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ABSTRACT 

Pumping lemmas appear in courses that study formal 
languages such as automata theory and the theory of 
computation. Converses of pumping lemmas, which a.re 
generally false, are ignored by most of the books tha,t 
treat formal languages. This is unfortunate since con- 
verses of pumping lemmas arise in a natural way and 
students typically ask whether converses of particular 
pumping lemmas are true. We give counterexamples 
to the converse of a pumping lemma for regular lan- 
gua.ges and to th e converse of Ogden’s Lemma, a pump- 
ing lemma for context-free languages. We also show 
tha.t converses to these lemmas are true for languages 
over a single symbol. We conclude by discussing the 
counterexa.mple to the converse of Ogden’s Lemma with 
reference to Par&h’s necessary condition for a language 
to be context-free. 

INTRODUCTION 

A pumping lemma for a class of languages fZ states that 
if’ a. suEciently long string belongs to some language 
L f C, then all strings of a particular form must also 
belong to L. A frequent application of a pumping lemma 
is to show that a set L does not belong to a particular 
class of languages l by assuming that L E L and then 
deducing a contradiction by showing that the conclusion 
of the pumping lemma fails. Students frequently raise 
the following question: Suppose that I try to prove a 
language L is not in C by using the pumping lemma, but 
instea.cl I find that the conclusion of the pumping lemma 
is t.rue for L. Can I then conclude that L E .C? In other 
words, is the converse of the pumping lemma true? We 
will show that converses of two pumping lemmas are 
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false - one for regular languages and Ogden’s Lemma 
for context-free languages. 

DEFINITIONS 

We use the following definitions and terminology from 
[IIU79]. A finite set C is called an alphabet. The set 
C* consists of all strings (including the null string E) in 
the symbols C. A language in C is a subset of C’. The 
length of a siring z is denoted 1x1. If z and y are strings, 
xy is the concatenation of x and y. If L, Ll, 1;~ C_ C*, 
we define 

-I,i > 1 - 

L” = ULi 
i=o 
00 

L+ - - U Li 
i=l 

If a E C or a = E, we denote the set {a> by a. 
A context-free grammar G consists of a finite set, N of 

variables, a finite set C of terminals (NnE = @), a start 
symbol S E N, and a finite subset P of N x (NUC)” of 
productions. A context-free grammar is regular if every 
production is of the form (X, WY), where X E AT, w E 
C*, a.nd Y E N U E. If G is a context-free grammar, 
the set L(G) of strings in C’ derivable from S using the 
productions P is called the languugc generated by G. We 
say tha,t a subset L of C’ is a context-free (respectively, 
regular) lan,guage if there is a context-free (respectively, 
regula,r) grammar G such that L = L(G). 

A PUMPING LEMMA FOR REGULAR LAN- 
GUAGES 

We first, discuss a pumping lemma for regular lar~guages. 
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Lemma 1 (Pumping Lemma for Regular Lan- 
guages [HU79]) If L as a regular language, there exists 
a positive integer n such that if ziz2z3 E L and I,~21 = n, 
there are strings IL, II, w, Iv\ 2 1, such that 29 = uvw 
and z~u&wz3 E L for every i 2 0. 

We begin constructing a counterexample to the con- 
verse of Lemma 1 by defining the set 

A1 = @O+)“(zO+)‘z 
i=l 

By considering the string (10)n(20)n2 in conjunction 
with Lemma 1, we see that A1 is not regular. Next let 
-42 denote the set of all strings over {0,1,2} that contain 
at lea.st one of 11, 12, or 22 as a substring. Clearly A2 
is a regular language. We show that A = Al U A2 is a 
counterexample to the converse of Lemma 1. 

We first show that A is not regular. Suppose, by way 
of contra.diction, that A is regular. Then A1 = AnA2 
is a regular language since regular languages are closed 
under intersections and complementation [HU79]. (- 
denotes complementation.) This contradiction shows 
t,ha.t A is not regular. 

We show that A satisfies the conclusion of Lemma 1. 
Since A2 is a regular language, it satisfies the conclusion 
of Lemma 1. Let n’ be the constant of Lemma 1 for 
42 and let n = max(n’,3). Let z = ~1~2~3 E A and 
1~21 = n. If z E A 2, we may satisfy the conclusion of 
Lemma. 1 since A2 is itself regular. Suppose that z E Al. 
Notice that ~2 contains 0. Let v = 0 and define ‘u. and w 

so that 22 = UVW. Certainly, zruviwz3 E A1 for every 
1: 2 1. If the last member of u or the first member of w is 
0, z1 wu”zoz~ E AI. If the last member of u is not 0 and 
the first member of w is not 0, UV’W contains one of the 
substrings 11, 12, or 22. In this case, zru~wz3 E AZ. 
Therefore A satisfies the conclusion of Lemma 1. 

An interesting fact is that the converse of Lemma 1 
is true for context-free languages over one symbol. This 
result is well-known (see [GR62]), but we have not found 
a proof in the literature. 

\\‘e show that if L C a* and L satisfies the conclusion 
of Lemma 1, then L is regular. 

Let n be as in Lemma 1. We will define a finite num- 
ber of sets Lp&,r, where 0 5 p < q < n and r depends 
on p and q, such that LP,9,r 2 L. Moreover, we will 
arrange that for each m 2 n, if urn E L, then there 
are I), 9, and r such tha.t LP,q,r has been defined and 
urn E Lp,q,7-. 

Let Cl*’ E L, m > n. Write urn = anam-n. By Lemma 
1, there are strings U, V, W, Iv( > 1, such that an = uvw 

and lLz&Dum-n E L for every FL 0. If we let q = ]Vl, 
then 1 < Q 2 n and um+iq E L for every i > -1. Write 

m= kq+p, ‘0 <p<q 

Then, for i 2 h, 

Let r be the least integer such that up+@ E L for every 
i >_ r. Define 

Then 

L - {uptiq 1 i 2 r} P,Plr - 

as desired. 

am = a p+kn E Lp,q,r c L 

It follows that L is the finite union of M, a finite set 
of strings each of length at most n, and sets of the form 
L p,q,r* Since each of the sets Lp,q,r and h4 is regular, L 
is a regular language. 

Although our counterexample to the converse of 
Lemma 1 involved three symbols, there are counterex- 
amples that use only two symbols. We leave the con- 
struction of such a counterexample to the reader. 

In [EPRSl], Ehrenfeucht, et al., give a strengthened 
form of Lemma 1 whose converse is true. 

A PUMPING LEh4MA FOR CONTEXT-FREE 
LANGUAGES 

Methods similar to those of the previous section can 
be used to give a counterexample to the converse of 
Ogden’s Lemma [Ogd68], a strong form of a pumping 
lemma for context-free languages. Our non-context-free 
language L has the interesting property that almost any 
single symbol can be “pumped” with the resulting string 
remaining in L. 

Before we discovered our counterexample to the con- 
verse of Ogden’s Lemma, we did not know whether the 
converse was true or false. We subsequently found that 
the problem wassolved (see [BH78]), but that the source 
is not easily obta.ined. Thus we feel that it will be use- 
ful to teachers of courses that treat formal languages to 
have an easily accessible counterexample. 

Lemma 2 (Ogden [Ogd68]) If L is a context-free 
language, there is an integer n such that ifz E L and n 
or more positions in t are designated distinguished, then 
z may be written z = UVWX~ such that 

(a) w contains at least one distinguished position; 

(b) either both u and TJ contain distinguish.ed posilions 
or both x and y do; 

(c) vwx contains at most n distinguished positions; 

(d) w”wx”y E L JOT every i > 0. 
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We begin by showing that the set PARIKH’S THEOREM 

L1= b( e+a+d+)i(e+b+d+)i(e+c+d+)i 
i=l 

is not a context-free language. If L1 is a context-free 
language, there is an integer n as in Ogden’s Lemma. 
Let I = (enqn(ebd)n(ecd)n. Mark the b’s as distin- 
guished. Suppose that t = UVWX~ satisfies (a)-(d) of 
Ogden’s Lemma, First, consider the case that both u 
a.nd 2, contain distinguished positions. In particular, v 
contains b but v contains no substring of (cad>“. By (d), 
z’ = UPO?J E Lr. But z’ contains exactly n occurrences 
of en but less than n b’s, Therefore, z’ # L1. Thus, the 
first case cannot occur. By (b), both z and y contain 
distinguished positions. In a similar way, we derive a 
contradiction in this case also. Therefore, Lr is not a 
context-free language. 

Next, we let Lz be the set of strings over {a,b,c, d,e} 
that do not begin with e or do not end with d or contain 
at least one of the substrings ed, da, db, dc, ae, be, or ce. 
We note that L1 n L2 = 8. Clearly, 1;2 is a regular lan- 
guage. We show that L = L1 U L2 is a counterexample 
t.o the converse of Ogden’s Lemma. 

First, we note that L is not context-free. For suppose, 
by way of contradiction, that L is context-free. Then 
Lr = L n z is context-free since context-free languages 
are closed under intersections with regular languages 
[llU79]. This contradiction shows that L is not context- 
free. 

It remains to show that L satisfies the conclusion of 
Ogden’s Lemma. Since La is context-free, it satisfies the 
conclusion of Ogden’s Lemma. Let n’ be the constant 
of Ogden’s Lemma for Lz and let n = max(n’,3). We 
show tha.t L sa.tisfies the conclusion of Ogden’s Lemma 
for 11. 

Let z E L and designate n or more positions distin- 
guished. Clearly, if z E Lz, we may satisfy the conclu- 
sion of Ogden’s Lemma. Suppose that z E L1. Let TJ 
be the second distinguished position from the right and 
let 2 = y = E. Dehne ‘1~ and w so that z = UVWXY. 

Part (a) of the Lemma is satisfied since w contains the 
rightmost distinguished position. Since vwx contains 
esa.ctly two distinguished positions, part (c) is sa,tisfied. 
Since 1~ and v conta.in distinguished positions, pa.rt (b) 
is sa.tisfiecl. Fina.lly, for all 2’ 2 1, uviu/ziy E Ll. If v is 
not adja.cent to an identical character, u@uzr”y E Lz, 
a.nd P~V~ZUZ~~ E L1 otherwise. Thus, part (d) is a,lso 
satisfied. 

By a.rguing as in the previous section, one can show 
that if L 2 cl* and L sa.tisfies the conclusion of Ogden’s 
Lemma, then L is a regu1a.r language. 

Parikh [Par661 gave a necessary condition for a language 
L to be context-free in terms of the distribution of the 
symbols in the strings of L. We conclude by discussing 
the converse of Parikh’s result. 

A set 5’ of n-tuples of nonnegative numbers is linear 
if for some Ic, there exist n-tuples vu,. . . , VI, such that 

s={%+gwj,~ are nonnegative integers} 
i=l 

A set of n-tuples is semi-linear if it is the finite union 
of linear sets. Let C = {al ,. . . ,a,}. If 2 E C”, let fi(z) 
denote the number of occurrences of the symbol ai in z. 
The Parikh map q is defined by 

4(4 = (fl(4, ’ * ’ , A@)), z E c* 

If L is a subset of C”, we define 

4(L) = kw 1.2 E Ll 
We may now state Parikh’s result. 

Theorem 3 (Parikh [Par66]) If L is a context-free 

language, lhen q(L) is sem.i-linear. 

Wise [Wis76] gave an example of a non-context-free 
language L for which q(L) . is semi-linear, thus showing 
that the converse of Parikh’s Theorem is false. The non- 
context-free la.nguage L of the previous section gives a 
particularly dramatic counterexa.mple to the converse of 
Parikh’s Theorem: all distributions of symbols appear. 
More precisely, q(L) is the linear set consisting of all 
5-tuples of nonnegative integers. 

CONCLUSIONS 

Converses of pumping lemmas should be considered in 
courses and books that deal with formal la.nguages since 
the issue of whether the converse of a pumping lemma 
for a class of languages L is true will arise as one tries to 
use the pumping lemma to show that various languages 
do not belong to 6. 
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