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ABSTRACT

Molecular dynamics (MD) simulation is a powerful technique for
sampling the conformational landscape of natively folded proteins
(NFPs) and structurally dynamic intrinsically disordered proteins
(IDPs). NFPs and IDPs can be viewed as nonlinear dynamical sys-
tems that exercise available degrees of freedom to explore their
energetically-accessible conformation landscape. Dimensionality
estimators have emerged as useful tools to characterize nonlinear
dynamical systems in other domains, but their application to MD
simulation has been limited due to thermal noise and a lack of
ground-truth data. We develop a series of increasingly complex
biopolymer models which exhibit a range of dynamics we seek
to characterize in MD simulations (stochastic dynamics, helical
structures, partially folded states, and correlated motions) and are
of known dimensionality. We utilize the maximum-likelihood di-
mension (MLD) estimator to investigate the effects of thermal noise
and noise-smoothing techniques on the estimates obtained from
the polymer models and MD simulations of two NFPs and two
IDPs. We find that under certain noise/smoothing conditions, the
MLD over/under-estimates the true dimensionality of the models
in a predictable manner, allowing us to relate differences between
MLD estimates to differences between NFP and IDP motions for
classification of biomolecular systems based on their dynamics.
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1 INTRODUCTION

The “protein structure-function” paradigm, which states that pro-
teins adopt nearly rigid three-dimensional structures that are re-
sponsible for their function, is one of the central tenets of molecular
biology, yet some protein domains exist as intrinsically disordered
forms. The classification of IDPs is challenging because traditional
approaches to protein structure classification often rely on static
structural features which IDPs often lack. Molecular dynamics (MD)
simulation is an approach for sampling the conformation space of
IDPs. However, analyzing these simulations remains a challenge
due to the overwhelming complexity of the conformation space
for even small IDPs. This paper investigates dimensionality esti-
mation as a potential technique for studying the dynamics of MD
simulations of biopolymers.

The interest in the dimensionality of protein dynamics stems
from the intuitive idea that NFPs, when folded, should exhibit dy-
namics with a dimensionality of zero because they subsist in one
singular point in the high-dimensional conformation space. The
more unfolded a protein becomes, the higher the dimensionality
of the motion will become as well. In contrast, IDPs should never
exhibit zero-dimensional dynamics since no native structure exists.
Even collapsed IDPs should exhibit higher dimensionality motion
than NFPs of equivalent length in terms of the number of residues
since the physical forces inducing folding in the NFPs will constrain
the conformation space to a lower-dimensional manifold. The di-
mensionality of protein dynamics could therefore potentially be
used to distinguish between different flavors of IDPs or between
IDPs and NFPs much like the static structural features of folded
proteins have been used to classify NFPs. We introduce a polymer-
based framework for studying the dimensionality estimation of
unfolded protein dynamics which provides ground truth data for
interpreting such results.

Many methods have been developed for calculating the dimen-
sionality of nonlinear processes based on data samples [3, 4, 6, 10,
13, 18]. Perhaps the most commonly employed techniques emerged
within the context of dimensionality reduction, where heuristic
methods (e.g. gaps in eigenspectra) are used to deduce the intrinsic
dimensionality of the data. Howevere, methods based on nearest-
neighbor properties and statistics are often preferred in practice.

2 METHODS
2.1 Maximum Likelihood Estimator of
Dimensionality

The algorithm of choice for this study is the maximum likelihood
dimension (MLD) estimator of Levina and Bickel [13]. We refer
the reader to [13] for the details of the MLD algorithm and use
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the harmonic mean as suggested by MacKay and Ghahramani [14].
This was shown to produce better estimates for small scales (smaller
values of nearest neighbors, k). However we average over scales
before averaging over points, whereas their implementation averages
over all points and then over scales. Our approach thus produces a
local (pointwise) estimate of dimensionality rather than a global one
which is important since our systems have time-varying dynamics.
Global estimates can still be obtained by taking the harmonic mean
of the local estimates. Input to the MLD is the pairwise distances
between points (protein structures) in a dataset. Pairwise distances
are computed using common structure comparison measures (e.g.
Cq root-mean-squared distance, Euclidean distance between sin-
cos pairs of the backbone ® — ¥ angles).

2.2 Polymer Models

The models below have known dimensionality and exhibit specific
dynamics of interest, allowing us to quantitatively determine the
accuracy of estimates. Similar behavior between the dimensionality
estimates of the MD simulations and the polymer models should
allow us to conclude that similar dynamics are present.

2.2.1 Semirigid Helix. The first model consists of a set of [ vir-
tual bond segments all a=3.8A in length which is the typical distance
between subsequent C, atoms along a protein chain. At the junc-
tion between two contiguous links, two angles (6 and ¢) describe
the orientation of the second link relative to the first. The angle 6
describes the inclination of a link relative to the prior link, while
the angle ¢ describes the azimuthal rotation of the link relative to
the prior link. A rigid helix, analogous to the folded protein a-helix,
is formed by setting all ¢ angles along the chain to be random
values chosen from a Gaussian distribution with mean y14=0.83 and
standard deviation 0¢:0, and all  angles chosen from a Gaussian
distribution with mean py=1.54 and standard deviation oy=0. This
is considered the fixed, folded conformation. Ensembles model the
fluctuations around this conformation and are generated by sam-
pling angles from a zero-mean Gaussian distribution with non-zero
standard deviation. The ensemble should have a dimensionality of
zero in the absence of noise and achieve the maximum theoretical
dimensionality of the polymer when the noise is large.

2.2.2  Half-folded Helix. The half-folded helix model simulates
a helical polymer in which one portion may fold/unfold while the
other portion remains folded. The half-folded helix is similar to
the semirigid helix but is separated into two connected segments
of equal size that have different noise properties. The ¢ angles
of both segments are sampled from a Gaussian distribution with
mean p1,=0.83 and standard deviation 04=0.01, and the 0 angles
of both segments are sampled from a Gaussian distribution with
mean f19=1.54 and standard deviation o9=0.01. However, a varying
amount of additional noise is injected into the 6 angle of the “un-
folded” segment. This noise is sampled from a Gaussian with zero
mean and standard deviation og, fotded” FOT large values of this pa-
rameter, the polymer will consist of a folded region which remains
in a helix conformation while the unfolded region is disordered.
Thus, the effects on the dimensionality estimator due to a different
number of significant dimensions (or mixed levels of noise) can be
investigated using this model.
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2.2.3 Correlated Helix. Proteins often exhibit coordinated mo-
tions [12], where several parts of the chain move in response to the
motions along other parts of the chain. These coordinated motions
represent restricted degrees of freedom (DoFs) and thus dynamics
with lower dimensionality. This decrease should be detected by
the estimator, especially if the amplitudes of the motions are large
compared to the noise.

The model is use to generate a polymer trajectory which exhibits
coordinated transitions from a helical conformation to an elongated
chain, and then the reverse. This is accomplished by starting with all
angles set so that the polymer is in a helical conformation ($=0.83
and 0=1.54). The theta angles are then decremented by a small
amount, €9 + N (0,0.01), and a new conformation is generated. This
process in repeated until the 6 angles are less than 0.087 radians
(nearly a straight rod). The angles are then incremented by ey +
N (0,0.01) on each step to bring the polymer back to a helical
conformation (until #>1.54). This model has only one coordinated
motion and is thus a simple one-dimensional model.

Models with more than one coordinated motion are crafted by
breaking the polymer into distinct segments, s;, each with a unique
increment e;i and a unique amount of noise added to the increment
(but with the same standard deviation). Note that even if egi is set
to the same value for all segments, the difference between segments
in the small amount of noise added to the increments at each step,
N (0,0¢,), would make the dimensionality of the system equal to
the number of segments. For simplicity, the total number of inde-
pendent €5 values used is referred to as the number of correlated
dimensions (d¢or) in the trajectory. In addition, a small amount
of Gaussian noise with zero mean and standard deviation, oy, &> is
added to all angles, independent of the coordinated walk in angle
space presented above.

2.3 Noise Smoothing

Thermal noise is a challenge and tuning estimators to ignore noise
using data prepreprocessing (smoothing) is appealing. We utilize
the discrete fourier transform (DFT) to remove noise. We form a
temporal vector of complex values for each of the 8 or ¢ angles
along the chain by transforming these values to e!? or e’¥ where
v/=1 and then compute the DFTs of these vectors. We set
to zero those signal components above a frequency threshold or
below an amplitude threshold. After taking the inverse DFT, the
smoothed angular values are extracted from the complex vectors.
In the experiments below, we compare both the frequency and
amplitude cutoff approaches across a range of thresholds.

i =

24

Molecular dynamics simulations were performed on two NFPs
and two IDPs which cover the major structural classes of NFPs
and IDPs. The first NFP, GB1 [PDB:1GB1] [7], is a 16 amino acid
long fast-folding protein that spontaneously adopts a f-hairpin
conformation. The second NFP, Trp-cage [PDB:1L2Y] [15], is a 20
amino acid long fast-folding protein that spontaneously adopts a
mainly a-helical conformation. Therefore, these two proteins cover
both of the broadest structural classes of NFPs.

The first IDP, Nsp1, is a 25 amino acid subsequence of the full
length wildtype FG-nucleoporin NSP1 [GenBank: NP_012494] [5],
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and the second, Nup116, is a 25 amino acid long subsequence
of the full length wildtype FG-nucleoporin NUP116 [GenBank:
NP_013762] [5]. These IDPs have been shown to adopt relaxed
coil and collapsed coil structures, respectively, via both theory and
experiment [11, 19].

Ten independent replicate simulations were performed for each
of the four proteins using the GROMACS version 4.5.5 software
package [9], Amber ff03w forcefield [1], and the TIP3P water model
neuralized with 150 mMol NaCl. All bonds to hydrogens were
constrained using the LINCS algorithm [8], and Bussi’s stochastic
thermostat [2] was used for temperature control, both with the
default parameter settings. Each simulation started from a com-
pletely extended conformation that was minimized for 10000 steps
of steepest descent. The temperature was set to 300K, but was then
linearly increased to 600K for 25ns, then held at 600K for 50ns, then
decreased to 300K for 25ns. The simulations then continued for an
additional 250ns at 300K. Structures were sampled every 10ps to
form a total of 35001 structures per simulation with an aggregate
total of 42 microseconds of simulation.

2.5 Available Implementation

MLD estimation tools, polymer models and simulations are avail-
able as part of the Molecular Dynamics Spectral Clustering Toolkit
(MDSCTK) [16, 17], an open source project which provides a several
tools for analyzing MD simulations available at: https://github.com/
jlphillipsphd/mdsctk/.

3 RESULTS

In the polymer results below, nearest neighbors between structures
were computed using the Euclidean distance between the sin and
cos values of the set of § and ¢ angles along the polymer chain.
Pointwise dimensionality estimates were computed for three ranges
of scales: small k=[2, 3, 4, 6], medium k=[2, 3, 4, 6, 8, 16, 32, 64], and
large k=[2, 3, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024]. Noise smoothing
was also performed.

3.1 Semirigid Helix

The results in Fig. 1A demonstrate that any amount of noise in-
creases the estimated dimensionality above that of a truly rigid helix
which has a dimension of zero. A system of this length has 2[-5=35
DoF and we do see this accurately estimated for large amounts of
noise and small values of k (the number of nearest neighbors). We
see two decreasing trends away from this value though. First, the es-
timates decrease as k increases across all noise levels. This indicates
that, in this case, the ensemble does not sample the conformation
space sufficiently for large values of k. This is confirmed by the
results in Supplemental Material S1 ! for the N=2000 case where
the fall-off is even greater. The second trend is that the estimates
also decrease with decreasing noise. Fluctuations with smaller mag-
nitudes result in lower dimensionality estimates than those with
larger magnitudes even if they occur over all DoFs. We therefore
expect that estimates for MD simulations of folded proteins, which
have been observed to have a noise level of roughly oy 4=0.1, will
be systematically lower than their maximum number of DoF.

Supplemental Material for all calculations are reported at: https://www.cs.mtsu.edu/
~jphillips/papers/PhillipsColvinNewsam- ACMBCB-2018-SM.pdf.
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Figure 1: Semirigid helix model results. (A) Estimated dimen-
sionality for a semirigid helical polymer for N=5000 struc-
tures of length 20 with various amounts of noise (cg 4) in-
jected into the “folded” ensemble. k indicates the number of
nearest neighbors used in the calculation. The expected di-
mension of a completely rigid model (no noise) is zero. The
expected dimension of a model which is exercising all DoFs
is 35. (B) Estimated dimensionality for the same polymer un-
der a noise level of gy 4=0.10 but with noise smoothing by
removing increasing amounts of the high frequency compo-
nents.

Fig. 1B shows the results of smoothing the semirigid helix using
different frequency cutoffs. This is for a noise level of og, 4=0.10.
The smoothing only has an effect when a large fraction of the high
frequencies are removed and for small values of k. In this case, the
estimated dimension is lower as predicted. The effect of smoothing
is reduced as k increases due to insufficient sampling.

The complete results for the semirigid helix are summarized in
Supplemental Material S1. These results support the observations
made from Fig. 1 above. Smoothing using an amplitude cutoff has
less of an effect than a frequency cutoff.

3.2 Half-folded Helix

Fig. 2A shows that having the same amount of noise in both seg-
ments (o, , Folded =0.0) produces the highest estimates. As the noise
in the unfolded segment is increased, the estimates decrease. This
makes sense because the larger fluctuations in this segment start
to dominate the smaller fluctuations in the folded segment; i.e, the
smaller fluctuations are truly noise and the algorithm is correcly
finding that the system is exercising fewer DoFs. Half-folded poly-
mer systems are expected to have lower dimensionality than either
completely unfolded systems or completely folded systems which,
due to the noise introduced into the system, appear to be exercis-
ing all DoFs. The results from the half-folded helix show that our
framework is able to capture this. The results of the semirigid and
half-folded helices thus show that the expected transitions of a
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Figure 2: Half-folded helix model results. (A) Estimated di-
mensionality for a half-folded helical polymer for N=5000
structures of length 20 with various amounts of noise
(09, Folde ;) injected into the unfolded segment. (B) Esti-
mated dimensionality for the same polymer with a noise
level of 0, Foraea=0-10 but with noise smoothing by remov-
ing increasing amounts of the high frequency components.

folding system are from unfolded states which have high dimen-
sionality, to partially folded states which have lower dimensionality,
and finally to the folded states which again have high dimensional-
ity since the only motion is due to noise and involves all DoFs in
the polymer. We note that the dimensionality estimates do start to
increase again for the half-folded helix for large amounts of noise
(high oy, , Folde ,) in the unfolded segment especially for small val-
ues of k.

These results also demonstrate the potential of our framework
to distinguish between IDPs and folding proteins that have not
yet started to fold. Since disordered proteins are not truly random
coils, their dimensionality should be somewhat suppressed and
their dynamics should be similar to those of the half-helix model
most of the time. In contrast, the yet-to-fold NFPs should should
have higher dimensionality.

Fig. 2B shows the results of smoothing the half-folded helix
using different frequency cutoffs. Similar to the semirigid helix,
the smoothing only has an effect when a large fraction of the high
frequencies are removed and for small values of k.

The complete results for the half-folded helix are summarized in
Supplemental Material S2. These results support the observations
made from Fig. 2 above. Smoothing using an amplitude cutoff again
has less of an effect than a frequency cutoff.

3.3 Correlated Helix

The results in Fig. 3A show the estimates are quite accurate for small
amounts of noise. The dimensionality is slightly underestimated
which is potentially due to the fact that the manifolds are not closed
and estimates near the boundaries will therefore be lower. The esti-
mates remain accurate even for modest amounts of noise, including
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Figure 3: Correlated helix model results. (A) Estimated di-
mensionality for a correlated helical polymer for N=5000
structures of length 20 and 5 correlated dimensions with var-
ious amounts of noise (09 4). The expected dimensionality
of this system without noise is 5. (B) Estimated dimension-
ality for the same polymer under a noise level of oy 4=0.10
but with noise smoothing by removing increasing amounts
of the high frequency components.

the noise level observed in folded systems, g =0.1 (although it is
slightly overestimated at small values of k). For high levels of noise,
the estimated dimensionality matches that of a semirigid helix of
similar length, as expected.

Overall, the framework accurately estimates the intrinsic dimen-
sionality of the models even at noise levels consistent with thermal
motion in molecular systems. It detects the correlated motions that
are often present in very extended protein chains as well as in short
pieces of folding proteins during the folding process. The results
for models with fewer correlated dimensions are similar (see Sup-
plemental Material S3). These results, in combination with those of
the half-folded helix above, demonstrate that the dimensionality
estimator can distinguish between dynamics that are due to signifi-
cant (large amplitude) motions and those that are due to noise, and
can further detect when these motions are correlated.

Fig. 3B shows the results of smoothing the correlated helix us-
ing different frequency cutoffs. Similar to the previous models, the
smoothing only has an effect when a large fraction of the high fre-
quencies are removed. In this case, it does result in a more accurate
estimate of the dimensionality especially for small to medium val-
ues of k. This is significant as it shows that smoothing can further
improve the estimates for systems with intrinsic dimensionalities
that are relatively small compared to the maximum DoFs but are
overestimated due to modest levels of noise.

Complete results for the correlated helix are summarized in
Supplemental Material S3. The results support the observations
made in Fig. 3 above: smoothing using an amplitude cutoff has less
effect than a frequency cutoff. Additionally, smoothing with a large
fraction frequency cutoff (0.5) improved estimates. The effect was
the most pronounced for small k=(2,3,4,6) (data not shown).
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3.4 Molecular Dynamics Simulations

We now apply our dimensionality estimation framework to the pro-
tein simulations guided by several key insights from the polymer
models: 1) Noise greatly increases the estimated dimensionality
especially when its magnitude is of the order of other motions.
This is particularly evident in systems that fluctuate around a fixed
conformation. The highest estimates correspond to systems whose
only motion is due to evenly distributed noise. 2) Dimensionality
decreases when parts of the system undergo motions which have
greater amplitude than others. Specifically, the larger motions dom-
inate the noise and thus fewer DoFs are truly being exercised. 3)
Correlated motion results in significantly reduced dimensionality.
This remains true even for modest amounts of noise. 4) Increasing
the scale (k) improves the accuracy of the estimates for trajectories
(temporally related ensembles) especially when noise is present. 5)
Noise smoothing improves the accuracy of the estimates especially
for smaller scales.

In all the results below, nearest neighbors were computed within
a simulation using the Euclidean distance between the sin and cos
values of the ® and ¥ angles of the protein conformations. Pointwise
dimensionality estimates were computed for three ranges of scales:
small k=[2, 3, 4, 6], medium k=[2, 3, 4, 6, 8, 16, 32, 64], and large
k=[2,3, 4,6, 8, 16, 32, 64, 128, 256, 512, 1024]. Noise smoothing was
also performed. Comparisons to a reference conformation (e.g. the
native folded conformation) were performed for each frame in the
trajectories using C, root-mean-squared distance (RMSD).

3.4.1 Aggregate Estimates. Per-replicate dimensionality esti-
mates were computed separately for the 100ns annealing phase
and the 250ns production phase using the harmonic mean. Box-
plots of the large scale estimates (k=[2, 3, 4, 6, 8, 16, 32, 64, 128,
256, 512, 1024]) for the ten replicates of each protein simulation are
shown in Fig. 4. (Results for the small and medium scales can be
found in Supplemental Material S4.) Since the proteins have differ-
ent lengths, the bottom row shows the normalized results computed
by dividing by the total DoFs (the number of ® and ¥ angles): 30
for GB1; 38 for Trp-cage; and 48 for both Nsp1 and Nup116.

For to the production phase of the simulations (Fig. 4, right), we
see that the normalized estimates are lower for the IDPs than the
NFPs. This might have seemed contradictory without the insights
from the polymer models since the IDPs are expected to be more dis-
ordered than the NFPs. However, the polymer studies showed that
the estimated dimensionality would be high if a system remained in
tightly-packed, frustrated, or possibly even folded structures such
as might be the case for the NFPs. The IDPs, on the other hand,
likely have partially formed structures and correlated motions.

3.4.2 Individual Replicate Estimates. We selected one replicate
from each protein simulation to examine the pointwise dimension-
ality estimates. The replicates chosen for GB1 and Trp-cage were
those that best approached the folded state of these proteins. The
replicates chosen for Nsp1 and Nup116 were those that best matched
the average conformation over all replicates for these proteins. For
comparison, we computed each conformation’s RMSD value to the
folded structure for GB1 and Trp-cage, and to the average confor-
mation for Nspl and Nup116. The dimensionality estimates and
RMSD values were averaged over 0.5ns windows.
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Figure 4: Distribution of dimensionality estimates (large k).
Distributions of dimensionality estimation results over 10
replicates for (left) 100ns annealing (300K-600K-300K) and
(right) 250ns production (300K) MD simulations of GB1, Trp-
cage, Nsp1, and Nup116. Estimates are computed over a large
scale (k=[2, 3, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024]). Results
shown for (top) original and (bottom) normalized estimates.

The large scale dimensionality estimates for GB1, Trp-cage, Nsp1,
and Nup116 are shown in Fig. 5 along with the RMSD values to
the folded (NFPs) or average (IDPs) structure. The most striking
feature of these plots is the consistency of the dimensionality esti-
mates during the production phase even though there are clearly
large, fast structural transitions that occur according to the RMSD
values. GB1, for example, appears to be a very frustrated system
that is constantly attempting to fold, but is restricted to suboptimal
conformational states. As a result, the thermal fluctuations of the
system act as noise, greatly increasing the dimensionality estimates.
According to the RMSD values, the Trp-cage simulation comes very
close to folding the protein, allowing thermal noise to produce a
high estimated dimensionality due to the abundance of sampled
structures. According to the RMSD values for Nsp1 and Nup116,
these simulations undergoe regular, rather minor structural transi-
tions without becoming frustrated at any particular location. The
dimensionality estimates for these IDPs reflect this fact as well and
remain relatively suppressed compared to the NFPs.

Results of applying smoothing are shown in part D of Fig. 5 for
the proteins. Similar to the polymer model studies, smoothing has
limited effect since estimates are computed for large values of k.

4 DISCUSSION

We introduced a polymer framework for examining dimensionality
estimation algorithms for studying protein MD simulations. The
key contribution is the development of several polymer models
which exhibit well-defined dynamics of known dimensionality. Di-
mensionality estimation results from the polymer models indicated
that (1) under/over estimation due to sampling/noise can be reliably
predicted for some dynamical transitions, (2) relative ranking of
dimensionaility estimates is still accurate in spite of inaccuracies
in absolute intrisic dimensionality estimates, and (3) the two pre-
vious results can be leveraged to guide interpretation of results
obtained from simulations of disordered and folding proteins. We
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Figure 5: MD simulation dimensionality estimation results.
Dimensionality estimation results for a representative GB1,
Trp-cage, Nsp1, and Nup116 simulations. (A) Plot of tem-
perature versus time, (B) RMSD from the folded structure
versus time (GB1, Trp-cage) or RMSD from the average con-
formation (Nsp1, Nup116), (C) pointwise dimensionality es-
timates and (D) pointwise dimensionality estimates after
noise smoothing with a fractional frequency cutoff of 0.5.
Point estimates were obtained using k=[2, 3, 4, 6, 8, 16, 32,
64, 128, 256, 512, 1024].

conclude therefore that dimensionality estimation is a useful tool
for differentiating between protein classes.

The dimensionality estimator was used to compare the dynamics
of natively folded and intrinsically disordered proteins. While it
was hypothesized that the folded state of proteins was of zero
dimensionality, practical limitations (noise) prevent estimates of
zero. Instead, the high-dimensionality of the noise allowed the
folded or more frustrated states of proteins folding to be predicted
to have very high dimensionality relative to less frustrated and
more dynamic intrinsically disordered proteins. In particular, even
though one of the natively folded proteins used in the study did
not fold, the proteins adopted intermediate structures that were
also very rigid and of high estimated dimensionality. Future work
is needed to ascertain if this result is consistent for other folding
proteins and the particular properties driving this effect in the
simulations.
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