
A Survey Course in Computer Science
Using HyperCard

Richard W. Decker and Stuart H. Hirshfield

Department of Mathematics and Computer Science
Hamilton College

Clinton, NY 1.3923

Abstract

This paper describes a survey course in computer sci-
ence and the materials we have developed to support it.
The course is distinctive in at least three ways. First,
it presents a comprehensive, disciplinary survey of the
field. Second, it emphasizes the principles upon which
the discipline is based, stressing liberal education as
opposed to technical training. Finally, it reflects our
belief that one learns best by doing, as well as think-
ing, and so includes customized software in the form
of HyperCard stacks to support an integrated, directed
laboratory component. Our experience over the past
year indicates that the audience appreciates this survey
approach, that students come away with both a sense of
accomplishment and a realistic feeling for the breadth
and substance of the discipline, and that HyperCard
is a superb medium for illustrating, demonstrating, and
making accessible a wide range of computer science top-
ics.

1. Problems With the Survey Course

The problem with a survey course in computer science
is twofold. First, there is no all-encompassing metaphor
for computer science. Even the accepted definitions of
the discipline admit to a variety of legitimate perspec-
tives, and point to a multi-faceted, diverse field of study.
Indeed, it appears that most of us are likely in the same
position regarding computer science as Justice Stewart
was regarding pornography: we may not be able to de-
fine it, but we know it when we see it [4].

Not surprisingly, the second problem has been-
and continues to be-that there is no agreement about
which perspective is appropriate for the survey course.
In physics, chemistry, geology, and mathematics, in con-
trast, there is at least a partial consensus among profes-
sionals about the curriculum of the survey course, based
upon decades or centuries of experience.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1990 ACM 089791-341%9/90/0002/0229 $1.50

The first exposure to computer science, on the oth-
er hand, appears in many guises at different institu-
tions. In the relatively brief history of computer sci-
ence education, three models have emerged as the most
prevalent forms of introductory course. We character-
ize these models as follows, noting that we paint these
approaches with rather a broad brush. If we err on the
side of caricature, we apologize in advance-we do so
only for emphasis.

l AII About Pascal [ezcept pointers]. Probably the most
common model, this course often serves the dual pur-
pose of doing something computer-related for the gen-
eral audience, as well as providing an entry point for
the computer science major. Programming and algo-
rithmic problem-solving are important subjects, and
should indeed be encountered very early in the career of
the computer science major. As a course for a general
audience, however, this approach has several failings.
First, it does nothing to dispel the notion that “Com-
puter science = Programming.” Typically, students are
not exposed to the important notions of computer sci-
ence, except perhaps osmotically. This failing is even
more poignant for potential computer science majors,
who come out of their first course having almost no
idea of what lies ahead, and in near complete ignorance
of the fact that what lies ahead has very little to do
with wha’; they have just seen. A second problem is
that this course is typically taught in Pascal or C (or
perhaps Modula-2 or even Ada). For many students
at the introductory level, the syntax and semantics oE
a high-level language stand squarely in the way of the
learning process: even students with very good quan-
titative skills often expend more energy learning where
semicolons belong than they do mastering the concepts
of designing algorithms. Those with lesser quantitative
skills often find programming wholly inaccessible and
come away firmly (and perhaps wrongly) convinced that
computing is not for them.

l The EDP/MIS Approach, or How to Use
yill in your favorite set of microcomputer applications].
In an attempt to provide something of practical value

229

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319059.323461&domain=pdf&date_stamp=1990-02-01

to the students, such courses typically cover the use
of a word processor, a spreadsheet, a file manager, a
database program, and perhaps a graphics program
and communications software. From a purely practi-
cal point of view, if for no other reason, this approach
is problematic. The most significant difficulty with this
approach, though, is its concentration on training stu-
dents on implementation-specific details at the expense
of educating them in the principles which underlie text
processing and database theory, for instance. Not only
is it more appropriate that this material be offered as
one or more short, non-credit courses within the Com-
puter Center, but it is also very likely that any exper-
tise in a particular spreadsheet will be antiquated by
the time the student graduates.

A slightly more substantial variation on this theme
emphasizes computer management skills. This course
typically includes units on the stages of system devel-
opment, a comparison of centralized versus distributed
data processing and how to decide which approach is
best for a business, considerations when entering into a
contract with a vendor, and descriptions of career op-
portunities.

This approach can indeed be justified in some pro-
grams which are more vocational- than liberal arts-
oriented. It is, nonetheless, not what we have in mind
when we consider a survey course in computer science.
The emphasis in this course often leans more towards
using computers and managing their use than to un-
derstanding basic principles and areas of concern in the
discipline.

l The Soft Side of Computers. Stemming from a social
science perspective, this course explores the impact of
computers on the modern and future worlds from so-
cial, political, economic, and historical points of view.
Done well, this is a valuable approach, in spite of the
fact that computer science itself is usually given short
shrift in an attempt to look at the effects of computer
use. Unfortunately, this multidisciplinary point of view
is very difficult to do well, thus running the risk of cov-
ering a little bit of everything, and none of it well. The
result can be that the course material degenerates into
a collection of anecdotes culled from the popular press,
with no attempt at a serious disciplinary point of view
from any of the disciplines involved, least of all com-
puter science. S UC courses often expend a great deal h
of energy apologizing for the technical nature of the
field and almost invariably adopt a condescending at-
titude towards the students. While we appreciate the
potential value of this model, we also believe that un-
derstanding the social impact of technology requires an
understanding of the technology itself.

2. One Solution

Our approach to the survey course in computer science

is based on three fundamental ideas. First, we approach
this course from a liberal arts perspective; second, we
want to maintain a serious, disciplinary point of view,
and, finally, we designed the course so that laboratory
exercises are an integral part of the entire experience.
We designed the text and software with these three
points in mind, and believe that the resulting combina-
tion represents an entirely appropriate solution to the
problems of exposing a lay audience to computer sci-
ence.

When we talk about a liberal arts perspective, we
mean that we see our mission as educators as one of
preparing our students to become educated and produc-
tive citizens, capable of adapting to change and mak-
ing inforrred decisions about the problems of the world
in which they will live. For the purpose of our sur-
vey course, this implies an understanding that in an
increasingly technological society-particularly one in
which the computer and its programs will play a po-
tentially large role-citizens will need to be informed of
the nature of the technology and the points of view of
its practitioners. Technology does not exist in a social
vacuum. Although the study of algorithms can demon-
strate what computers can and cannot do efficiently,
and the study of computability theory can show what
computers can and cannot do at all, we should not ne-
glect the importance of questions about what computers
should and should not be used to do.

Further evidence of the liberal arts perspective is
the emphasis throughout the text on principles as op-
posed to technical details. This is not to say that details
(e.g., of HyperCard, HyperTalk, etc.) are neglected.
Rather, they are presented in the context of more gen-
eral-and important-topics (user interface, program-
ming), and only to the extent necessary to explain ex-
amples and the sample stacks. Students are encouraged
to explore supplemental documentation and descriptive
materials as part of their laboratory exercises.

The disciplinary nature of the course is also evident
throughout. Naturally, a course such as this includes
an introduction to programming, algorithmic problem-
solving, and design paradigms. It also introduces many
of the “classic” data structures and algorithms, pro-
gram translation, machine organization, operating sys-
tems, artificial intelligence, and computability theory-
in short, it provides a glimpse of most of the major
topics in computer science.

The course is lab-based because we firmly believe
that computer science, like the other sciences, is not a
spectator sport-it is a contact sport. Each of the nine
units of the course has an associated lab component in
the form of one or more HyperCard stacks. These labs
are an indispensable part of the course, serving to rein-
force the text, where reading takes place, by providing
an environment where doing takes place. Another rea-

230

son why the course is lab-based is a very simple one:
it works. The introductory computer science courses
at Hamilton, in one form or another, have been lab-
based for eight years, and our experience has convinced
us that this is method is not only applicable for skill
acquisition such as learning a language, but also for re-
inforcing more abstract concepts, as well.

3. The Analytical Engine

The two most common responses we have had from peo-
ple to whom we have described our course are “Why did
you decide to use HyperCard?” and “What is your syl-
labus?” The syllabus is easy enough t;o describe; our
reasons for using HyperCard take a bit more explana-
tion.

The Answer is HyperCard, the Question is . . . ?

When Apple Computer introduced HyperCard in 1987,
the new product was greeted with enthusiasm, albeit
mixed with a touch of bewilderment. Apple classified
HyperCard as “system software,” but that description
satisfied almost none of the early reviewers. It wasn’t
just a paint program, it wasn’t just a database manage-
ment program wrapped in a slick graphics package, it
wasn’t just a programming environment-in fact, Hy-
perCard seemed to be a solution in search of a problem.

We feel that one problem for which HyperCard is
ideally suited is courseware development. Using Hyper-
Card stacks for the lab modules in our survey course
has several advantages. The most important advan-
tage is that the entire package is easily accessible to
novices. A common complaint among students learn-
ing a high level language for the first time is that they
fail to understand why they should spend hours writing
and debugging a program to do something-like sort-
ing a list of numbers-which they could do by hand in
a few minutes. These students are rarely appeased by
the instructor’s response that in designing, testing, and
debugging their programs they are learning valuable
cognitive skills and gaining experience in algorithmic
problem-solving. Beginning programmers want results,
and we feel that at the introductory level this is an en-
tirely appropriate point of view. In authoring a Hyper-
Card stack, the students find that they can do in min-
utes something that their contemporaries in an intro-
ductory Pascal course could not do in days of work. For
our purposes, this means that instead of simply teach-
ing our students how to use a spreadsheet or database
program, they can design or modify one of their own,
without ever having to consider the intricacies of the
Macintosh’s file protocols or the List Manager ROM
routines. The fact that HyperCard handles many of
the programming details behind the scenes means that
the students’ interest stays at a high level, and also
allows them to concentrate on problem-solving, rather

than having to be overly concerned with programming
details.

It also means that the topic of programming can be
properly motivated in terms of a student’s experience
using and designing stacks. Having become HyperCard
“authors,” concentrating as they do on issues of user in-
terface and system design, the students find that all of
the code which was generated for them is easily acces-
sible for inspection and modification. The HyperTalk
programming language, while being considerably more
verbose than Pascal or C, has the advantage that it
is much more natural for the beginning user. Because
the HyperTalk interpreter often admits several alterna-
tive ways to express a single statement, we find that
our students have less anxiety writing programs in Hy-
perTalk than do students using a more compact, but
less “forgiving” language. In addition, all of the Hyper-
Talk scripts associated with a stack can be inspected
in source code form, in much the same way that the
Smalltalk system browser makes the source code for all
methods public. We have found that students learning
any language can often find their way out of a problem
more quickly by seeing examples of code-particularly
from programs they are familiar with-than they can
by listening to descriptions of principles.

HyperTalk has other advantages which, frankly,
didn’t surface until we had had some experience us-
ing it as the programming vehicle for this course. By
exposing our students to object-oriented programming
and hypermedia at this level, we are introducing, more
or less painlessly, topics which are at the cutting edge
of computer science research. HyperTalk is not truly
object-oriented in the formal sense of the term, but
even in this simple form we have encapsulation of data
and methods and a rudimentary form of message-pass-
ing, two of the fundamental concepts of object-oriented
programming.

What’s it All About?

The course is divided into nine units, each with its own
metaphor. We begin by going down, descending from
general to specific, or, if you will, from abstract to con-
cre te. Having reached the lowest level, that of hard-
ware and architecture, we progress upwards in general-
ity, from the theory of abstract machines, through the
prospects of intelligent machines, to speculations about
the future. In the following paragraphs the text and
disk components of each module are described, in order
and in more detail.
a. History. In this introductory module, we place the
computer in an historical context, beginning with Bab-
bage. The Analytical Engine serves as the metaphor
for this module, embodying as it does the notion of an
autonomous information processing machine. We place
the Analytical Engine in the context of the “skilled ma-

231

chines” of the time and discuss the reactions to the in-
troduction of such machines. With a brief nod to Her-
man Hollerith, we skip ahead a century and consider
the early computers of Atanasoff and Zuse, leading up
to wartime and its impetus on the development of elec-
tromechanical and electronic machines. The invention
of the transistor leads to a discussion of generations of
hardware, which we carry to the present.

The disks which form the lab portion of the course
contain a custom Home Card which leads the students
to the “Starter Stack,” designed to familiarize the stu-
dents with the basic navigation on the Macintosh and
HyperCard. Figure 1 shows a typical card in the Starter
Stack.

The four pictures enclosed in rectangles
- the AE home, the house, and the left
and right-facing arrows - are actually
“buttons”. Clicking on them causes a
different card to appearon the screen.

They will function identically whenever
and wherever you see them on any
Analytical Engine Stack.

Figure 1. Starter Stack

b. Applications and Implications. While the first
module concentrated on hardware, this module treats
programs from a “black box” point of view, by intro-
ducing calculators, word processors, and spreadsheets
and explaining them in some detail. Our point of view
follows the first module in a natural way, asking “Now
that we have all this power, what do we do with it?”
Using the calculator as our metaphor is particularly ap-
propriate here: first, it allows us to discuss the explo-
sive and unforseen growth of microelectronic technol-
ogy, second, since the program which runs an electronic
calculator is built in at the factory, a calculator is truly
a black box, and, finally, the calculator allows us to
discuss concerns about deskilling, productivity, and in-
formation storage in an age of technology. We consider
the familiar applications-and those of a more special-
ized nature in science, business, and the professions-
as microworlds which often begin as models of familiar
applications (early text processors as models of a type-
writer, for instance), but which often evolve functions
far beyond those of the original application (a modern
word processor allows font changing, spelling checking
and automatic word counts, not to mention the ability
to embed graphics in the body of the text).

The lab disk contains a calculator, a word pro-

cessor, and a spreadsheet for the students to explore.
Later, the students can return to these applications and
inspect and modify their code, but for the time being
we treat, these without concern for how they accomplish
their functions.
c. Designing for Use. Continuing our progress to-
wards more detail, this unit covers system design by
concentrating on the design of a user interface. Our
metaphor here is the hippogryph, a creature made up
of parts of other animals. The black box has become a
gray box, since we are building a system by combining
parts which already have a complicated functionality.
At this level, we don’t concern ourselves with how the
parts work; we concern ourselves only with putting the
parts together into a smoothly functioning whole. As
the level of detail becomes finer, the user level which de-
termines the students’ use of HyperCard also becomes
more powerful. Students are introduced to the Author-
ing level, allowing them to design stacks of their own,
and are exposed to the anatomy of a stack as a collec-
tion of backgrounds, cards, fields, and buttons arranged
in a hierarchical fashion.

In the lab, the students practice what they have
read, using the painting tools and other authoring fea-
tures to create a stack of their own. They are given
a simple database, the “Little Mac Book,” which they
modify by adding new cards and fields, and changing
the look using the painting tools.

r pm---

1

. . . . -. - . .
ill.q. ba!arl l) t...‘e: .*‘.: . r.h

. V.rw., 1-1 ;,. I r A

.

‘-- ..- ..-- ..-. . ..- .-_ .-_.-.._

-:-, I.
e

- _. . . ._m. . . -_ - _ - -.. . . _ . .- .._ . . -

Figure 2. Sorting Card

d. Programming. We now make the gray box into a
clear box. We adopt a culinary metaphor here: using
an application is similar to being a guest at a dinner
party, where the sequence of courses and their contents
had been chosen beforehand, while designing a system
in the previous unit is equivalent to being the host at
the party, responsible for choosing the courses. In this
unit we take the students into the kitchen, as it were,
showing how to produce the courses by suitably com-
bining the ingredients. The students continue here their
exploration of the levels of HyperCard, moving to the

232

Scripting level which allows them to access and modify
the programs of a stack. In the text part of this mod-
ule we explore the information and control structures
by designing a selection sort script for a button on a
card. Figure 2 illustrates the sorting card, which the
students are encouraged to explore. At this point, we
also cover the object hierarchy of HyperCard and show
how messages are passed between objects and used by
message handlers. We conclude with a look at software
design paradigms and the software life cycle.

B
lmmm!lnc P

Perform mctrle conversIons and lose welgbt at tk same tlmel

1 milllmeten I

Pick
e

unit

(cr.rr)

$

!il 9

Figure 3. Unit Conversion Card

Figure 3 illustrates another of the sample stacks
used in the lab portion of this module, a simple unit
conversion program. The lab consists of a large number
of directed exercises in modifying and extending this
stack.

a

(NBI)

(Open)

(-xi-)

(Saut)

(ShaurQ)

Apple MacPippin
L?VK/OO/fl7O/SO?Ul

P

Figure 4. Assembler

e. Program Translation. In this module we investi-
gate how a computer can be made to execute programs
in high-level languages such as Pascal, LISP and Hy-
perTalk. Using the Rosetta Stone as our metaphor, we
introduce binary representation of information, and dis-
cuss the machine language of a hypothetical computer
and an assembler language for that machine. We pro-
vide a survey of several language paradigms and con-

clude with a brief introduction to the problems of pro-
gram translation.

The lab part of this module includes two stacks.
In the first, the students explore the conversion from
character strings to strings of ASCII codes, and then
from these codes to their binary representations. Figure
4 illustrates the second stack, an assembler/executor for
the language introduced in the text. This stack allows
the students to enter an assembler program from a file,
see it translated into machine code, and step through
the execution of the program.
f. Hardware. This module is a natural next step af-
ter the previous one, since the students have already
seen hints that a computer represents a machine lan-
guage program as a collection of binary data. In this
module, we show how machine language statements are
executed. In keeping with the pervasive notion of lev-
els of abstraction, we use a simple light switch as a
metaphor and see how gates may be made by combin-
ing switches, how gates combine to make circuits, and
how circuits are combined in the architecture level of
a computer. As a further link to the previous mod-
ule, the text part includes a construction of a complete,
if simple, computer which runs the assembler language
programs introduced in the previous module.

The lab stack for this module is a simulated bread-
board which can be used to build and test combinato-
rial circuits made by connecting AND, OR, NOT, and
NAND gates.
g. Theory of Computation. This material is con-
spicuous by its absence in most survey courses. We
feel, though, that it is important for students both to
know there is a theory which lies beneath the practical
details of computation, and to realize that, despite be-
ing conceived half a century ago, the theory prescribes
hard and fast limitations on today’s computers. It is
also valuable for them to see that there are problems
which sound like reasonable candidates for automation
but which cannot be solved by any (Turing machine)
program. The Turing machine serves as the metaphor
for this unit, which provides us with a link back to
the earlier unit on history as well as a forward one to
the next module on artificial intelligence. We take two
points of view in this module, viewing programs as par-
tial functions on the set of all binary strings, and as
programs for Turing machines. The usual diagonaliza-
tion argument is used to show the existence of partial
functions on binary strings which cannot be realized by
TM programs, and the Halting Problem is used as an
example of a problem which sounds as if it should be
amenable to TM solution, but is not.

Figure 5 illustrates the lab stack for this module-
a Turing machine simulator. The lab also includes files
of TM programs which have been written for the simu-
lator, demonstrating that, for example, a TM can add

233

and move information from one location on its tape to
another.

ITM
The Big Blue of Turing machines

P

(R.r.t)[Hlst])(_Et.;;-) a pJ

Figure 5. Turing Machine Simulator

h. Artificial Intelligence. Continuing the upward
tv;n in focus which began with the previous mod-
ule, this module expands the level of abstraction to
representing intelligent behavior in a program. The
metaphor for this unit is the HAL 9000 computer, de-
scribed in Arthur C. Clarke’s &UOl. We make the point
that the things humans do most easily, like natural lan-
guage recognition, are the most difficult to embody in
a program, and the things we have to work hardest at,
like playing checkers, are generally easier to mechanize.
HAL is used throughout as an exemplar of language and
visual processing, knowledge representation,and learn-
ing. We provide rough comparisons of the quantifiable
differences between brains and machines, and we take
pains to emphasize that HAL is well beyond the present
state of the art in AI research.

The lab stack for this module is a simple poetry
generator with verse patterns and vocabulary which the
students can customize. While the lab uses this stack,
as usual, to provide insight into the programming pro-
cess, we also point out that the stack achieves its behav-
ior using a simple rule-based scheme which is clearly far
simpler than the human creative process it simulates.
i. Computers and Society. The metaphor we chose
to illuminate the last module is the Sorcerer’s Appren-
tice, and we remind the reader that although that story
has a happy ending, we have no guarantee that the Sor-
cerer will arrive at the last minute to rescue us from the
folly of our poor choices. In an attempt to provide a bal-
anced assessment of the social consequences of the com-
puterization of society, we first describe the limitations
on our predictive abilities. Then we identify the major
trends in computer use-increased power, increased re-
liance, access to electronic information, centralization,
emergent effects-and try to gauge their impacts.

The last lab module contains a simple ELIZA-like
program, illustrating the perils Weizenbaum pointed

out of anthropomorphizing a program, and a sinister
variant which not, only behaves as if it were infected by
a virus, but also includes code to monitor the suppos-
edly private session between the user and the machine.

4. Details and Context

Our service course has used versions of this package (the
text and two lab disks, to be published by Wadsworth
in January, 1990) for the past year. Students with no
prior Macintosh experience attend an extra lab session
during the first week of class to take a Mac Guided Tour,
after which they are ready to begin Lab 1. About one-
third of our class time is devoted to supervised lab, with
the remaining time spent in lecture. Depending upon
the module, lectures can focus on (1) topical material,
i.e., discussions of topics presented in the text (there is
more than enough to support an entirely lecture-based
course), (2) demonstrations of sample stacks or other
HyperCard facilities, (3) lab-related discussions of par-
ticular exercises, or (4) supplemental material-for ex-
ample, a review of Macintosh applications, viewing re-
lated films and tapes (2001: A Space Odyssey, John
Sculley’s “Knowledge Navigator”), or discussing SDI.

Depending on the module, homework assignments
can be bzsed on text-related questions, extensions of
lab exercises (e.g., use the sample stacks to build a cir-
cuit or to write a simple assembly language program),
supplemental machine-based exercises (e.g., design a
restauran; guide for your home town, write a program
to record and balance your check book), or any com-
bination thereof. The class has been taught in small
sections and as a large lecture with small labs, and is
equally amenable to both formats.

Where does this course fit in the computer science
curriculum? A traditional introductory survey course
not only serves as a terminal course for those seeking
a view of the range of topics in its discipline, but also
can act as a proselytizing vehicle, attracting students
to the discipline who might not otherwise consider a
major or minor in the field. It could also serve well
as the first course in a computer science major, either
before the standard CS I course, or in place of it. A
student who completed this course would certainly be
better prepared for CS I than his or her peers, and plac-
ing this course before the usual first computer science
course would relieve that course from the responsibility
of including a large amount of introduction to the topics
in the discipline. We feel that the transfer from Hyper-
Talk to Pascal or C does not involve a major paradigm
shift-if anything, the object-orientation of HyperTalk
points students in the right direction to writing modu-
lar programs in other languages. The transition might
be made even easier if the CS I course used an object-
oriented language such as Object Pascal or C++, for
instance.

234

It is also worth mentioning that each lab module,
beginning with Module 4, includes programming exer-
cises related to the corresponding sample stack as well
as suggested programming projects. While our present
course does not emphasize them, doing so renders the
course much more programming-intensive. By the end
of the text, students have seen in HyperTalk the topical
equivalent of most CS I programming courses (including
basic control and data structures, subprograms, param-
eters, variable scope, predefined functions, etc.) and
more (the object hierarchy, self-modifying code, plus
all of the survey material).

Because the text and the labs form an indivisible
whole, this course obviously requires a computer lab. A
number of sources recently [l, 2, 3] have pointed out
that computer science, like the other scientific disci-
plines, is a laboratory science, and we heartily concur
with this approach. However, HyperCard is only avail-
able for the Macintosh, so this approach inevitably weds
one to one machine, at least for the present. There are,
however, programs similar to HyperCard for other com-
puters, and we plan to port the course to a different
environment shortly.

Aside, though, from having enough Macintoshes
to support student lab work, no other facilities are re-
quired. It is, to be sure, extremely helpful in explain-
ing HyperCard and demonstrating lab stacks to have a
classroom equipped with projection equipment. Other-
wise, the package is self-contained. The disks include an
appropriate System Folder as well as a copy of Hyper-
Card, boot automatically to a customized Home Card
and, when ejected, shut the system down.

5. Evaluation and Summary

Our experience with the package and the course to date
indicates, first and foremost, that students appreciate
the survey approach. Our service enrollments had drop-
ped dramatically in recent years (our previous “service”
course was Pascal programming intensive) and are now
on the way up. Students are both relieved that the
course deemphasizes programming and are interested
to find out that there is more to computer science.
Partly because the notion of a lab course is still in-
timidating to many of them, they feel that the course
is demanding. On the other hand, they almost invari-
ably admit to a sense of accomplishment. We attribute
this both to the interesting and realistic nature of the
problems they are asked to solve, and to the fact that
students leave the course completely comfortable with
HyperCard and, more importantly, wit!1 the Macintosh.
They find themselves well prepared to go off and use
word processors, spreadsheets and databases with lit-
tle problem. In short, the package seems to be easy to
learn from.

We also think that this package is easy to teach
from. The lab approach is not only sound pedagogy, but
it renders much of the course nearly self-teaching. This
is particu.larly true if class time is explicitly devoted
to lab work. Also, the lab experience, as mentioned,
provides additional material for lectures.

Not that it’s needed, mind you. Since we decided
from the start to commit errors of commission, rather
than omission, there is more than enough material for
a semester’s work. We feel that this encourages flexibil-
ity on the part of the instructor, who can choose from
a range of topics in designing his or her own version of
the course. Indeed, our course does not cover the entire
text. Each time it has been taught, a slightly different
syllabus has evolved which reflects the interests of cur-
rent students. Because our approach is somewhat novel,
we have prepared detailed instructor’s supplements, in-
cluding lecture notes, transparency masters, answers to
exercises, and HyperCard troubleshooting hints.

In closing, we think that this course successfully
solves many of the problems associated with a survey
course in computer science: It provides a comprehen-
sive overview of the field without pulling any punches
and without apology. It is solidly disciplinary in its
approach, and emphasizes principles and education at
the expense of technical details and training. Finally,
it exploits HyperCard as an integrated, expressive and
stimulating laboratory environment, particularly for the
intended audience.

References

[l] Barker, K., Soldan, D. L., and Stokes, G. E. Lab-
oratory experiences in computer science and engi-
neering. Computer Science Education l(1). l-10.

[2] Drysdale, R. L. S., Korth, H. F., and Tucker, A. B.
Computer science in liberal arts colleges. Computer
Scieme Education l(1). 11-35.

[3] Gibbs, N., and Tucker, A. (Eds.) A Model Curricu-
lum for a liberal arts degree in computer science.
Communications of the ACM 29(3) 202-210.

[4] Jacobellis v. Ohio 378 U. S. 184, 197(1964) (Stew-
art, J., concurring).

235

