
An Overview Course in Academic Computer Science:
A New Approach for Teaching Nonmajors

Alan W. Biermann
Department of Computer Science

Duke University
Durham, North Carolina 27706

Introduction

An introductory course for nonmajors that overviews
academic computer science has been under development at
Duke University since the spring semester of 1986. This
course introduces students to programming, teaches them the
fundamentals of hardware and software and covers advanced
topics such as program time complexity, parallel
architectures, noncomputability, and artificial intelligence.
The course emphasizes deep academic experiences for students
including nontrivial programming assignments, circuit
design problems, assembly language programming, hand
simulation of a compiler to see its functioning, the study of
execution time 5j programs, programming for parallel
machines, proofs of noncomputability. and the hand
simulation of some artificial intelligence systems.

The purpose of the course is to prepare people in
numerous disciplines to live with computers in the long term
by understanding the fundamentals of the field. The course
attempts to present most of the great ideas of computer science
that have developed over the past several decades. The claim is
that, with such preparation, students will be maximally
prepared to understand the capabilities and limitations of
machines and to have perspective on their appropriate role in
society.

This course is in contrast to the introductory courses that
are usually given to such students at most colleges and
universities. The typical choice is to teach either
programming or what is usually called computer literacy
[4,9,11]. Courses in programming are, of course, excellent
educational experiences in clear thinking and problem solving
and are almost always valuable for students. However, such
courses do not address the broader concerns of a liberal arts
student who needs to know the ultimate capabilities and
limitations of machines. Computer literacy courses emphasize
the development of useful skills such as the operation of
software packages and their application to real world
situations. They teach many useful facts about computers, but
they do not necessarily engage the students in actually doing
computer science. Again, the deeper understanding that comes
from a detailed study of academic computer science is not
achieved.

This course attempts to provide the alternative to
computer literacy asked for by J. Paul Myers at last year’s
conference [8]. In his paper, he objected to the current trend in
computer literacy courses, pointed to the increased maturity of
current students, and campaigned for more genuinely academic
studies. The general view of computer science given in the
Duke course is in agreement with the Denning et al. report
[S], “Computing as a Discipline”. The following sections

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1990ACM08979L346-9/90/0002/0236$1.50

describe the contents of the course as it has evolved and give
the reactions of students who have taken it.

The Course

The presentation of computer topics to general liberal
arts students must be greatly modified from traditional methods
because of their lack of mathematical sophistication and
scientific vocabulary. It is not possible to simply condense
standard coverages of programming, hardware and software
topics, and advanced material that appear in texts and breeze
through them at double speed. The material must be examined
carefully to determine what portion of it is worthwhile to
teach, and then the total coverage must be designed to get to
the main points directly without burdening the students with
unnecessary concepts or vocabulary. It is not possible to
teach all of computer science in one course. Careful decisions
must be made to omit what is not of greatest importance so
that time is available to cover the major topics.

The following paragraphs describe all of the topics in the
course, giving in each case the purpose of the study and the
type of coverage used to achieve that purpose. In many cases,
the nature of the material covered differs dramatically from
traditional presentations because of the need to make the ideas
understandable by nonmathematical and scientifically
inexperienced people. The interested reader may wish to
examine Great Ideas in Computer Science: A Gentle
Introduction [I] which is a textbook based on the classroom
notes and which gives the essential coverage of the course.
(There are other surveys of computer science [3,6,7,10,12] but
most of them are too difficult for this population of students.)

Programming. The purpose of the programming portion
of the course is to teach students the lessons in clear thinking
that go with any programming experience and to give them the
tremendous intuition for machines that programming makes
possible. Students are taught the traditional lessons related to
finding proper representations for their problems and “divide
and conquer” methodologies for code development. This series
of studies encompasses about one third of the course, but
weekly laboratories continue to the end of the semester so that
considerable programming is eventually accomplished. The
major student exercises include programming a simple
interactive text editor, several numerical computation
problems, and a relational database program.

However, some shortcuts must be found to make it
possible to teach all this programming and still have time for
the rest of the topics. The technique is to limit the coverage of
the programming language, Pascal in this case, to a relatively
few constructions. In fact, students are taught a kind of micro-
Pascal that includes only integer, real, and string data types
(with arrays), assignment statements, if-then and if-then-
else statements, while loops, read and write statements,
and a single subroutine feature. It was found that syntactic
variety is one of the main sources of confusion for such
students and that tremendous simplification results from the
elimination of the variety of features available in the full

236

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319059.323462&domain=pdf&date_stamp=1990-02-01

language. This subset of the language is taught in a relatively
short time at the beginning of the course and is used
repetitively throughout the rest of the semester. The programs
are often somewhat pedantic in their appearance because of the
syntactic limitations. But the gains in simplicity and
learnability for these students are well worth the compromise.

The programming section of the course is concluded with
a study of software engineering where students learn that
experiences gained in university laboratories do not always
scale up well to large projects. The major lessons from such
standard sources as The Mythical Man-Month [2] are taught.
These include descriptions of software engineering calamities
involving slipped deadlines, overrun budgets, and
specifications not met. They also include descriptions of
modern methodologies for systematic organization of software
projects and the typical software life cycle.

Computer Hardware-Software. The purpose of the
hardware-software section of the course is to teach students to
think of computing as a mechanistic process that they can
understand. They have no need to stand in awe of “thinking
machines” and they can read articles about new architectures,
breakthroughs in chip technologies, or new computer
languages with understanding and perspective.

This portion of the course begins with the design of
switching circuits and their assembly into elementary
components of machines. Then the course examines the
transistor and VLSI technologies that make it possible to
construct large circuits on tiny chips. Next, students are
shown the architecture of a typical machine, how it functions,
and how to program it. Finally, they are shown a small
compiler for Pascal assignment statements and how it
translates Pascal into a machine executable language. Some of
the details of these studies will now be explained.

The trick to teaching circuit design is to realize that little
or no Boolean algebra is needed to convey the most important
lessons. Students can be taught to write down a functional
table defining the target behavior and then to construct
directly a nonminimal switching circuit to realize that
behavior. They can have all of the satisfaction that goes with
creating circuits to do any task, and they can avoid having to
learn to manipulate and minimize algebraic expressions.
While Boolean algebra is one of the great discoveries of
computer science, a course that tries to cover the whole field
must find ways to cut all but the most central ideas. Boolean
algebra was removed from the course after its first presentation
because of student difficulties. Students, even with these few
tools, can design many computation circuits such an adder or
an elevator controller. The study of switching circuits
anticipates the later study of machine architecture by showing
how one designs circuits for elementary machine operations
and a circuit to decode machine instructions to activate such
operations.

Next the course undertakes a short introduction to solid
state physics and the principles of transistor design. Students
are taught the concept of positive and negative carriers in
semiconductors and the mechanisms for controlling the carrier
supply to build a switch. Then VLSI methods are explained
including CMOS technologies and the ways that microcircuits
are etched into silicon chips. Part of this study includes a
discussion of the speed of computations and the importance of
miniaturization for achieving fast computation.

The 1eveI above circuit design is machine architecture
where students see how the switching circuits from the
previous study are assembled to build a machine. Here the
concepts of the control counter, the instruction register, the
computation register, memory, and the “fetch-execute” cycle

are introduced. Students solidify these lessons by learning to
both read and write simple programs in assembly language.

The highest level of the hardware-software sequence is the
study of the compilation process. Here students are shown a
set of translation rules for compiling Pascal assignment
statements (restricted to nestings of addition and
multiplication operators) and are taught how to use them to
compile any such statement into the assembly language of the
previous section. The exercise is meant to make translation
seem like a straightforward and understandable process. It
shows students how machines can be programmed to process
any formal language and provides an avenue to understanding a
variety of languages. In fact, students are given examples of
programs from eight different languages with the point being
that many other languages such as FORTRAN, PL/l, etc. are
similar in structure to the Pascal that they have already learned
and that some other languages such as LISP and Prolog are
rather different.

The final exercise of the hardware-software study is to
trace the execution of a sample Pascal assignment statement
through all of the stages from compilation, to execution on
the architecture, through the operation of the computational
circuits to the migration of electrical carriers in the
semiconductor fabrication.

Advanced Topics. The two-fold purpose of this portion
of the course is to introduce a number of very exciting topics
from current research and to make students aware of the
limitations of computer science. The topics include computer
program time complexity studies, parallel architectures,
noncomputability, and artificial intelligence.

The program timing studies begin with the development
of some experimentally derived formulas for certain example
programs. A study of these formulas gives a measure of how
large the problems can be and still be computed in
“reasonable” lengths of time. Continued examination of these
formulas leads to the discovery of the “tractable” and
“intractable” classes. Then a number of examples of problems
of both types are presented with the hope that students will
gain an intuition for them. The test of success in this part of
the course is whether students can properly classify a variety
of such problems into appropriate categories.

The study of parallel architectures begins by showing
how simple problems from previous parts of the course can be
reprogrammed for execution on a parallel machine. Then
execution time studies are used to show what can be gained by
the use of parallelism. A variety of architectures are introduced
with indications of their strengths and weaknesses. The last
portion of the study examines a sample connectionist
architecture and shows how learning rather than programming
can be used to achieve the desired behavior.

The problem with teaching noncomputability is enabling
students to understand what the word means. The teaching
methodology here is to introduce the idea of having programs
read other programs and compute something. Thus a number of
programs are given that do such simple tasks as measure the
length of an input program or check whether it contains an if
statement. After a series of such examples, the question arises
as to whether a program could be written to check the halting
propeTty for the input program. This becomes the
prototypical example of a noncomputable task, and a number
of other examples are presented. The conclusion of this study
is that programs that read other programs can usually be
written if they are to check syntactic features of the input. But
if they are to check any feature related to the execution of the
input program, one is probably attempting a noncomputable
computation. Again the test of whether students understand

237

this part of the course is to check whether they can properly
classify a variety of given problems as either computable or
noncomputable.

The artificial intelligence study is divided into two parts,
a presentation of representation methods and a study of search.
The representation methods include formal languages,
semantic networks, computer programs, and others. The
search part of the study includes detailed examples of systems
for natural language processing, game playing and expert
reasoning. Students are taught to understand these systems by
doing hand simulations of them on sample inputs. The main
purpose of the study is to give students an understandiig of the
state of the art so that they can reasonably judge what can and
what cannot be done in artificial intelligence.

(Note: The description given here is generic, Individual
presentations of the course may emphasize some topics
heavily while giving others only short mention. The time
allotments for the topics depend on the interests of the
instructor.)

Student Response

This course has been taught each semester since the
beginning of 1986 and has attracted about 100 to 200 students
per year. The students come from a variety of majors most of
which are nonmathematical as shown in the following table.
(Data was gathered from a single class of 65 students in the
Fall of 1988.)

M&L
Art History 7
Comparative Area Studies 3
Comparative Literature 1
Economics 11
English 8
History 10
Mathematics 3
Philosophy 3
Political Science 15
Psychology 6
Public Policy Studies 3
Religion
~l%Y :
(undecided) 30

These students came from all levels of undergraduate work at
the following percentages: freshman 9, sophmore 48, junior
26. and senior 17. When asked why they were taking the
course, most students indicated that they simply wanted to
learn something about computers. A few mentioned the fact
that they were taking the course to fulfill a requirement in
quantitative reasoning. Most had no previous experience with
computers and no more than one college level course in
mathematics.

Before this course was taught, many educators believed
that such a student body could not and would not succeed in
academic computer studies at the depth described here. The
image of such students designing switching circuits, hand
simulating a compiler, or studying noncomputability seemed
farfetched. The success described here may provide incentive
to other institutions to try similar courses.

During the 1988 Fall semester class, students were
repeatedly surveyed to determine their response to the material
and their level of accomplishment. Specifically, after each of
the significant thirds of the course, programming. hardware-
software, and advanced topics, students were queried
concerning their response to that particuliar material. The

following table summarizes the results of these questionaires.
Each student was classified on each part of the course as either
“interested and doing well”. “neutral”, or “unhappy with the
material”. Considering the facts that this was a course for
nonmajors which many students were taking be&cause they ‘were
required to and that the contents of the course were unusually
technical for this type of student, the results should be
considered to be very positive.

Programming Hardware Advanced
Software Topics

Interested and 83% 81% 63%
doing well.

Neutral. 5% 12% 13%

Unhappy with
the material.

12% 7% 24%

In one particular question, students were asked to rate their
level of interest in each of the fifteen different subjects in the
course. Ranking the topics on a scale from 0 to 10, every
topic in the course was ranked by the students with an average
score above 5. The most popular topics were those related to
programming and artificial intelligence.

In summary, experience with this course provides ample
evidence that liberal arts students with little mathematical
sophistication can be taught successfully, in a single course,
an overview of much of academic computer science including
some very technical material.

The Product: Students Who Understand the
Fundamental Principles of Computer Science

Students who complete this course should have a
reasonable grasp of what computers are, how they work, what
they can do, and what they cannot do. In their personal,
academic, and professional lives, they should be able to face
new situations where computing may be proposed as a solution
and have good judgment as to what realistically can and cannot
be accomplished. When they read the news regarding new
developments in computing, they should have the proper
background to understand them whether they concern the
announcement of new architectures, advances in artificial
intelligence, or other significant discoveries. They will have
had substantial exposure to most of the important paradigms
in computing and will be as well prepared as we can make
them, in a single course, for dealing with future eventualities.

References

[l] A. W. Biermann, Great Ideas in Computer Science, A
GentIe Introduction, The MIT Press, Cambridge,
Massachusetts, 1990.

[2] F. P. Brooks, Jr., The Mythical Man-Month, Addison-
Wesley Publishing Co., Reading, Massachusetts, 1975.

[3] J. G. Brookshear. Computer Science, An Overview,
Second Edition, Benjamin/Cummings Publishing Company,
Menlo Park, California. 1988.

238

[4] I. S. Burstein. Computers and Information Systems,
Holt, Rinehart & Winston, New York, 1986.

[5] P. J. Denning. D. E. Comer, D. Gries, M. C. Mulder, A.
Tucker, A. J. Turner, and P. R. Young, “Computing as a
Discipline”, Communications of the ACM, Vol. 32, No. 1,
1989.

[6] L. Golds&lager and A. Liter, Computer Science, A
Modern Introduction. Prentice Hall, New York, 1988.

[7] D. Harel, Algorithmics, The Spirit of Computing,
Addison-Wesley Publishing Co., Reading, Massachusetts,
1987.

[81 J. P. Myers, Jr., ‘The New Generation of Computer
Literacy”, The Proceedings of the Twentieth SIGCSE
Technical Symposuim on Computer Science Education,
Louisville, Kentucky, Feb. 23-25, 1989.

[9] T. Owens and P. Edwards, Information Processing Today
with Appficufions and BASIC, Burgess Communications,
Edina, Minnesota, 1986.

[lo] I. Pohl and A. Shaw, The Nature of Computation, An
Introduction to Computer Science, Computer Science Press,
Rockville, Maryland, 1981.

[1 l] D. H. Sanders, Computers Today, McGraw-Hill, New
York. 1985.

[12] C. Schaffer. Principles of Computer Science, Prentice
Hall, New York, 1988,

239

