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Abstract 

The concept of a non-computable function has been 
valuable in showing absolute limits to our power to 

compute. But it is problematically oxymoronic, particular 
in computer science classes, since functions are generally 
understood algorithmically, as objects which can be 
computed. This paper presents an alternative explanation 
for functions usually regarded as non-computable, based 
on a more careful examination of the data types of domain 
and range. The limits of computation are still revealed, 
and additional algorithmic consequences are found. But 

the confusion inherent in the self-contradictory phrase 
“non-computable function” is avoided. 

1. Background 
Let N denote the set of positive integers (which we 

shall simply call integers). For concreteness we shall 
work mainly with functions from N to N, and denote the 
set of all such functions by NN. Unless modified by 
“partial” the term function denotes a total function 
(defined for all n E N), and unless modified by “non- 
computable” it refers to something given by an algorithm. 
We use the simple and intuitive temw decidable and 
enumerable instead of the more traditional “recursive” 
and “recursively enumerable.” A set of integers is 
decidable if there is an algorithm for deciding 
membership, and enumerable if there is an algorithm for 

listing its members. 
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The pioneering researches of Turing and Church in 

the193Os greatly enlarged our understanding of the nature 
of computation and functions. In particular, they 
provided three basic new insights: 

1. Universality. There exist simple formal 
languages (such as Turing machines or recursive 
functions) in which, apparently, all functions can be 
expressed. This insight is known as the Church-Turing 

Thesis. 

2. Partiality. The most simple concept is that of a 
partial function, a function defined only on a subset of the 
set of integers. To know that a function is total we must 
prove it to be so, and there is no general method of 
deciding whether a partial function is total. 

3. Undecidability. The domain of a partial function 
need not be a decidable set (though it is necessarily 
enumerable). 

The latter two insights are consequences of the 

undecidability of the halting problem. All three insights 
are fundamental to out understanding of computation, and 

seem well beyond controversy. There is a fourth 
fundamental conscquence of the researches of Church and 
Turing which is problematic and controversial in 
computer science education, though that controversy is 
rarely mentioned in texts (however, see Minsky’s footnote 
on p. 160 of 171): 

4. Non-computability. There exist non-computable 

functions. In fact, almost all functions (in the sense of 
cardinality) are non-computable. 

Church and Turing deduced the existence of non- 
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computable functions from universality, which allows all 
(computabIe) partial functions to be listed (with the total 
functions being a non-decidable subset of this countable 
list) and from Cantor’s theory of higher cardinality. which 
asserts on the basis of the diagonal method that there are 
“uncountably many” functions from N to N. Later, 
specific non-computable functions were found, the most 
interesting being the busy beaver function. 

My paper at the last SIGCSE Symposium contained 

a critique of the argument that higher cardinality implies 
the existence of non-computable functions. Those 
remarks will be slightly amplified at the end of this paper. 

But our primary concern here is to give a new 
interpretation for specific non-computabIe functions, such 

as the busy beaver function. The heart of our 
interpretation consists of a careful analysis of the data 
types of the domain and range for such functions. 

We see two principal advantages over the standard 
interpretation. First, the notion of a non-computable 
function is almost self-contradictory. We first tell our 
students that functions take an input and compute an 
output. But then we tell them that nevertheless must 

functions do not do this at all. What, one might ask, is the 
data type of a non-computable function? It is not 
satisfactory, in a computing course, to invoke the 
authority of Zermelo-Frankel set theory and Cantor’s 
mysterious universe of higher infinities. An algorithmic 
explanation is needed. Since there are evident advantages 
of simplicity and unity in defining functions in terms of 
algorithms, we shall take the stand that functions are, by 
definition, computable, and then test those phenomena 
which are standardly taken as evidence for the existence 
of non-computable functions, to see if we need to yield 

any ground. 

Second, the explanation which we shall give of the 
busy beaver function illuminates important algorithmic 
issues. In particular, it tells us interesting facts about 
complexity in the context of Turing machines. 

Given a putative function f, we do not ask “Is it 
computable?” but rather “What are natural data types for 
the domain and range?” This question wiI1 often have 
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more than one answer, and we will need to consider both 
restricted and expanded domain/range pairs. An attempt 
to pair an expanded domain with a restricted range will 
lead to the conclusion that the function in question is 
“non-computable.” 

2. The Busy Beaver Function. 
The busy beaver phenomenem concerns Turing 

machines (TMs) whose tspe alphabet consists of a single 
non-blank symbol I’*“. A beaver is a TM which, when 
started on a blank tape, halts and computes an integer, 
known as its productivity. Two conventions are 
commonly used for what counts as the computation of an 
integer, The more restrictive requires that the machine 

halt on the leftmost * of a contiguous block on an 
otherwise blank tape. The less restrictive requires only 
that the machine halt and takes as productivity either the 
number of *‘s on the tape or the number of steps of the 
computation. A k-state beaver is busy if, among all TMs 
with k states, it has greatest productivity. It does not 
matter which convention is taken, beavers turn out to be 
extremely busy. Already Rado had proved the following 

PI: 

Busy Beaver Theorem. Letfbe any (total) Turing- 
computable function. Then there is an integer n such that 
for all integers k 2 n there is a k-state beaver with 

productivity greater thanf(k). 

An extremely careful proof is given in Chapter 4 of 
the text [l]. It will be sketched in the next section in a 
slightly different context. If we define the busy beaver 
function bb by taking I!&(&) to be the maximum 

productivity of any k-state beaver, then the theorem 
shows that bb grows faster than any Turing-computable 

function. Hence, under the Church-Turing Thesis, it 

appears that bb is a non-computable function. (I prefer 
the alternative interpretation given in the next section.) 

But Rado’s theorem gives no hint of the 
extraordinary complexity of computations performed by 
extremely small machines. While k-state busy beavers 
have been found for k I 4, computer searches are 

continually finding busier and busier S-state beavers. In 
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at months a S-state maChine which halts with 4,098 
symbolsonthetapeafter running for 23,554.760 steps 
ha9 been announced! 1 Fcr descriptions of this work, we 
ptuticularly recommend Brady’s fascinating artick 
[2] and the en tcaahing accotmt in the Scienr@c 

American column of Dewdney [5]. 

3. Reinterpreting the Busy Beaver Function. 
The busy beaver function 6b becomes computabk 

when its domain and range are properly &fined. when 
thedomainis~entobtN,thcrangewillbtthcsetof 
“weak integers,” a superaet of-N. The standard proof then 
demonstrates that bb grows faster than any integer-vulued 
function. 

To determine the proper data type for &(A), consider 
what can be done by a suitable universal Turing machine. 
Given an input Ik, the UTM can first enumerate all A-state 
Thffs. Then it CBn proceed to execute each k-state TM for 
longer and longer perioda, starting each from a blank tape. 
Whenever a beaver ia found, ita productivity is placed on 
an output tape. We obtain bb(A) as an enumerabk set of 
integers, of cardinality bounded by the (very large) 
numberofTMawithstaks (1.4). 

Hence we defii a we& integer to be an 
enumerable set X of positive integera which containa at 
least one and at moat f? ekments, for Sane integer B. 
Intuitively. a weak intega X ia an approximation from 
below, and every ekmmt x E X establishes a lower 
bound. It is crucial to umkmtand that while we are given 
aboundBonthtnumbttofctunentsinoweakintcgaX, 
we do not necessarily have any bound on the valuea of 
these elements. Clearly M(A) can be regarded aa a weak 
integer. 

Keeping in mind that weak integers approximate 
frombelow,itianaturaltodefineequalityandordaon 
the colkction of all weak integera as follows, For weak 
integers X and Y: 
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.XSY means @fxe x)@yyc y)(xSy) 

l X=Y means (xSY)h(YSx) 

l X<Y means @ye V)(VxeX)+<y) 

By associating each integer n with the &gkton set (n) 
the integers becane a subw of the weak integers. 
clearlyawcalrinttgcrXequalsanintegaxifpndonlyif 
xisthe maximum element of X. 

HencethacarcreaIlytwobusybarverfunctitms. 

RatherthanextendtberangetoW,thesetofweak 
htegers, we can shrink the domain to D, the set of 
integers at which b6 takes integer values (D contains at 
least (1..4). 

N %w 

D 3 N 

In this camxt, the usual arguments [I] now prove: 

The Busy Beaver Theurem. Let f be any total 
Turingcomputabk function from N to N. Then there ia 
anintegernauchthat 

WI ‘AN 
forallA: 2 n. 

Tbatis,tbcbusybcavafunctiongrowsfastexthan 
any total ituegerwlued function. 

ProoE Let f be a total, integer-valued function 
whichiacomputedbyaTuringmachineTwith~states. 
ItiswloaaofgenemUtyt6aaaumetbatthefunctionfia 
strictly illcrahg. while we don’t generally know the 
buskstbeaver,wecbknowthatbeavuscanbeveiybusy 
ind&andthiseasilyalIowsuatolintiabeaverMwith 
nMstatesrhatcanputesanumbcrmlafgafhannM++-. 
TbecompositemachineMT,whichhasn-*+nMstates. 

computea f+u) from an empty tape, so 
t&(n) 2 f(m) > An). Funha, it ia easily seen that thii can 
bedmeforall~ 2 n. Q.E.D. 

This theorem cotSmu our intuition that the 
complexity of a computation is incomparably more 
sensitively linked to the size of the machine than to the 
aixeoftheinput. l%erecanbenouniversaltotalmachine 
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which computes all (total) functions from N to N; no 
single machine can keep up with a sequence of ever larger 
machines. Note that, since we do have a universal 
machine for partial functions, this implies the 
unsolvability of the halting problem, for if we could 
decide the halting problem then we could carry out a brute 
force computation of bb(k) as an integer by running all 
machines with k states which halt when started on a blank 

tape. 

The theorem also shows that we can obtain faster 
growing functions by relaxing the data type of the range. 
Functions to the weak integers can grow faster than 

functions to the integers. Hence the weak integers cannot 
be identified with the integers, and this requires that we 
use intuitionistic rather than classicaI logic. Of course 

there are other good algorithmic reasons for preferring 

such a logic [4,3]. For a general discussion of 

intuitionistic extensions, see [91. 

4. The Cantor Diagonal Algorithm 
We shall consider the Cantor diagonal method 

(which we will call the diagonal algorithm) in the context 

of the set NN of all integer valued functions. The 

algorithm takes as input a sequence of such functions 
(Fk(n)) and produces as output a function G different 
from each Fk. It was Cantor’s genius to notice that this is 
achieved if we simply “go down the diagonal” and 

construct G by a simple ruIe such as 

G(n) = F,(n)+ 1. 

As long as the functions Fk are total, this procedure 
is wholly algorithmic, and one implication is similar to 

that drawn from busy beavers: there does not exist a 
universal total machine. A single fixed Turing machine 
which takes two integer inputs k and n cannot, by fixing 
one input, imitate the behavior of an arbitrary machine 
which takes one integer input, when all functions are 
required to be total. (This is hardly surprising, since 
Cantor also showed that two integers are really no better 
than one.) 

The diagonal algorithm is commonly used to point to 

the existence of non-computable functions in two 
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different ways. It is used to directly construct specific 
non-computable functions. Used indirectly, it is the 
source of the theory of infinite cardinal numbers, which. 
seems to imply that almost all functions are non.. 
computable. We shall examine the direct armment here 
and briefly consider cardinality in the next section. The 
direct construction of a non-computable function by the 
diagonal algorithm is carried out with great care in 

Chapter 5 of [ 13. The basic idea is very simple. The 
collection of all Turing machines which compute partial 
functions is arranged in a list (Fk) so that F&z) represents 
the value computed by the k-th TM when given input n. 

However, because the functions are partial, we must 

modify the diagonal algorithm: 

i 

1 if F,(n) is undefined 
G(n) = 

F,(n) + 1 otherwise 

Certainly G is a function distinct from every Turing 

computable function, and it is very tempting to say that 
G(n) is an integer. Since it is an integer if F,(n) is defined 
or is undefined, we might conclude that logically it mast 
be an integer. But it is certainly not an integer in any 

computational sense, since we have no general way of 
finding its value (indeed, here lurks another proof of the 
undecidability of the halting problem). So the question 
remains, what is the data type of G(n)? Again, we must 
describe the proper superset of N. Warning: this 
definition may seem artificial and even paradoxical to 
those unused to intuitionistic logic. But the artificiality 
really resides in the application of the diagonal algorithm 

to a sequence of partial functions. 

A pseudo-integer is a set X of integers satisfying: 
l X contains at most one integer (i.e. if x E X 

andy E X,thenx=y), 

l X is non-empty (in the sense that it is 
contradictory that X = 0). 

We should emphasize that X is not assumed to be 
enumerable. Let P denote the set of all pseudo-integers. 
If we identify each integer m with the singleton set (m) , 
then N c P, and G, as defined by the diagonal algorithm, 
is a (computable) function from N to P. If we want G to 
take integer values, then the domain must be restricted to 
the set of integers n for which F,(n) is either defined or 
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undefined. This set, while it has empty complement 
cannot be identified with N (again a paradoxical situation 
for those unused to the algorithmic uiceties of 
inhlitionistic logic). 

5. Cardinality as Shape. 
Cantor argtkd that the diagonal algorithm showed 

that the set NN was larger than the set N of natural 
numbers. It is this last step which introduces into 
mathematics a supposed universe of non-algorithmic 
functions. We might well wonder how so simple an 
algorithm could transcend the computable. Cantor did 
indeed show that there is a fundamental difference 
between the sets NN and N, but this difference can be 
understood not as a quantitative difference, but as a 
difference of quality or structure. Rather than call the set 
NN uncountable, it might better be called productive, 
because there are vay powerful methods for producing 
elements of NN, in particular for producing an element 
outside of any given sequence in NN [61. This use of the 
term productive, taken from recursive function theory, 
grounds our understanding in algorithmic reality rather 
than idealistic fantasy. 

It follows, of course. that there is no surjection from 
NtoNN. LetNNpudenotethesetofallpartialbinary 
functions on N, with intensional equality. Then. under the 
assumptions of the Chutch-Turing Thesis, there is indeed 
a bijection from N to NNpU. Since NN is a subset of 

NNw this might be considered as evidence that N is 
larger thm NN, were one inclined to make a quantitative 
comparison between them. Cantor, and most 
mathematicians after him, considaed sets as “mere 
collections of elements,” which could diffa only in 
quantity. We do not find this position algorithmically 
intelligible, since the extra structure of NN plays an 
essential role in the diagonal algorithm. 

1 I 

$ED 
par 

Perhaps shape is a better metaphor than size for the 
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diffw between N and NN which is revealed by the 
diagonal algorithm. We naturally have N c NN c 

NNw but N and NN 
r 

have the same shape, which is 
d.istinctfiomthatofN. 

6. Conclusions. 
It is often felt that the existence of non-computable 

functions shows that mathematics necessarily transcends 
the algorithmic. I have trkd to show that this is not so, 
that the phenomena commonly connected with non- 
computability can better be undemtood in purely 
algorithmic terms. 

Thanks to Matthew Kamennan for his insistent 
curiosity about busy bewas and far suggesting shape as a 
good metaphor for cardinality. 
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