
vNS: a modular programmable virtual network switch
Massimo Gallo and Fabio Pianese

Nokia Bell Labs
first.last@nokia-bell-labs.com

CCS CONCEPTS
• Networks → Network design principles; Transport
protocols; • Software and its engineering;

KEYWORDS
Network stack, Virtualization, Virtual Switch

ACM Reference Format:
MassimoGallo and Fabio Pianese. 2018. vNS: amodular programmable
virtual network switch. In SIGCOMM Posters and Demos ’18: ACM
SIGCOMM 2018 Conference Posters and Demos, August 20–25, 2018,
Budapest, Hungary. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3234200.3234242

1 INTRODUCTION
Virtual network switches are a staple component of Cloud
environments involving virtual machines (VMs). They im-
plement an efficient inter-VM communication facility, which
the guest operating systems see as a standard network-based
interface. In Cloud deployments, where a plurality of tenants
each manage groups of several VMs on shared hardware,
a virtual network switch is a great vantage point to super-
vise and optimize network resources. Given the popularity
of Open vSwitch [7], research on architectures that expand
the virtual switch potential has been gaining increasing at-
tention. Recent literature highlights several cases in which
a virtual switch might profitably exceed its role as a trans-
parent communication interface, leading to systems that
integrate various kinds of protocol processing.
For instance, Oko [1] can execute stateful filtering and

monitoring functions over inter-VM packet flows. Two ex-
amples of virtual switches that transparently modify the con-
gestion control behavior of traffic flows they carry and make

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM Posters and Demos ’18, August 20–25, 2018, Budapest, Hungary
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5915-3/18/08. . . $15.00
https://doi.org/10.1145/3234200.3234242

optimization of end-to-end application performance possi-
ble, are Virtualized Congestion Control (VCC) and AC/DC
TCP [2][5]. The most radical approach, adopted in NSaaS [8],
aims to offload the entire transport stack to cloud provider
controlled VMs requiring small modifications to the guest
VM’s to rely upon an external TCP socket implementation.
These systems are beneficial for datacenter workloads, where
congestion can severely degrade flow throughput, and help
improve the behavior of end-to-end applications sensitive to
latency, jitter, and loss.

We believe that existing virtual switches would be greatly
enhanced by the integration of a full-fledged programmable
packet processor between VMs and the physical network. By
delegating complex network functionalities (e.g., L4 termina-
tion) to the virtual switch, the data plane can be efficiently
tapped, leveraging zero copy and batching to boost perfor-
mance. On one hand, similar to the systems cited above,
packet processing can be handled in user space and lives
outside the tenants’ computing resources, ensuring safety
and ease of upgrade of sensitive functionality by the service
provider. On the other hand, the use of a modular and open-
ended approach to packet manipulation [6] would retain the
flexibility of general-purpose programming languages to im-
plement complex and stateful virtualized network functions.

Accordingly, we are developing vNS , a system that turns
the transparent switch of a virtualized server into a general-
purpose flow processing platform based on ClickNF, a recent
high-performance derivative of the Click software router [4].
This poster presents the design principles and architecture of
vNS , along with some early results of the current prototype.
We then discuss how vNS can benefit a number of use-cases
that are relevant for virtualized Cloud environments.

2 DESIGN
Besides performing packet switching, to support the imple-
mentation of advanced networking functionalities (e.g., L4
termination and dedicated application-layer processing), a
programmable virtual switch should (i) provide a flexible
and extensible network stack (L2-L4) (ii) offer efficient com-
munication primitives among the VMs and with the outside
network, and (iii) conceal its presence to the applications de-
ployed in the VM. The ClickNF framework [4] we developed
is a great starting point for such an architecture, as it already
provides a complete L2-L4 modular and efficient network
stack and fast packet I/O via the DPDK library [3].

96

https://doi.org/10.1145/3234200.3234242
https://doi.org/10.1145/3234200.3234242
https://doi.org/10.1145/3234200.3234242
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3234200.3234242&domain=pdf&date_stamp=2018-08-07

SIGCOMM Posters and Demos ’18, August 20–25, 2018, Budapest, Hungary Gallo et al.

Fig. 1 shows vNS ’s architecture as a graph of ClickNF
modules. Applications run unmodified in VMs using a stan-
dard BSD Socket API. They are linked at runtime with libns,
a dynamic library with two goals: emulating the standard
socket API and driving the virtual network stack inside
the virtual switch. More precisely, libns intercepts the BSD
socket API calls and multiplexes/demultiplexes control pack-
ets sent to/received from the virtual network stack. Con-
trol packets simply consist in socket API commands en-
capsulated in ClickNF packet data structures, e.g., |socket
|domain|type|protocol| corresponds to socket(int,int,
int). Each control packet triggers a response by the network
stack deployed in vNS , a packet reports back the results,
e.g., |socket|ret|err is used to communicate the result of
a socket() call. In this way, VM applications can operate
exactly as if the network stack were deployed locally.
The main component of vNS is a ClickNF instance run-

ning in the host. For efficiency, we develop vHost a Click
element that uses the DPDK vhost library [3], allowing the
switch to efficiently move packets from/to the VMs with-
out incurring in copies and taking advantage of batching. A
critical part of vNS is the vApp element in charge of execut-
ing and responding to the control commands sent by guest
VMs’ applications, and notifying them of network-initiated
changes in the local virtual stack, e.g., when a connection is
closed by the remote peer. In particular, vApp uses an event
queue to register relevant events triggered by control pack-
ets, e.g., a recv() command issued by a VM’s application or
a RST packet coming from a remote peer that communicates
with some process in a VM. A ClickNF blocking task waits
for incoming events and yield()s back the CPU when done.
Each VM is connected through a pair of vHost / vApp

elements to a dedicated cTCP instance, the modular network
stack implementation in ClickNF.vNS implements packet
switching and fast I/O bymeans of theDPDK and Etherswitch
elements provided by ClickNF and legacy Click respectively.

App1 App2

libns

App1 App2

libns

VM 1 VM 2

vHost vHost

Hypervisor

vApp vApp

cTCP cTCP

EtherSwitch

DPDK DPDK

shared
memory

shared
memoryH
o
st

v
N

S

from/to Networkfrom/to Network

Figure 1: The vNS architecture.

0 200 400 600 800 1000

4.6

4.8

5.0

5.2

5.4

R
T

T
[m

s]

linux
linux VM

vNS
ClickNF VM

0 200 400 600 800 1000

Number of Clients

0

100

200

300

400

500

600

700

co
nn

/s
[1

03
]

Figure 2: Comparison between vNS and Linux stack.

3 PRELIMINARY RESULTS
We prototyped vNS by developing two Click elements, vApp
and vHost, and a preliminary version of libns. To test the
architecture’s feasibility and potential, we run a simple ex-
periment in which an increasing number of clients connects
to a server running in the VM with network stack delegated
to a single core vNS instance. After the connection is estab-
lished, the remote peer closes it without exchanging any
data. We compare our solution against more traditional ar-
chitectures where the network stack, the linux kernel’s or
the optimized ClickNF one, and the server are co-located and
run in the host (linux) or in the VM (linux VM, ClickNF VM).
Our testbed consists of 2 machines with 40-core Intel Xeon®
2.60GHz processors, 64 GB RAM, and 10 GbE Intel® 82599ES
cards, running Ubuntu 16.10, ClickNF, and DPDK 17.11. The
VM features a single core, 1GB of RAM, Ubuntu 16.10 and
runs on top of the QEMU KVM 2.6.1 hypervisor.
Fig. 2 (top) presents connection establishment RTT (the

delay between SYN and SYN-ACK) which generally increases
with the number of clients in the scenario. When the stack
is executed inside the virtual switch, a small performance
benefit is observed. This is due to the fact that connections
are terminated inside the virtual switch, which deals with
TCP connection setup packets without involving the VM.
Fig. 2 (bottom) shows the number of connection setups per
second handled with increasing numbers of parallel clients.
As expected, a ClickNF stack optimized for performance
sustains a much higher conn/s load compared to linux, until
the clients saturate the CPU processing power (>100 clients).

We are currently progressing toward the complete imple-
mentation of vNS including further testing and comparisons
with alternative approaches. Moreover, we plan to investi-
gate the management and control of several co-located vNS
instances and to introduce dynamic reconfiguration.

97

vNS SIGCOMM Posters and Demos ’18, August 20–25, 2018, Budapest, Hungary

REFERENCES
[1] Paul et al. Chaignon. 2018. Oko: Extending Open vSwitch with Stateful

Filters. In Proc. ACM SOSR’18.
[2] Bryce Cronkite-Ratcliff et al. 2016. Virtualized Congestion Control. In

Proc. ACM SIGCOMM’16.
[3] Linux Foundation. 2018. DPDK framework. (2018). http://dpdk.org.
[4] Massimo Gallo et al. 2018. ClickNF: a Modular Stack for Custom Net-

work Functions. In Proc. of USENIX ATC’18.

[5] Keqiang He et al. 2016. AC/DC TCP: Virtual Congestion Control En-
forcement for Datacenter Networks. In Proc. ACM SIGCOMM’16.

[6] Eddie Kohler et al. 2000. The Click Modular Router. ACM Trans. Comput.
Syst. (2000).

[7] Linux Foundation. 2009. Open vSwitch. (2009). http://openvswitch.org.
[8] Zhixiong Niu et al. 2017. Network Stack As a Service in the Cloud. In

Proc. of ACM HotNets’17.

98

http://openvswitch.org

	1 Introduction
	2 Design
	3 Preliminary Results
	References

