in function fj is defined as

αj
i = α

fj
i = E(

∂fj
∂xi

) (3.2)

This definition quantitatively describes the relationship between the regulator xi and the

regulated element xj. Since the partial derivative
∂fj
∂xi

itself is a Boolean function with only

two possible values {0, 1}, we can use the expectation E(
∂fj
∂xi

) as the probability that the

change in the model element xi flips the value of the function fj (i.e., xj), and hence, the

influence (activity) αj
i can vary between 0 and 1.

13

3.2 ELEMENT SENSITIVITY

The average sensitivity of a function fj (or, of a element xj) equals the sum of the activities

of all its regulators:

sfj =

kj∑
i=1

α
fj
i (3.3)

On one hand, an element’s sensitivity summarizes all the influences of its regulators, thus

serving as an essential property of elements. On the other hand, it is important to note that

element sensitivity is also dependent on the connectivity K (number of its regulators). In

general, the more regulators one element has, the less is the influence of each of its regulators.

Thus, the element sensitivity (sum in equation (3.3)) does not necessarily increase when

the connectivity K grows. As shown in [1] and [8], if an element’s average sensitivity is

greater than 1, this property is critical in leading to instability of the model, and it enables

the perturbation to propagate out of control. Other research[7] has also shown that, even

with the same element sensitivity, unbalanced influence distribution of its regulators can

make certain elements behave more stable and robust than elements with balanced regulator

influence distribution.

3.3 STATIC ANALYSIS

We can denote the state of a Boolean model with N elements as an N × 1 vector x =

(x1, x2, ..., xN), where each element xi ∈ {0, 1}. If we assume that all possible states of the

model are equally distributed, the influence of element xi in the regulation of xj can be

expressed as

αj
i = α

fj
i = E(

∂fj
∂xi

) =
1

2ki

∑
x

∂fj(x)

∂xi
(3.4)

Thus, the larger the influence is, the more element xj is sensitive to element xi. As can

be seen from equation (3.4), the sensitivity of model elements to changes in values of other

14

elements is determined by the fixed set of element update rules. In other words, the static

sensitivity analysis approach relies solely on the update functions in the model, it assumes

that the states of the system are uniformly distributed, and does not take into account

dynamic element trajectories.

3.4 DYNAMIC ANALYSIS

The assumption that the states of the system follow a uniform distribution is usually not

true in biology. Some states may never occur, or are not possible in living organisms. There

are two important aspects of these systems that should be accounted for when conducting

sensitivity analysis:

(1) The information about the system that is available is usually not sufficient to derive

the exact state distribution.

(2) Depending on the scenario, that is, initial values, inputs, and perturbations, the

distribution of states varies.

To tackle the challenge (1) above, we estimate the distribution of states through sim-

ulations. We can simulate the model for a pre-determined number of steps, and we use

element trajectories that we obtain through simulations to derive the distribution of each

model state. To tackle the challenge (2) above, we conduct simulations for all the initial

states that are of interest for studying a particular system.

As described in Section 2.2, the choice of a simulation scheme determines whether we need

to obtain a single or multiple trajectories from simulation for each initial state. When we use

simultaneous simulation scheme, one trajectory is sufficient to compute the distribution of

states in one scenario. This is due to the fact that the simultaneous scheme is deterministic,

and thus, each state has only one next state, which is uniquely determined by model update

functions. If the simulation is run on the same model for the same scenario multiple times,

using random sequential simulation approach, the trajectories obtained will vary for most

elements due to the stochasticity in the simulation approach. Although the number of

transient states between the initial and the final state is finite, and the number of possible

15

next states from each model state is finite, the overall number of possible trajectories grows

exponentially. Thus, we use a sample of all possible trajectories, by defining a number of

times that the simulation is run for a particular scenario. Previous work has shown that

even a smaller number of trajectories is sufficient to capture an average behavior for a given

scenario[12], and therefore, we use the data from the sample simulation runs to estimate the

state distribution in each scenario.

The dynamic trajectories obtained from simulation are highly dependent on the initial

state, and therefore, the distribution from the sample trajectories will be different for different

initial states. In the dynamic sensitivity analysis approach, the activity of element xi in

function fj is defined by taking into account the occurrence probability, p(x), of the state x.

α
fj
i = E(

∂fj
∂xi

) =
∑
x

∂fj(x)

∂xi
p(x) (3.5)

E is the expected value taken with respect to p(x). Note that it is possible that the

non-zero activity under static analysis α
fj
i is turned off to zero under dynamic analysis (i.e.

α
fj
i = 0) since the states in which xj is affected by the change in xi may never occur in these

dynamic trajectories.

16

4.0 COMPUTATION

4.1 BINARY DECISION DIAGRAMS-BASED INFLUENCE

COMPUTATION

As shown in equation (3.4) and equation (3.5), the core part of influence computation is
∂fj
∂xi

,

which is defined as an XOR of the co-factors of fj with respect to xi, i.e. (fj|xi=0)⊕ (fj|xi=1).

It was proposed in [16] to study Boolean variable influence using a discrete N -dimensional

cube representation. The basic idea is: 2n−1 minterms of fj|xi=0 and fj|xi=1 are listed, they

count the number of different f values with respect to the same minterm and normalize the

number by 2n−1. Table 2 gives an example of the influence computation of element a on

function f = ab+ a′c+ bc′d.

Although this idea is straightforward and efficient on the low size Boolean vector, it fails

to address the problem of computing influence under non-uniform state distribution. Also,

it becomes exponentially complex as the size of input Boolean vector increases.

Table 2: A traditional method to compute element influence using truth table

b, c, d f |a=0 f |a=1 Different?
000 0 0 No
001 0 0 No
010 1 0 Yes
011 1 0 Yes
100 0 1 Yes
101 1 1 No
110 1 1 No
111 1 1 No

The Binary Decision Diagram (BDD) structure is a tree data structure that has been

demonstrated to reduce computational complexity when manipulating with and evaluating

17

Boolean functions[17]. Let us assume that a given function f depends on a set of Boolean

variables x1, ..., xN . To evaluate the function, given the values of these N variables, we

start from the root node. In a decision tree, variables are ordered such that the tree can

be traversed from its root node to the leaf nodes following this order. At the root node of

a BDD tree, i.e. the first variable in the order, for example, x1, there are two sub-trees,

one for the case when x1 = 0 (dashed line), and one where x1 = 1 (solid line). Each of

these two sub-trees is now a new BDD, and we can evaluate the next variable that is at the

root of these two sub-trees. At the leaves of a binary decision tree, there are two nodes, 0

and 1, which represent the value of the function. Given the values of variables, the function

BDD can be traversed following these values, and the value of the function is given by the

value at the leaf node. In addition, we allow redundant evaluation of Boolean variables to

be omitted, and allow sharing of identical sub-trees. Example BDD is given in Figure 4(a).

a

b b

c c

d

0 1

f = ab + a′c + bc′d

c + bd b

c c + d

d

b

c c

d

0 1

fa = bc′d′ + b′c

S : 0.5
D : 0.7

S : 0.5
D : 0.3

c

0.80.2

c′d′

0.9 0.1

d′

0.4 0.6

p1 =
0.3 · 0.8

p2 = 0.7·
0.1 · 0.6

(a) (b)

Figure 4: A binary decision diagram sample and BDDs-based influence computation method

: (a) BDD of boolean function f = ab+ a′c+ bc′d in the testing order of a, b, c, d; (b) To

compute the influence of a in f , αf
a , we construct the BDD of fa = b′c+ bc′d′

18

In the following, we propose our BDD-based influence computation method. As shown

in equation (3.1), Boolean difference for function fj, fji(x1, x2, ..., xi−1, xi+1, ..., xN), is a new

Boolean function with n − 1 input variables. We can illustrate this new function fji in the

form of a BDD, and using the diagram compute the expectation as in equation (4.1):

E(
∂fj
∂xi

) = E(fji(x1, x2, ..., xi−1, xi+1, ..., xN))

= Pr(x : fji(x) = 1)

(4.1)

We will use an example function f = ab + a′c + bc′d to further explain our BDD-based

method. In order to compute αf
a = E(∂f

∂a
), we should first construct fa = (f |a=0)⊕ (f |a=1) =

(c+bd)⊕b = b′c+bc′d′. Note that we can directly read the co-factors from Figure 4(a) as the

left child node and right child node of a. Then the BDD of fa is constructed in Figure 4(b).

Thus, equation (4.1) (i.e. Pr(b, c, d : fa(b, c, d) = 1)) is the sum of probabilities of all paths

ending at leaf “1” (shown as bold lines in Figure 4(b)). As each of these bold lines represents

a path (or a set of paths) constituted from the root fa to the leaf “1”, we obtain

Pr(x : fji(x) = 1) =
∑
m

pm (4.2)

where each joint probability pm is computed through the path according to a given distri-

bution. For the static sensitivity analysis approach described in Section 3.3, this will be a

uniform distribution, shown with red numbers in Figure 4(b), that is, p1 = 0.5 · 0.5, p2 =

0.5 · 0.5 · 0.5. For the dynamic sensitivity analysis approach, the distribution will most prob-

ably not be uniform, and will depend on a particular scenario that is studied. An example

of a probability distribution for the dynamic case, p1 and p2, is shown with black numbers

in Figure 4(b)).

As the number of bold lines ending in leaf node 1 is much smaller than 2n−1, we greatly

reduce the time and space complexity compared to the method shown in Table 2. More-

over, we can safely apply this method to dynamic sensitivity analysis such that these joint

probabilities pm are computed via conditional chain rules. In other words, if we associate

each edge in the BDD with a probability, our problem of adding up joint probabilities pm is

converted into a traversal problem going from leaf “1” to root node fa.

19

4.2 AN IMPROVED ROBDD-BASED INFLUENCE COMPUTATION

The efficiency of a BDD-based approach, in terms of reducing both the space and time com-

plexity, is highly dependent on the order of evaluating variables within the BDD. Naturally,

variables with high influence should be evaluated first to derive the decision tree towards

high unbalance so that many redundant testing will be omitted. Therefore, Reduce Ordered

Binary Decision Diagrams (ROBDDs) are proposed based on a fixed ordering of the variables

and have the additional property of being reduced. It has been shown in [18] that building

the ROBDD of a boolean function is NP-complete. Thus, once we obtain a ROBDD, we

shall fully utilize it and manipulate operations on it rather than building another diagram.

Supposing that the variable evaluation order is given by x1 < x2 < ... < xn−1 < xn,

and we denote the two outgoing edges of a node v as low(v) and high(v), and the ele-

ment(variable) name of node v as var(v). A BDD is reduce ordered BDD[18] if

• (uniqueness) no two distinct nodes u and v have the same variable name and low-

successor and high-successor, i.e.,

var(u) = var(v), low(u) = low(v), high(u) = high(v) =⇒ u = v (4.3)

• (non-redundant tests) no node v has the same low-successor and high-successor, i.e.,

low(v) 6= high(v) (4.4)

To compute the influence of all regulators in a Boolean function f , we follow two steps

given an available ROBDD of function f :

(1) Find the conditional node influence: Recall in Equation (3.1) and Equa-

tion (3.2), we use αf
i to denote the influence of element xi on function f , which is the

expectation of XOR between two co-factors of f with respect to xi.

However, in a ROBDD, there might be many distinct nodes xi1 , ..., xiN(i)
representing the

same testing variable xi. For each distinct node, we define the conditional influence of node

xim(1 ≤ m ≤ N(i)) in function f as the influence of xi in function f given the input values

of x1, x2, ..., xi−1 that constitute the path from the root to the node xim , where N(i) is the

number of distinct nodes testing the same variable xi, that is:

20

αf
im

= αf
i |{(x1,x2,...,xi−1):paths(f→xim)}

= E(
∂f

∂xi
|{(x1, x2, ..., xi−1) : paths(f → xim)})

= E(f(xi = 0)⊕ f(xi = 1)|{(x1, x2, ..., xi−1) : paths(f → xim)})

= E(low(xim)⊕ high(xim))

(4.5)

Supposing the diagram in Figure 5 is a ROBDD of f = ab+ a′c+ bc′d. For convenience,

we use the footnote to denote all the non-leaf nodes as a, b1, b2, c1, c2, d. For example, we can

write the conditional influence of node b2 in function f given that a = 1, as αf
b2

= E(∂f
∂b2
|a =

1) = E(f(b = 0, a = 1)⊕ f(b = 1, a = 1)) = 1

a

b1 b2

c1 c2

d

0 1

f = ab + a′c + bc′d

c + bd b

c c + d

d

Figure 5: A ROBDD shows its power to compute conditional node influence

A tricky problem is what if there are multiple paths from root node to a certain non-leaf

node in the diagram. In that case, the condition {(x1, x2, ..., xi−1) : paths(f → xim)} should

be conjunctions of several vectors (x1, x2, ..., xi−1) that form paths towards node xim .

As also shown in the last row of Equation (4.5), we can easily convert the problem

of finding the conditional influence of node xim in function f to the problem of finding

the expectation of XOR between low(xim) and high(xim), which uses the similar idea in

Section 4, but has much smaller size compared to the n− 1 size of f |xi=0 and f |xi=0.

21

(2) Traverse backward to obtain element influence: Recall the knowledge of

conditional expectation E(X) =
∑n

i=1 E(X|Y = yi)Pr(Y = yi). It’s straightforward for us

to obtain the element influence in terms of conditional node influence as follows,

αf
i =

N(i)∑
m=1

αf
im
Pr{(x1, x2, ..., xi−1) : paths(f → xim)} (4.6)

Note that in the formula of conditional expectation, events set Y = yi has to be mutually

exclusive and collectively exhaustive. Recall the Taylor expansion of a boolean function

f = x1fx1=1 + x
′

1fx1=0

= x1x2fx1=1,x2=1 + x1x
′

2fx1=1,x2=0 + x
′

1x2fx1=0,x2=1 + x
′

1x
′

2fx1=0,x2=0

= x1x2...xnfx1=1,x2=1,...,xn=1 + ...+ x
′

1x
′

2...x
′

nfx1=0,x2=0,...,xn=0

(4.7)

Thus when testing xi, there should be 2i−1 distinct nodes in a complete expanding tree,

that’s N(i) = 2i−1,
∑m=2i−1

m=1 Pr{(x1, x2, ..., xi−1) : paths(f → xim)} = 1. But uniqueness

endorses that nodes with the same testing variable var() and the same outgoing edges low()

and high() have been merged so that N(i) < 2i−1 and now the number of paths going to xim

is more than 1. Thus we guarantee these conditional nodes are mutually exclusive nodes.

Moreover, non-redundant tests indicates that in ROBDD, there are some hidden nodes

xihidden with low(xihidden) = high(xihidden) so that their values have no effect in determining

the value of f , i.e., αf
ihidden

= 0, αf
ihidden

·Pr{(x1, x2, ..., xi−1) : paths(f → xihidden)} = 0. These

nodes are omitted in the ROBDD, and the corresponding terms are omitted in our formula

given in Equation (4.6). Thus we also guarantee these conditional nodes are collectively

exhaustive nodes.

Equation (4.6) therefore proves true for us to obtain element influence from conditional

node influence. The probability Pr{(x1, x2, ..., xi−1) : paths(f → xim)} can be addressed

using the same idea as Equation (4.2) either under static or a dynamic distribution.

In summary, with the method proposed in this section, for example, we can achieve com-

puting the influence of a, b, c, d in function f using fa(b, c, d), fb1(c, d), fb2(), fc1(), fc2(d), fd(),

rather than having to construct fa(b, c, d), fb(a, c, d), fc(a, b, d), fd(a, b, c) as stated in Sec-

tion 4.1.

22

5.0 APPLICATION

5.1 PATHWAYS EXTRACTION AND EVALUATION

In studying biological systems, we are especially interested in the response of elements to

perturbations, and furthermore, our goal is often to lead the model into a desired state via

least number of interventions. Therefore, it becomes critical to develop methods to extract

most influential or most active pathways from one model element (source) to another model

element (target). Once we get these important pathways, we can easily control the model

by tuning system input and by deciding whether to toggle elements during the transient

process.

A

B

C

A

B

C
0.5

0.5

0.5

0.5

1.0

A

B

C

0.9

0.6

0.1

0.3

1.0

p0(x) p1(x)

Figure 6: With the influence computation, weighted directed graphs are generated from the

influence map according to state distributions

23

Within our sensitivity analysis framework, we are now able to extend the model inter-

action graph G(V,E) to weighted directed graph G(V,E,W) by adding weights wij = αj
i to

the directed edges pointing to xj from xi. Here αj
i can be obtained either from static anal-

ysis as Equation (3.4) or dynamic analysis as Equation (3.5). Figure 6 shows two possible

weighted directed graphs of previously discussed toy model. As can be seen, for a pre-defined

discrete model M(V, F), the interaction map G(V,E) is fixed, while the weighted directed

graph G(V,E,W) can be varying with respect to p(x), of the state x, which is determined

by simulation scenario.

As the weights associated with each edges represent the magnitude of influence, it is

natural to say pathways with all high influence edges are more influential and active. For

a weighted directed graph generated from a real biology influence map of huge size(e.g.,

Figure 7), it’s quite important for us to choose a efficient and complete algorithm to find all

the pathways connecting a given source and target node. To guarantee the completeness, we

choose BFS algorithm in our model to explore pathways. We also keep track of the visited

set for each path to avoid cycles. Among these pathways, we need a ranking method to

evaluate them for biological study.

Suppose there is a regulatory pathway P = {x1, ..., xK}, where x1 is the input(source

node) and xK is the output(target node). We assign a score SP to this pathway, which is

defined as the sum of log of the activity of each input/output pair along the pathway:

SP =
K−1∑
i=1

log(α
fi+1

i) =
K−1∑
i=1

log(αi+1
i) (5.1)

It’s not hard to find that eSP is just the multiplication of activities along the pathway, and

this multiplication result essentially reflects the propagated probability effect if we assume

state distribution independence across different levels. The probability multiplication gives

us a magnitude of how possible the source node affects the target node in the long-run

style. The higher is the score of one pathway, the more dominant this pathway can be.

Equation (5.1) is proposed to understand the influence propagation from the perspective of

probability. We will refine the algorithm in Chapter 7 to other forms for other applications.

For example, in Figure 7, we’d like to extract all the pathways from TCR to FOXP3, we

can obtain four non-cycle pathways as

24

IL-2R TCR CD28

RAS PI3K

PTEN mTORC2

CD25 AKT

mTORC1

FOXP3 IL-2

0.321

0.368

0.330

0.368 0.368

0.151

0.388

0.377
0.561

0.005

0.672

0.457

0.678

0.282

0.757

0.773

0.854

0.719

0.031

0.147

Figure 7: A weighted directed graph G(V,E,W) of a real biological model

Pathway 1: (TCR→RAS→FOXP3)

Pathway 2: (TCR→PTEN→AKT→mTORC1→FOXP3)

Pathway 3: (TCR→PI3K→AKT→mTOCR1→FOXP3)

Pathway 4: (TCR→PI3K→mTORC2→AKT→mTOCR1→FOXP3)

And pathway (TCR→RAS→FOXP3) has the highest score according to Equation (5.1).

5.2 NODE IMPORTANCE

With the score of each pathway, we can find out which nodes play the most important

role in regulation from a source node to a target node.There are two aspects that decide

the importance of a node. Firstly, we look at the number of occurrences of the node in

all possible pathways that link the source and the target. The more it occurs, the more

important the node is to this regulatory relationship. Secondly, we take into account the

score of each pathway SP . Each occurrence is weighted by eSP . In other words, an node that

25

shows up in a high-scoring pathway should be more important than those showing up in a

low-scoring pathway. Thus we define the importance of node v in the relationship x→ y as

Ix→y
v =

∑
p∈P

eSP · I(v ∈ p) (5.2)

I() is an indicator function which returns 1 if the statement is true, and 0 otherwise.

When SP is defined as Equation (5.1), node importance can be viewed as the expected

number of occurrence of the element v in the x→ y relationship.

For example, in Figure 8, we show nodes(as dashed nodes) which can be possibly visited

when exploring all non-cycle pathways from TCR to FOXP3 and separate their non-cycle

interactions. As can be seen, although RAS occurs in the pathway with highest score,

its role is not so important as AKT and mTORC1 which occur almost in every path-

way. According to Equation (5.2), the importance of these six dashed nodes is ranking

as (AKT =mTORC1>RAS>PTEN>PI3K>mTORC2), indicated by the thickness of node

border in Figure 8.

TCR

RAS PI3K

PTEN mTORC2

AKT

mTORC1

FOXP3

0.368
0.368

0.377

0.672

0.857

0.457

0.773

0.854

0.031

0.147

Figure 8: Finding out the node importance in a weighted directed graph

26

5.3 SELF-INFLUENCE: AN INDICATOR OF LOOP FEEDBACK

As discussed in Section 5.1, we avoid to expand any repeated nodes to reduce the computation

complexity. However, biology models are always affected by many feedback to regain the

stability, giving up all repeated nodes cuts the opportunities to look into the details of loop

feedback. We may recover these missing information with self-influence. Equation (3.4) and

Equation (3.5) give the computation of the influence xi in xj, we can even perform this

computation between all pairs of model elements and therefore a n × n matrix I : Iij is

constructed such that Iij = αj
i . If xi isn’t a regulator of xj, α

j
i = 0.

Looking into the structure of influence matrix I, it’s possibly not symmetric and has zero

entries on the diagonal except these elements which are regulated by themselves. But we

can go one step further to I2, I3, ..., which gives the propagated influence within two direct

regulations, three direct regulations or more. It’s not surprised that the number of non-zero

diagonal entries will increase as we multiply I by itself to obtain I2, I3, These non-zero

entries represents the influence in itself, indicating the affection of loop feedback.

The self-influence can be used to answer two types of questions:

(1) For a certain length feedback, supposing Ik, which element is most influential by

itself? The solution is just the element with highest diagonal entry in Ik. In both biology

control and circuit design, loop feedback is typically time sensitive, the longer time one

feedback signal takes, the less effective it will be. So we can safely limit our research scope

within feedback of a certain length. These top elements with highest diagonal entries in

Ik serve as indicator how the loop effect distributes across the model space, which helps

biologist isolate parts of model for further study.

(2) For a certain element xi, which loop feedback should be considered first? We may

first compare the i-th entry in I, I2, I3, ... to find the largest one, supposing it’s Isol(i), this

tells that feedback of length sol(i) is quite important to element xi, we then head to find such

kind of feedback in the model. Recall that we avoid repeated elements in BFS algorithm, we

may replace it with a smarter method in which we assign every element xi with a threshold

sol(i) to denote the maximum times of duplicated visits. This includes loop when extracting

the pathways as well as limit the computation complexity.

27

For example, for the model in Figure 7, the influence matrix is given by

0 0 0 0 0 0 0 0.321 0 0 0.561 0

0 0 0 0.368 0.368 0.672 0 0 0 0 0 0

0 0 0 0.330 0.368 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.151 0 0 0.377 0.388

0 0 0 0 0 0 0.031 0 0.147 0 0 0

0 0 0 0 0 0 0 0 0.757 0 0 0

0 0 0 0 0 0 0 0 0.854 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0.773 0 0

0 0 0 0 0 0 0.719 0 0 0 0.457 0

0 0 0 0 0 0.005 0 0.282 0 0 0 0.678

0 0 0 0 0 0 0 0 0 0 0 0

where the rows and columns correspond the elements ordered by IL-2R, TCR, CD28, RAS,

PI3K, PTEN, mTORC2, CD25, AKT, mTORC1, FOXP3, IL-2.

Within loops of 6 interactions or less, PTEN, mTORC2, AKT, mTORC1 and FOXP3

have non-zero self-influence, of which AKT and mTORC1 have the highest self-influence.

This results correspond two important system loops (AKT, mTORC1, mTORC2) and (AKT,

mTORC1, FOXP3, PTEN).

For elements AKT, which loop is more important? We can just compare the ninth

entry(AKT) among I, I2, I3, ...IZ , we find that the ninth entry of I3, I4 and after I6 is

non-zero. Moreover, the ninth entry of I3 is greatest among them, which indicates that

(AKT, mTORC1, mTORC2) is dominant feedback. If we allow this loop when extracting

the pathways, the extraction results will be more reasonable.

28

6.0 CASE STUDY: T-CELL DIFFERENTIATION

T cells, one of two primary types of lymphocytes, play central roles in cell-mediated immu-

nity, which does not involve antibodies, but rather involves the activation antigen-specific

cytotoxic T-lymphocytes and the release of various cytokines in response to an antigen.

There are several subsets of T-cells and each one has a distinct function in T-cell mediated

immunity.

Generally speaking, T cells can be differentiated into two subsets: (1) regulatory cells

(Treg), which mainly suppress T-cell mediated immunity and reduce the damage caused by

autoimmune response; (2) helper cells(TH), which assist other lymphocytes in the mediation

of immune response. Previous research[19] has shown that these two types of T-cells are

distinguished by different element expressions in the molecular level. For example, in Treg

type, the transcription factor forkhead box P3 FOXP3 is expressed and Interleukin-2 IL-2

is inhibited, while in TH type, FOXP3 is inhibited and IL-2 is activated.

In [12], the circuitry that controls the differentiation of T cells is modeled using the

logical modeling approach. Some model elements are implemented as discrete (not Boolean

variables) with values {0, 1, 2}, to denote absence, low activity and high activity of the

element, respectively. Three discrete levels can be encoded with two Boolean variables in

order to use a logical model. For example, the T-cell receptor (TCR) is modeled with two

variables, TCR LOW and TCR HIGH, such that:

TCR=0 : (TCR LOW =0,TCR HIGH =0);

TCR=1 : (TCR LOW =1,TCR HIGH =0);

TCR=2 : (TCR LOW =0,TCR HIGH =1);

In this model, the input nodes are TCR LOW, TCR HIGH, CD86, IL-2 EX, TGF−β

and PI3K. The output nodes are: FOXP3, IL-2, mTOCR1, mTOCR2 and PTEN.

29

As we have mentioned in Section 3.4, scenarios have to be defined to conduct dynamic

sensitivity analysis. We are particularly interested in three scenarios: high-dose scenario

with initial value TCR=2; low-dose scenario with initial value TCR=1; toggle scenario with

initial value TCR=2 but regulated down to TCR=0 after short time.

6.1 ELEMENT-LEVEL ANALYSIS: ELEMENT SENSITIVITY

For the T cell model, the interaction map G(V,E) is fixed, while the weighted directed graph

G(V,E,W) is varying with respect to state distribution, which is determined by simulation

scenario. Under different scenarios, elements have different sensitivities.

Figure 9 shows the sensitivity of 55 elements under four different scenarios, where these

elements in the T cell differentiation are sorted alphabetically, four different scenarios are

the static analysis, and the dynamic analysis with high-dose, low-dose and toggle scenario.

Figure 9: Sensitivity distribution of all elements in T cell model under four scenarios

30

In all scenarios, we can see that there are 9 elements having zero sensitivity, which

corresponds to the system input elements and some specific parametric elements that are

not regulated by others.

The result for static analysis shows less variance, ranging from 0 to 1.5. Most elements

have sensitivities less than 1, indicating that this network follows a stable and ordered struc-

tured behavior[1]. However, the behavior of elements under dynamic analysis shows greater

variance, ranging from 0 to 2.94. Some elements under dynamic analysis have sensitivities

much greater than 1 (e.g. element PKCTHETA under low-dose scenario), which could lead

to local instability.

Top three elements that behave differently under different scenarios are AKT, PIP3,

PKCTHETA, most of which are cell type markers. They play dominant roles in the whole

network.

6.2 INTERACTION-LEVEL ANALYSIS: ELEMENT INFLUENCE

Apart from neighboring elements, we are also interested in element-to-element influence of

two arbitrary elements. To achieve that, we first need to find all the pathways from one

element to the other, then summarize all the pathway effects. As defined in equation (5.1),

the score of the pathway SP reflects the propagated probability. If we add the scores of all

possible pathways from one element to the other, this summation shows the overall influence

that the source element has on the target element. Figure 10 shows the element-to-element

influence matrix under four scenarios, where rows correspond to the source elements and

columns correspond to the target elements.

Note that the color bar in the top-left corner is ranging from 0 to 1, while others are

ranging from 0 to 2. In general, element influence under three dynamic scenarios are greater

than the element influence under the static analysis. For one reason, under the static analysis,

the long-run element-to-element influences are quite sensitive to the length of pathways since

the edge weight α under static analysis is relatively small. For another reason, dynamic

scenarios are obtained from real biological observations and thus show stronger homogeneity.

31

Figure 10: Element influence matrix of T cell model under four different scenarios

Additionally, it is worthwhile to note that compared to static analysis, the entries in

element influence matrix of three dynamic scenarios are distributed with high unbalance

(i.e. with wild variance range and high deviation), especially that of toggle case. As the

system with unbalanced influence distribution is said to behave stable and robust[7], the

results in Figure 10 inspire that we may toggle some nodes within the transient process for

the purpose of driving system to certain states and maintaining stability as well.

Intuitively, a high element influence indicates a strong interaction (in other words, an

important pathway which dominates the regulation pairs). From Figure 10, we can easily find

some strong element interactions such as (PI3K to mTOR) in high-dose scenario, (CD28,

TCR) to (JNK, JUN, MKK7, NFKAPPAB, PKCTHETA, TAK1) in low-dose scenario.

32

6.3 SYSTEM-LEVEL ANALYSIS: PATHWAYS EXTRACTION

To get insight into global influences, we perform system-level sensitivity analysis with the

system input as source and system output as target. Figure 11 shows all 306 pathways in

a heatmap from TCR HIGH to FOXP3 under static analysis, where rows correspond the

different pathways and columns are all elements ranked in the order of node importance (not

in alphabetical order anymore). A pink block denotes presence in the pathway, while a green

block denotes absence. In additional, rows have been clustered by their similarities.

Figure 11: Pathways from TCR HIGH to FOXP3 under static analysis

We do not plot all the pathways (rows) by the order of pathway scores calculated in

equation (5.1), instead we plot the rows to form cluster according to their Hamming distance

so that we can easily recognize groups of patterns. The clustering information in heatmap

helps detect blocks within the model, which can furthermore separate and simplify the

33

complex network. We should also note that, if we cluster these pathways according to

node-importance-weighted Hamming distance rather than the naive Hamming distance, the

heatmap will tell more about the pattern recognition priority.

6.4 SCENARIOS COMPARISON

Sensitivity analysis also offers us an opportunity to compare between different scenarios.

This is mainly because some none-zero activities under static analysis α
fj
i can be turned off

to zero under dynamic analysis (i.e. α
fj
i = 0). Therefore, some active pathways in static

analysis become inactive in dynamic scenario and regulations following these paths are no

longer effective. To illustrate the difference, Figure 12 shows all 18 active pathways(with

all non-zero activities) from TCR HIGH to FOXP3 under high-dose scenario, with columns

representing elements in the same order as Figure 11.

Figure 12: Pathways from TCR HIGH to FOXP3 under high-dose scenario

Obviously the number of active pathways decreases a lot, whereas the group of patterns

is still easily detected. The large decrease in the number of active pathways is common

in all connections between system inputs and outputs. Table 3 gives a detailed comparison

among the numbers of active pathways under static analysis, high-dose scenario and low-dose

scenario.

34

Table 3: Comparison among numbers of active pathways under different scenarios

From TCR HIGH IL-2 EX CD86
To FOXP3 IL-2 FOXP3 IL-2 FOXP3 IL-2

Static 306 196 44 155 214 133
High-dose 18 18 1 1 9 9
Low-dose 15 15 1 1 10 10

As shown in Table 3, the dynamic scenario shows its power in reducing the number of ac-

tive pathways. More interestingly, we find that there is only one active pathway from IL-2 EX

to IL-2 under high-dose/low-dose scenarios(i.e. IL-2 EX→JAK3→STAT5→FOXP3→IL-

2). Also, under high-dose and low-dose scenarios, the number of pathways to regulate

FOXP3 and IL-2 are always the same, no matter what is the source node. This indicates

that FOXP3 exists almost everywhere in the regulation that control IL-2.

35

7.0 EXTRACTION ALGORITHMS

The algorithms proposed in Section 5.1 provide us an insight into the model from the perspec-

tive of probability. Since element influence is always less than 1, an accumulative algorithm

to assign pathways scores is always giving preference to shorter pathways, whereas longer

pathways are typically these pathways we are pretty familiar with, and meanwhile, there

might be some hidden interactions within the shorter pathways. In addition, the purpose of

extracting pathways from a model is not the same for all application occasions. In some cir-

cumstances, we are interested in structure-based pathways regardless of the transient states,

in other circumstances, we may need to observe how different pathways couple each other.

Therefore, in this chapter we refine our extraction algorithms to some alternative methods

and introduce cross validation to evaluate these extractions as well. Cross validation, on one

hand, can help verify mathematically and biologically whether the extractions are valid and

effective. On the other hand, with cross validation, we are able to identify which algorithms

perform better for a certain application occasion.

36

7.1 FOUR EXTRACTION EVALUATION METHODS

Method 1 (Accumulative): as mentioned in Section 5.1 and Section 6.3, we can regard the

element activity(influence) as the probability that the value of one element is flipped as its

regulator’s value changes. From this perspective, it’s nature to assign pathway a score such

that it equals the probability that the source element’s flipping cause the target element’s

change. Thus for a regulatory pathway P = {x1, ..., xK}, where x1 is the input(source node)

and xK is the output(target node), we define the score of a pathway as Equation (7.1).

SP1 =
K−1∑
i=1

log(αi+1
i) (7.1)

Method 2 (Normalized): Method 1 always prefers shorter pathways since shorter path-

ways have a higher end-to-end probability. It degrades longer pathways, thus disregards these

long regulatory relationships. However, long regulatory pathways are these well-studied in-

teractions and there might be some potential interactions added to these short pathways

later. To address this, we normalize the above pathways scores by the length of the path-

ways. Thus we define the score of a pathway as Equation (7.2).

SP2 =

∑K−1
i=1 log(αi+1

i)

K
(7.2)

Method 3 (Weighted Normalized): For a given source-target pair, considering the timing

scale, pathways with high influence near the target element should be paid more attention

than these pathways with high influence far away from the target node. So instead of

simply normalizing the pathway scores by the length of pathway, we assign weights to the

element-to-element activity (influence) along the pathway such that the closer element-to-

element activity (influence) has a larger weight. Thus we define the score of a pathway as

Equation (7.3), where we suppose weights wi are linearly increasing from the source node to

target node.

SP3 =

∑K−1
i=1 wilog(αi+1

i)∑K−1
i=1 wi

(7.3)

37

Method 4 (Weighted Normalized with Eliminating Delay Variables): In the T

cell model purposed by [12], there are some delay variables as buffers which are created to

denote the different delay time occurred in the regulation. However, the element influences

between delay variables is always 1 and count nothing towards the pathway scores, but in

normalized method, we normalize the accumulative score by the total length, which prefers

pathways with lots of delay variables. To address it, we add the feature of eliminating delay

variables to Method 3 (Weighted Normalized). Thus we define the score of a pathway as

Equation (7.4), where I(vi ∈ DV) is an indicator function which returns 1 if the statement

(node vi is a delay variable) is true, and 0 otherwise.

SP4 =

∑K−1
i=1 wilog(αi+1

i) · I(vi ∈ DV)∑K−1
i=1 wi · I(vi ∈ DV)

(7.4)

7.2 CROSS VALIDATION OF PATHWAYS EXTRACTION

In order to verify whether the pathway extractions are valid and effective, and to get a better

understanding about which pathways extraction method in Section 7.1 is better, we propose

a way to validate these extractions which is called cross validation.

We follow a basic idea that if a pathway (connecting a given source target pair under a

certain scenario) is still ranking high in other source-target pairs or under other scenarios,

it’s a “good” pathway extraction.

The cross ranking of a pathway v1, v2, v3, ..., vn in another source target pair(vi, vo) is

computed as follows: compared to v1, v2, v3, ..., vn, we first find the most similar pathway Pk

among all pathways {P} from vi to vo, the cross ranking is thus the ranking of Pk among

{P}. When measuring the similarities, we use editing distance as a reference.

We develop space cross validation to assess that extractions are globally valid in the

regulations of different targeted nodes, and develop time cross validation to assess that

extractions are globally effective starting from different initial states.

38

7.2.1 Space Cross Validation

From system input(TCR HIGH, CD28, IL2 EX) to system output(FOXP3, IL2), we can

extract six important pathways group(a set of most important pathways). A ranking matrix

Rij is created to denote the space cross validation of T cell model. The rows and columns

correspond six source-target pairs (from TCR HIGH to FOXP3, from CD28 to FOXP3,

from IL2 EX to FOXP3, from TCR HIGH to IL2, from CD28 to IL2, from IL2 EX to IL2

respectively). The element Rij denotes the average cross ranking percentage of important

pathways group extracted from ith source-target pair in the jth source-target pair. The

smaller these cross ranking percentages are, the more valid the pathways extraction is.

Figure 13: Space cross ranking percentage of six system source-target pairs following four

proposed methods under static analysis

Figure 13 shows the space cross ranking percentage of six system source-target pairs

following four proposed methods under the static analysis.

39

As shown in Figure 13, weighted normalized method(i.e. Method 3 and 4) perform

better than others. Under the static scenario where all network states are assumed to be

equally distributed, it’s more reasonable to extract pathways biased towards these with higher

activity(influence) near the targeted node. Comparing Method 3 with Equation (7.3) and

Method 4 with Equation (7.4), we can also predict that these delay variables are necessary,

partly due to the fact that delay variables are introduced to make the system behave in a

scheduled manner and become closer to the biology observation.

As shown in Table 3, there is only one active pathways from IL-2 EX to IL-2 (and to

FOXP3) under high-dose and low-dose scenarios. When generating the space cross ranking of

system source-target pairs, we just omit these two pairs and obtain Figure 14 and Figure 15,

the rows and columns correspond four source-target pairs (from TCR HIGH to FOXP3,

from CD28 to FOXP3, from TCR HIGH to IL2, from CD28 to IL2, respectively).

Figure 14: Space cross ranking percentage of four system source-target pairs following four

proposed methods under high-dose scenario

40

Figure 15: Space cross ranking percentage of four system source-target pairs following four

proposed methods under low-dose scenario

As shown in Figure 14 and Figure 15, weighted normalized method(i.e. Method 3 and 4)

always return a ranking percentage that is smaller than of other methods. This is consistent

with our findings under static analysis in Figure 13.

It’s worthwhile noting that all entries in matrices under dynamic scenarios(both high-

dose and low-dose) are much smaller than entries in matrices under static analysis. The

reason is that under dynamic scenarios, some activities(influence) are turned off to zero so

some pathways become inactive and the regulation via these interactions is turned off. Thus,

the total number of active pathways decreases and pathways extraction is biased towards

these highly active pathways.

41

7.2.2 Time Cross Validation

In this section, we follow the same idea to verify whether one pathway extraction under a

certain scenario is still effective under other scenarios. Similarly, we use the cross ranking

percentage to measure the validness. As shown in Fig.6, we give the scenario cross validation

under static, high-dose, low-dose and toggle scenarios of extractions following four proposed

methods. For convenience, we choose to only plot the pathways extractions from TCR HIGH

to IL2.

Figure 16: Time cross ranking percentage of extractions under different scenarios following

four proposed methods

42

As shown in Figure 16, accumulative method performs best among these four methods,

showing a high relatedness across four scenarios. That’s to say, accumulative method is

pretty good at extracting pathways which are required to be globally effective (no matter

which state distributions the network follows). This also inspires us to apply accumulative

extraction method to these application occasions where the network structure matters rather

than the specific network states.

43

8.0 FUTURE WORK

8.1 POSSIBLE DEVELOPMENT

Almost all theoretical analysis of a biological model is aimed to learn the behavior of the

model under perturbations and lead the model to certain states via least number of inter-

ventions. Within the sensitivity analysis framework, we can address these problems from

the perspective of probability as follows. Given a perturbation on a certain element xi,

we study the dynamics of influence matrix and keep track of all elements which could be

affected. The affection will either die out within several time steps(shown as the influence

smaller than a threshold, pathway score less than a limit) or propagate to affect the long

run behavior(shown as some obvious differences between steady state distribution vector).

This is consistent with our previous finding in Section 2.3 that the steady state distribu-

tion vector under discrete modeling approach is highly dependent on initial states. After

observing system behaviors under independent perturbations trial on each element, we shall

assign each element a probability-based parameter vector(taking into account many factors

such as element sensitivity, local influence, self-influence). With these parameters, we reduce

the state intervention problem to a general ML(maximize likelihood) or MAP(maximize a

posterior) problem.

As we have also mentioned in Section 2.3, the discrete modeling approach shows its

advantage over PBN in terms of steady state distribution computation complexity. However,

the complexity is still increasing exponentially as the model size goes up. An recent solution is

studying the ergodicity of the underlying Markov chains and converting the distribution over

space to time average. Recall in Section 2.2, we have defined scenario where perturbations

could occur at a particular model element, at a specified time point. In other words, any

44

model element has some probability to flip its value at any time. This ensures that there is

always a positive probability to pass from any state to any other state in one step, which is

exactly the definition of ergodicity. Now the cost of computing steady state distribution is

converted to the the cost of running time for which we should run the model simulation to

obtain sufficient trajectories for time average. We have shown in [12], with discrete modeling

approach, the running time before reaching an attractor is relatively smaller than other

models. Together with the sensitivity analysis results and the framework of perturbations

and interventions, we can even choose on purpose the initial states to shorten the simulation

time.

8.2 CURRENT BOTTLENECK

The current bottleneck of our sensitivity framework lies in its generality to extend to any

biological model. We have to address the following problems:

(1) The high computation complexity in influence calculation limits the size of models

we can analyze, even with the help of ROBDD-based method shown in Section 4.2.

(2) The redundant searching in BFS when extracting all the pathways from a certain

source and target element costs a lot. This will be more troublesome when the model size

goes up. We’d like to adopt alternative algorithms or customize BFS to our requirements of

both completeness and low complexity.

(3) The fact that dynamic sensitivity analysis shows great power in reducing the number

of pathways is sometimes annoying since it possibly hide signaling pathways which are now

dormant but will become active under other cases.

45

9.0 CONCLUSION

Understanding sensitivity is an important step to study system robustness against perturba-

tions and adaptability to the environment. In this work, we propose a framework to study

sensitivity via discrete modeling approach. Within the framework, we define element activity

and sensitivity with respect to the state distribution of the modeled system. We perform

both static and dynamic sensitivity analysis, the former assuming uniform state distribution,

and the latter using a distribution estimated from stochastic simulation trajectories under a

particular scenario. In addition, we also propose a Binary-Decision-Trees-based method to

compute element influences. Within our sensitivity analysis framework, we add weights to

interaction rules helps to identify key elements in the model, as well as dominant signaling

pathways that determine the behavior of the overall model.

To the best of our knowledge, previous sensitivity analysis research did not focus on de-

tecting crucial pathways (elements regulations sequence) in a complicated Boolean network.

For a well-studied or informative regulatory model with a large number of nodes and com-

plicated interactions, biologists are interested in extracting important pathways which can

dominate the control on a targeted node. In this work, we also discuss how these pathways

can be extracted with the help of sensitivity analysis. We then refine our pathways extraction

by improving the sensitivity scores propagation algorithm. This ensures the balance between

long regulation pathways and short ones and gives more flexibility to these algorithms for

different application occasions. In order to evaluate the extracted pathways, we also develop

cross validation to assess that extractions are “globally valid” in the regulations of different

targeted nodes (validation in space) and are “globally effective” starting from different initial

states (validation in time).

46

BIBLIOGRAPHY

[1] I. Shmulevich and S. A. Kauffman, “Activities and Sensitivities in Boolean Network
Models,” Physical Review Letters, vol. 93, no. 4, 2004.

[2] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang, “Probabilistic Boolean net-
works: a rule-based uncertainty model for gene regulatory networks,” Bioinformatics,
vol. 18, no. 2, pp. 261-274, Jan. 2002.

[3] J. R. Faeder, M. L. Blinov, and W. S. Hlavacek, “Rule-Based Modeling of Biochemical
Systems with BioNetGen,” Methods in Molecular Biology Systems Biology, pp. 113-167,
2009.

[4] I. Shmulevich, E. Dougherty, and W. Zhang, “From Boolean to probabilistic Boolean
networks as models of genetic regulatory networks,” Proceedings of the IEEE, vol. 90,
no. 11, pp. 1778-1792, 2002.

[5] K. Sayed, Y.-H. Kuo, A. Kulkarni, and N. Miskov-Zivanov, “DiSH simulator: Capturing
dynamics of cellular signaling with heterogeneous knowledge,” 2017 Winter Simulation
Conference (WSC), 2017.

[6] I. Shmulevich, E. R. Dougherty, and W. Zhang, “Gene perturbation and intervention
in probabilistic Boolean networks,” Bioinformatics, vol. 18, no. 10, pp. 1319-1331, Jan.
2002.

[7] S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein, “Genetic networks with can-
alyzing Boolean rules are always stable,” Proceedings of the National Academy of Sci-
ences, vol. 101, no. 49, pp. 17102-17107, 2004.

[8] “Analysis of random Boolean networks using the average sensitivity: Steffen Schober:
Free Download and Streaming,” Internet Archive, 02-Apr-2007. (Online). Available:
https://archive.org/details/arxiv-0704.0197. (Accessed: 18-Mar-2018).

[9] W. Liu, H. Lahdesmaki, E. Dougherty, and I. Shmulevich, “Inference of Boolean Net-
works Using Sensitivity Regularization”. EURASIP Journal on Bioinformatics and Sys-
tems Biology, pp. 1-12, 2008.

47

[10] X. Qian and E. R. Dougherty, “On the long-run sensitivity of probabilistic Boolean
networks,” Journal of Theoretical Biology, vol. 257, no. 4, pp. 560-577, 2009.

[11] A. Garg, K. Mohanram, A. D. Cara, G. D. Micheli, and I. Xenarios, “Modeling stochas-
ticity and robustness in gene regulatory networks,” Bioinformatics, vol. 25, no. 12, pp.
i101-i109, 2009.

[12] N. Miskov-Zivanov, M. S. Turner, L. P. Kane, P. A. Morel, and J. R. Faeder, “The
Duration of T Cell Stimulation Is a Critical Determinant of Cell Fate and Plasticity,”
Science Signaling, vol. 6, no. 300, May 2013.

[13] K. Sayed, C. A. Telmer, A. A. Butchy, and N. Miskov-Zivanov, “Recipes for Translating
Big Data Machine Reading to Executable Cellular Signaling Models,” Lecture Notes in
Computer Science Machine Learning, Optimization, and Big Data, pp. 1-15, 2017.

[14] E. R. Dougherty, S. Kim, and Y. Chen, “Coefficient of determination in nonlinear signal
processing,” Signal Processing, vol. 80, no. 10, pp. 2219-2235, 2000.

[15] F. Somenzi, “CUDD: CU Decision Diagram package-release 3.0.0,” University of Col-
orado at Boulder, 2015.

[16] J. Kahn, G. Kalai, and N. Linial, “The influence of variables on Boolean functions,”
[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science, 1988.

[17] S. Minato, N. Ishiura, and S. Yajima, “Shared binary decision diagram with attributed
edges for efficient Boolean function manipulation,” 27th ACM/IEEE Design Automation
Conference.

[18] B. Bollig and I. Wegener, “Improving the variable ordering of OBDDs is NP-complete,”
IEEE Transactions on Computers, vol. 45, no. 9, pp. 993-1002, 1996.

[19] S. Sakaguchi, “Regulatory T Cells: History and Perspective,” Regulatory T Cells Meth-
ods in Molecular Biology, pp. 3-17, 2011.

48

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Truth tables of three PBN realizations of the toy example model
	2. A traditional method to compute element influence using truth table
	3. Comparison among numbers of active pathways under different scenarios

	LIST OF FIGURES
	1. Discrete modeling approach and a comparison between different simulation schemes
	(a).
	(b).
	(c).
	2. A grouped state transition diagram shows the steady state distribution is highly dependent on initial states
	3. Flowchart diagram of our sensitivity analysis framework
	4. A binary decision diagram sample and BDDs-based influence computation method
	5. A ROBDD shows its power to compute conditional node influence
	6. With the influence computation, weighted directed graphs are generated from the influence map according to state distributions
	7. A weighted directed graph G(V,E,W) of a real biological model
	8. Finding out the node importance in a weighted directed graph
	9. Sensitivity distribution of all elements in T cell model under four scenarios
	10. Element influence matrix of T cell model under four different scenarios
	11. Pathways from TCR_HIGH to FOXP3 under static analysis
	12. Pathways from TCR_HIGH to FOXP3 under high-dose scenario
	13. Space cross ranking percentage of six system source-target pairs following four proposed methods under static analysis
	14. Space cross ranking percentage of four system source-target pairs following four proposed methods under high-dose scenario
	15. Space cross ranking percentage of four system source-target pairs following four proposed methods under low-dose scenario
	16. Time cross ranking percentage of extractions under different scenarios following four proposed methods

	1.0 INTRODUCTION
	2.0 BACKGROUND
	2.1 Discrete Modeling Approach
	2.2 Model Simulation
	2.3 A Dependent Multi-valued Probabilistic Boolean Network

	3.0 METHODOLOGY
	3.1 Element Influence
	3.2 Element Sensitivity
	3.3 Static Analysis
	3.4 Dynamic Analysis

	4.0 COMPUTATION
	4.1 Binary Decision Diagrams-based Influence Computation
	4.2 An Improved ROBDD-based Influence Computation

	5.0 APPLICATION
	5.1 Pathways Extraction and Evaluation
	5.2 Node Importance
	5.3 Self-influence: An Indicator Of Loop Feedback

	6.0 CASE STUDY: T-CELL DIFFERENTIATION
	6.1 Element-level Analysis: Element Sensitivity
	6.2 Interaction-level Analysis: Element Influence
	6.3 System-level Analysis: Pathways Extraction
	6.4 Scenarios Comparison

	7.0 EXTRACTION ALGORITHMS
	7.1 Four Extraction Evaluation Methods
	7.2 Cross Validation of Pathways Extraction
	7.2.1 Space Cross Validation
	7.2.2 Time Cross Validation

	8.0 FUTURE WORK
	8.1 Possible Development
	8.2 Current Bottleneck

	9.0 CONCLUSION
	BIBLIOGRAPHY

