
Computability and Data Types
Newcomb Greenleaf

Department of Computer Science
Columbia University, New York, N. Y. 10027

newcomb@cs.columbia.edu

Abstract

The concept of a non-computable function has been
valuable in showing absolute limits to our power to

compute. But it is problematically oxymoronic, particular
in computer science classes, since functions are generally
understood algorithmically, as objects which can be
computed. This paper presents an alternative explanation
for functions usually regarded as non-computable, based
on a more careful examination of the data types of domain
and range. The limits of computation are still revealed,
and additional algorithmic consequences are found. But

the confusion inherent in the self-contradictory phrase
“non-computable function” is avoided.

1. Background
Let N denote the set of positive integers (which we

shall simply call integers). For concreteness we shall
work mainly with functions from N to N, and denote the
set of all such functions by NN. Unless modified by
“partial” the term function denotes a total function
(defined for all n E N), and unless modified by “non-
computable” it refers to something given by an algorithm.
We use the simple and intuitive temw decidable and
enumerable instead of the more traditional “recursive”
and “recursively enumerable.” A set of integers is
decidable if there is an algorithm for deciding
membership, and enumerable if there is an algorithm for

listing its members.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1990 ACM 08979L346-9/90/0002/0219 $1.50

The pioneering researches of Turing and Church in

the193Os greatly enlarged our understanding of the nature
of computation and functions. In particular, they
provided three basic new insights:

1. Universality. There exist simple formal
languages (such as Turing machines or recursive
functions) in which, apparently, all functions can be
expressed. This insight is known as the Church-Turing

Thesis.

2. Partiality. The most simple concept is that of a
partial function, a function defined only on a subset of the
set of integers. To know that a function is total we must
prove it to be so, and there is no general method of
deciding whether a partial function is total.

3. Undecidability. The domain of a partial function
need not be a decidable set (though it is necessarily
enumerable).

The latter two insights are consequences of the

undecidability of the halting problem. All three insights
are fundamental to out understanding of computation, and

seem well beyond controversy. There is a fourth
fundamental conscquence of the researches of Church and
Turing which is problematic and controversial in
computer science education, though that controversy is
rarely mentioned in texts (however, see Minsky’s footnote
on p. 160 of 171):

4. Non-computability. There exist non-computable

functions. In fact, almost all functions (in the sense of
cardinality) are non-computable.

Church and Turing deduced the existence of non-

219

http://crossmark.crossref.org/dialog/?doi=10.1145%2F323410.323457&domain=pdf&date_stamp=1990-02-01

computable functions from universality, which allows all
(computabIe) partial functions to be listed (with the total
functions being a non-decidable subset of this countable
list) and from Cantor’s theory of higher cardinality. which
asserts on the basis of the diagonal method that there are
“uncountably many” functions from N to N. Later,
specific non-computable functions were found, the most
interesting being the busy beaver function.

My paper at the last SIGCSE Symposium contained

a critique of the argument that higher cardinality implies
the existence of non-computable functions. Those
remarks will be slightly amplified at the end of this paper.

But our primary concern here is to give a new
interpretation for specific non-computabIe functions, such

as the busy beaver function. The heart of our
interpretation consists of a careful analysis of the data
types of the domain and range for such functions.

We see two principal advantages over the standard
interpretation. First, the notion of a non-computable
function is almost self-contradictory. We first tell our
students that functions take an input and compute an
output. But then we tell them that nevertheless must

functions do not do this at all. What, one might ask, is the
data type of a non-computable function? It is not
satisfactory, in a computing course, to invoke the
authority of Zermelo-Frankel set theory and Cantor’s
mysterious universe of higher infinities. An algorithmic
explanation is needed. Since there are evident advantages
of simplicity and unity in defining functions in terms of
algorithms, we shall take the stand that functions are, by
definition, computable, and then test those phenomena
which are standardly taken as evidence for the existence
of non-computable functions, to see if we need to yield

any ground.

Second, the explanation which we shall give of the
busy beaver function illuminates important algorithmic
issues. In particular, it tells us interesting facts about
complexity in the context of Turing machines.

Given a putative function f, we do not ask “Is it
computable?” but rather “What are natural data types for
the domain and range?” This question wiI1 often have

1

more than one answer, and we will need to consider both
restricted and expanded domain/range pairs. An attempt
to pair an expanded domain with a restricted range will
lead to the conclusion that the function in question is
“non-computable.”

2. The Busy Beaver Function.
The busy beaver phenomenem concerns Turing

machines (TMs) whose tspe alphabet consists of a single
non-blank symbol I’*“. A beaver is a TM which, when
started on a blank tape, halts and computes an integer,
known as its productivity. Two conventions are
commonly used for what counts as the computation of an
integer, The more restrictive requires that the machine

halt on the leftmost * of a contiguous block on an
otherwise blank tape. The less restrictive requires only
that the machine halt and takes as productivity either the
number of *‘s on the tape or the number of steps of the
computation. A k-state beaver is busy if, among all TMs
with k states, it has greatest productivity. It does not
matter which convention is taken, beavers turn out to be
extremely busy. Already Rado had proved the following

PI:

Busy Beaver Theorem. Letfbe any (total) Turing-
computable function. Then there is an integer n such that
for all integers k 2 n there is a k-state beaver with

productivity greater thanf(k).

An extremely careful proof is given in Chapter 4 of
the text [l]. It will be sketched in the next section in a
slightly different context. If we define the busy beaver
function bb by taking I!&(&) to be the maximum

productivity of any k-state beaver, then the theorem
shows that bb grows faster than any Turing-computable

function. Hence, under the Church-Turing Thesis, it

appears that bb is a non-computable function. (I prefer
the alternative interpretation given in the next section.)

But Rado’s theorem gives no hint of the
extraordinary complexity of computations performed by
extremely small machines. While k-state busy beavers
have been found for k I 4, computer searches are

continually finding busier and busier S-state beavers. In

220

at months a S-state maChine which halts with 4,098
symbolsonthetapeafter running for 23,554.760 steps
ha9 been announced! 1 Fcr descriptions of this work, we
ptuticularly recommend Brady’s fascinating artick
[2] and the en tcaahing accotmt in the Scienr@c

American column of Dewdney [5].

3. Reinterpreting the Busy Beaver Function.
The busy beaver function 6b becomes computabk

when its domain and range are properly &fined. when
thedomainis~entobtN,thcrangewillbtthcsetof
“weak integers,” a superaet of-N. The standard proof then
demonstrates that bb grows faster than any integer-vulued
function.

To determine the proper data type for &(A), consider
what can be done by a suitable universal Turing machine.
Given an input Ik, the UTM can first enumerate all A-state
Thffs. Then it CBn proceed to execute each k-state TM for
longer and longer perioda, starting each from a blank tape.
Whenever a beaver ia found, ita productivity is placed on
an output tape. We obtain bb(A) as an enumerabk set of
integers, of cardinality bounded by the (very large)
numberofTMawithstaks (1.4).

Hence we defii a we& integer to be an
enumerable set X of positive integera which containa at
least one and at moat f? ekments, for Sane integer B.
Intuitively. a weak intega X ia an approximation from
below, and every ekmmt x E X establishes a lower
bound. It is crucial to umkmtand that while we are given
aboundBonthtnumbttofctunentsinoweakintcgaX,
we do not necessarily have any bound on the valuea of
these elements. Clearly M(A) can be regarded aa a weak
integer.

Keeping in mind that weak integers approximate
frombelow,itianaturaltodefineequalityandordaon
the colkction of all weak integera as follows, For weak
integers X and Y:

2

.XSY means @fxe x)@yyc y)(xSy)

l X=Y means (xSY)h(YSx)

l X<Y means @ye V)(VxeX)+<y)

By associating each integer n with the &gkton set (n)
the integers becane a subw of the weak integers.
clearlyawcalrinttgcrXequalsanintegaxifpndonlyif
xisthe maximum element of X.

HencethacarcreaIlytwobusybarverfunctitms.

RatherthanextendtberangetoW,thesetofweak
htegers, we can shrink the domain to D, the set of
integers at which b6 takes integer values (D contains at
least (1..4).

N %w

D 3 N

In this camxt, the usual arguments [I] now prove:

The Busy Beaver Theurem. Let f be any total
Turingcomputabk function from N to N. Then there ia
anintegernauchthat

WI ‘AN
forallA: 2 n.

Tbatis,tbcbusybcavafunctiongrowsfastexthan
any total ituegerwlued function.

ProoE Let f be a total, integer-valued function
whichiacomputedbyaTuringmachineTwith~states.
ItiswloaaofgenemUtyt6aaaumetbatthefunctionfia
strictly illcrahg. while we don’t generally know the
buskstbeaver,wecbknowthatbeavuscanbeveiybusy
ind&andthiseasilyalIowsuatolintiabeaverMwith
nMstatesrhatcanputesanumbcrmlafgafhannM++-.
TbecompositemachineMT,whichhasn-*+nMstates.

computea f+u) from an empty tape, so
t&(n) 2 f(m) > An). Funha, it ia easily seen that thii can
bedmeforall~ 2 n. Q.E.D.

This theorem cotSmu our intuition that the
complexity of a computation is incomparably more
sensitively linked to the size of the machine than to the
aixeoftheinput. l%erecanbenouniversaltotalmachine

221

which computes all (total) functions from N to N; no
single machine can keep up with a sequence of ever larger
machines. Note that, since we do have a universal
machine for partial functions, this implies the
unsolvability of the halting problem, for if we could
decide the halting problem then we could carry out a brute
force computation of bb(k) as an integer by running all
machines with k states which halt when started on a blank

tape.

The theorem also shows that we can obtain faster
growing functions by relaxing the data type of the range.
Functions to the weak integers can grow faster than

functions to the integers. Hence the weak integers cannot
be identified with the integers, and this requires that we
use intuitionistic rather than classicaI logic. Of course

there are other good algorithmic reasons for preferring

such a logic [4,3]. For a general discussion of

intuitionistic extensions, see [91.

4. The Cantor Diagonal Algorithm
We shall consider the Cantor diagonal method

(which we will call the diagonal algorithm) in the context

of the set NN of all integer valued functions. The

algorithm takes as input a sequence of such functions
(Fk(n)) and produces as output a function G different
from each Fk. It was Cantor’s genius to notice that this is
achieved if we simply “go down the diagonal” and

construct G by a simple ruIe such as

G(n) = F,(n)+ 1.

As long as the functions Fk are total, this procedure
is wholly algorithmic, and one implication is similar to

that drawn from busy beavers: there does not exist a
universal total machine. A single fixed Turing machine
which takes two integer inputs k and n cannot, by fixing
one input, imitate the behavior of an arbitrary machine
which takes one integer input, when all functions are
required to be total. (This is hardly surprising, since
Cantor also showed that two integers are really no better
than one.)

The diagonal algorithm is commonly used to point to

the existence of non-computable functions in two

3

different ways. It is used to directly construct specific
non-computable functions. Used indirectly, it is the
source of the theory of infinite cardinal numbers, which.
seems to imply that almost all functions are non..
computable. We shall examine the direct armment here
and briefly consider cardinality in the next section. The
direct construction of a non-computable function by the
diagonal algorithm is carried out with great care in

Chapter 5 of [13. The basic idea is very simple. The
collection of all Turing machines which compute partial
functions is arranged in a list (Fk) so that F&z) represents
the value computed by the k-th TM when given input n.

However, because the functions are partial, we must

modify the diagonal algorithm:

i

1 if F,(n) is undefined
G(n) =

F,(n) + 1 otherwise

Certainly G is a function distinct from every Turing

computable function, and it is very tempting to say that
G(n) is an integer. Since it is an integer if F,(n) is defined
or is undefined, we might conclude that logically it mast
be an integer. But it is certainly not an integer in any

computational sense, since we have no general way of
finding its value (indeed, here lurks another proof of the
undecidability of the halting problem). So the question
remains, what is the data type of G(n)? Again, we must
describe the proper superset of N. Warning: this
definition may seem artificial and even paradoxical to
those unused to intuitionistic logic. But the artificiality
really resides in the application of the diagonal algorithm

to a sequence of partial functions.

A pseudo-integer is a set X of integers satisfying:
l X contains at most one integer (i.e. if x E X

andy E X,thenx=y),

l X is non-empty (in the sense that it is
contradictory that X = 0).

We should emphasize that X is not assumed to be
enumerable. Let P denote the set of all pseudo-integers.
If we identify each integer m with the singleton set (m) ,
then N c P, and G, as defined by the diagonal algorithm,
is a (computable) function from N to P. If we want G to
take integer values, then the domain must be restricted to
the set of integers n for which F,(n) is either defined or

222

undefined. This set, while it has empty complement
cannot be identified with N (again a paradoxical situation
for those unused to the algorithmic uiceties of
inhlitionistic logic).

5. Cardinality as Shape.
Cantor argtkd that the diagonal algorithm showed

that the set NN was larger than the set N of natural
numbers. It is this last step which introduces into
mathematics a supposed universe of non-algorithmic
functions. We might well wonder how so simple an
algorithm could transcend the computable. Cantor did
indeed show that there is a fundamental difference
between the sets NN and N, but this difference can be
understood not as a quantitative difference, but as a
difference of quality or structure. Rather than call the set
NN uncountable, it might better be called productive,
because there are vay powerful methods for producing
elements of NN, in particular for producing an element
outside of any given sequence in NN [61. This use of the
term productive, taken from recursive function theory,
grounds our understanding in algorithmic reality rather
than idealistic fantasy.

It follows, of course. that there is no surjection from
NtoNN. LetNNpudenotethesetofallpartialbinary
functions on N, with intensional equality. Then. under the
assumptions of the Chutch-Turing Thesis, there is indeed
a bijection from N to NNpU. Since NN is a subset of

NNw this might be considered as evidence that N is
larger thm NN, were one inclined to make a quantitative
comparison between them. Cantor, and most
mathematicians after him, considaed sets as “mere
collections of elements,” which could diffa only in
quantity. We do not find this position algorithmically
intelligible, since the extra structure of NN plays an
essential role in the diagonal algorithm.

1 I

$ED
par

Perhaps shape is a better metaphor than size for the

4

diffw between N and NN which is revealed by the
diagonal algorithm. We naturally have N c NN c

NNw but N and NN
r

have the same shape, which is
d.istinctfiomthatofN.

6. Conclusions.
It is often felt that the existence of non-computable

functions shows that mathematics necessarily transcends
the algorithmic. I have trkd to show that this is not so,
that the phenomena commonly connected with non-
computability can better be undemtood in purely
algorithmic terms.

Thanks to Matthew Kamennan for his insistent
curiosity about busy bewas and far suggesting shape as a
good metaphor for cardinality.

References

1. Boolos, G. S. and R. C. Jeffrey. CumputabiZfty and
Logic. Cambridge University Press, 1980.

2. Brady, A. H. The busy beaver game and the meaning
of life. In Tk Unfversal Turfng Machfne: a Half-Century
Survey, Herken, R., Ed., Oxford University Press, 1988.

3. Clarke, M R. B. and D. M Gabbay. An intuitionistic
basis for non-monotonic reasoning. In NonStan&rd
L~gfcs for Automated Reasonfng. Smets, P. et. al, Ed.,
Academic Press, 1988.

4. Constabk, R L, et al. htphenting Matkmatfcs with
tk Nuperl Proof Deuelopment System. Prentice-Hall,
1986.

S. Dewdney. A. K. “Computer Recreations”. ScfentfjIc
Am&can 252 (April, 1984). 20-30. Reprinted in Tk
Armchoir Universe, Fretman, 1988,160-171..

6. Greenkaf,N. Liberal constructive set theory. In
Constructive Matkmatics, Richman, F., Ed. Springer
Lecture Notes in Mathematics, Vol. 873.1981.

7. Minsky, M. Computatfon: Ffnfte and Inffnite
Machines. Prentice-Hall, 1967.

8. Rado, T. “On non-computable functions”. BeN Sys.
Tech. Journal (1962). 887-884.

9. Tmelstra, A. S. “Intuitionistic extensions of the teals”.
Nieuw Arch. Wfsk. 28 (1980), 63-113.

223

