
Interactiles: 3D Printed Tactile Interfaces to Enhance
Mobile Touchscreen Accessibility

Xiaoyi Zhang1*, Tracy Tran1*, Yuqian Sun1, Ian Culhane2, Shobhit Jain1, James Fogarty1, Jennifer Mankoff1

Computer Science & Engineering1, Mechanical Engineering2
DUB Group | University of Washington

{xiaoyiz, tracyt28, ys47, shobizz, jfogarty, jmankoff}@cs.uw.edu, iac2@uw.edu

ABSTRACT

The absence of tactile cues such as keys and buttons makes

touchscreens difficult to navigate for people with visual

impairments. Increasing tactile feedback and tangible

interaction on touchscreens can improve their accessibility.

However, prior solutions have either required hardware

customization or provided limited functionality with static

overlays. Prior investigation of tactile solutions for large

touchscreens also may not address the challenges on mobile

devices. We therefore present Interactiles, a low-cost,

portable, and unpowered system that enhances tactile

interaction on Android touchscreen phones. Interactiles

consists of 3D-printed hardware interfaces and software

that maps interaction with that hardware to manipulation of

a mobile app. The system is compatible with the built-in

screen reader without requiring modification of existing

mobile apps. We describe the design and implementation of

Interactiles, and we evaluate its improvement in task

performance and the user experience it enables with people

who are blind or have low vision.

Author Keywords

Mobile accessibility; tactile interfaces; visual impairments;

3D printing; touchscreens.

ACM Classification Keywords

H.5.m. Information Interfaces and Presentation (e.g., HCI);

K.4.2. Assistive Technologies for Persons with Disabilities.

INTRODUCTION
Mobile touchscreen devices and their applications (apps)

play increasingly important roles in daily life. They are

used in accessing a wide variety of services online and

offline (e.g., transit schedule, medical services). Full access

to these services is important to the 253 million people

living with visual impairments [24]. Mobile screen readers

provide audio and vibration feedback for people with visual

impairments [2,9], but this feedback does not match the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ASSETS '18, October 22–24, 2018, Galway, Ireland
© 2018 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-5650-3/18/10...$15.00
https://doi.org/10.1145/3234695.3236349

quality of a sighted user’s experience [4]. When a screen

reader takes what is inherently a 2D spatial interface of

menus, hierarchies, and other common graphical user

interface elements and transforms it into a linear audio

stream, information is inevitably lost to the user.

Tactile feedback and tangible interaction can improve

accessibility [4,13,20], but previous approaches have either

required relatively expensive customization [6], had limited

compatibility across multiple apps [15,22,29], consisted of

many hardware components that were difficult to organize

or carry [4], or not focused on mobile systems [4,20].

Compared to larger touchscreens, mobile touchscreens pose

additional challenges, including smaller screen targets and

the necessity of using the device on-the-go. Static physical

overlays on mobile devices include raised areas and/or

cutouts to provide tactile feedback and guidance. However,

prior research has limited each such overlay to a specific

screen in a single app (e.g., [15,22,29]).

We present Interactiles, an inexpensive, unpowered,

general-purpose system that enhances tactile interaction on

touchscreen smartphones. It consists of two major parts:

1) a set of 3D-printed hardware interfaces that provide

tactile feedback, and 2) software that understands the context

of a currently running app and redirects hardware input to

manipulate the app's interface. The hardware material costs

less than $10. Without any circuitry, our system does not

Figure 1. Interactiles allows people with visual

impairments to interact with mobile touchscreen phones

using physical attachments, including a number pad (left)

and a multi-purpose physical scrollbar (right).

* The first two authors contributed equally to this work.

Xiaoyi Zhang had the initial idea and built the software.

Tracy Tran built the hardware.

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

131

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3234695.3236349&domain=pdf&date_stamp=2018-10-08

consume power and therefore preserves phone battery life.

Our validation shows that its functionality is compatible

with most of the top 50 Android apps. In our usability

study, Interactiles showed promise in improving task

completion time and increasing user satisfaction for certain

interactions. Our results support the value of a hybrid

software-hardware approach for providing tangibility while

maximizing compatibility across common apps.

Use Case Scenario

The Interactiles system is designed to work with mobile

screen readers while providing tactile feedback. Its

hardware base is a 3D-printed plastic shell that snaps on a

phone, and the shell contains three hardware components: a

number pad, a scrollbar, and a control button at the bottom

of the scrollbar. Users may flip in and out hardware

components for different tasks. When all hardware

components are flipped out and the software is off, users

have full access to the touchscreen as normal. These

hardware components work with our software to achieve

five main functionalities: element navigation, bookmarking,

page scrolling, app switching, and number entry. These

features are described in the following user scenario and

also demonstrated in our supplementary video.

Consider a user named Jane. To use Interactiles, she turns

on the software and flips in the scrollbar. When the

software is active, a floating window appears on the screen

to receive touch events from the scrollbar. She browses the

Amazon mobile app to buy a backpack. Starting with the

element navigation mode, she moves the scroll thumb to

hear information for each product on a page. When she

navigates through all products on the current page and the

scroll thumb arrives at the bottom of the scrollbar, she long

presses the scroll thumb to move to the next page.

While Jane is browsing, she finds a backpack with good

reviews and a reasonable price. She would like to browse

through all the products before purchasing, but she also

wants to be able to go back to this backpack later. Thus, she

long presses the control button to bookmark this backpack.

After going through a long list of backpacks, Jane realizes

she likes the bookmarked one better. She presses the control

button once to activate the page scrolling mode. She slides

up the scroll thumb to scrolls up pages. Her phone vibrates

and announces the bookmark content when it scrolls to the

page containing the bookmarked backpack.

While Jane is shopping, a new message notification pops up.

She presses the control button to activate app switching

mode and hears “Mode: App” as confirmation. She moves

the scroll thumb to hear the recently opened apps. When

she hears “Messages”, she double-taps the scroll thumb and

the Messages app opens.

Jane presses the control button again to switch back to

element navigation mode. Moving the scroll thumb, she

hears the subject line for each message (e.g., “What’s the

address for coffee on Monday?”) and then navigates to the

reply text field. She double-taps the scroll thumb; the text

field is active for input, the phone soft keyboard pops up,

and a floating window for the number pad appears on the

screen. Jane flips in the physical number pad for number

entry. She enters numbers using the number pad and enters

letters using the phone soft keyboard as normal.

Overview

In the following sections, we first explore challenges faced

by people with visual impairments in touchscreen interactions

as well as prior software and hardware solutions to these

challenges. We highlight an important gap in adding tangible

interaction to mobile phones. Next, we introduce the

Interactiles system to address this gap, and describe details

of its hardware/software implementation. Then, through

user studies, we evaluate the improvement of Interactiles on

task performance and user experience. Finally, we discuss

the system limitations and potential future work.

RELATED WORK

This section explores the specific challenges individuals with

visual impairments encounter when using touchscreens and

prior research efforts to address these problems. We define

our main design goals from the unaddressed aspects of

these challenges.

Challenges in Graphical Interface Accessibility

Built-in screen readers (e.g., TalkBack [9] and VoiceOver

[2]) on mobile touchscreen devices have become widely

adopted by people with visual impairments. However, visual

information is lost during the text-to-speech conversion

(e.g., spatial layout or view hierarchies). Qualitative studies

[4,20,22] have investigated difficulties faced by people with

visual impairments using screen readers: Baldwin et al. [4]

conducted a long-term field study of novices learning

general computer skills on desktops, McGookin et al. [22]

investigated touchscreen usage across many types of devices

such as phones and media players, and Kane et al. [17]

specifically focused on mobile touchscreens. These studies

consistently found problems with locating items within

graphical interfaces that were designed to be seen rather

than heard. Furthermore, once objects are located, it is still

a challenge to understand their location in the context of the

app, remember where they are, and relocate them. This

location and relocation process is time-consuming, with

users needing to make multiple passes through content and

listen to increasingly longer amounts of audio. Even then,

they may not realize that their desired target is not

reachable in the current context [4]. As Kane et al. and

McGookin et al. demonstrated, this basic location problem

exists not only on desktops but also on mobile touchscreens.

We would expect this problem to be compounded on

phones because their targets are smaller and denser.

Because of these issues, users often carry multiple devices

with overlapping functionality that each offer better

accessibility for specific tasks [17,22]. A few examples

include the media players with tactile buttons [22], or the

popular Victor Reader Stream [16], a handheld media

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

132

device specifically for people with visual impairments.

Although iPods and smartphones support similar features to

these devices, their flat screens make them more complex to

use. However, carrying multiple devices can be difficult to

manage [17] and costly [22] (e.g., the Victor Reader Stream

costs $369). For a population that is more likely to live in

poverty than those with sight [1], this represents a

substantial barrier to equal information access.

These basic problems of locating, understanding, interacting

with, and relocating objects via a touchscreen lead to the

secondary problems of needing to manage multiple devices

and the high cost of additional devices. Prior work to address

these problems has taken different approaches, ranging

from software-focused (e.g., [17,19]), hardware-focused

(e.g., [8]), to hybrid (e.g., [4,20]) in improving accessibility.

Software-based Touchscreen Assistive Technologies

Software-based approaches to improving accessibility

introduced new interaction techniques designed to ease

cognitive load and shorten task completion time. For

example, Access Overlays [19] improves task completion

times and spatial understanding through software overlays

designed to help with target acquisition. However, although

Access Overlays showed accessibility improvements on

large touchscreens, such an approach may not work on

mobile devices due to the significantly smaller screen size.

In the case of mobile phones, Slide Rule re-maps gestures

to support screen navigation separately from activating

targets [17], similar to the mechanism now supported by

TalkBack and VoiceOver. NavTap [12] presented a

navigational text entry method that divided the alphabet

into rows to reduce cognitive load and improved typing

speed over a 4-month study. BrailleTouch [26] allowed

users to enter Braille characters using three fingers on each

hand and offered a significant speed advantage over standard

touchscreen braille keyboards. For the task of number entry,

DigiTaps [3] encoded different gestures to the ten numeric

digits. These gestures required a varying number of fingers

to tap, swipe, or both. Although the DigiTaps system

showed improvement over VoiceOver in number entry

speed, it required users to remember the 10 gesture patterns

and may also benefit from a tangible component.

Although text entry is an important activity, mobile phones

are also used for a much wider variety of activities such as

perusing bus schedules, weather information, and personal

calendars. These all require some form of text entry, but

also actions specific to each app [18]. Indeed, the plethora

of apps on mobile phones [27] makes the creation of new,

general interaction patterns challenging.

Tangible Accessibility

Although software solutions are already helpful for

accessibility improvement, physical modifications are a

promising complement to software. There have also been

efforts to introduce or modify hardware to improve

touchscreen accessibility.

One area of research has been in creating physical

interaction aids for focused applications such as maps and

graphics. Tactile maps [29] overlaid on a touchscreen were

fabricated using conductive filament that could transfer

touch. In TacTILE [15], a toolchain was presented for

creating arbitrary tactile graphics with both raised areas and

cutout regions to present information. Both of these

approaches resulted in positive feedback by making it easier

to explore spatial information, but the tangible hardware

was limited to a single screen on a single application.

Additionally, the hardware was not attached to the phone

and thus required the user to carry it separately.

For larger touchscreens, such as those found on tabletops or

kiosks, Touchplates [20] introduced a set of guides to

provide tactile feedback. They are versatile and inexpensive

because of their use of standard touchscreen software and

can be implemented by cutting holes in inexpensive materials

such as cardboard and acrylic sheets. The visual tags

allowed the software event listeners to configure to an

arbitrary touchplate location. However, the interaction

innovations of Touchplates may not all work on smaller

mobile screens. The need to remove, reattach, and store

guides such as the ones presented by Touchplates while on-

the-go could make it hard to manage them for a mobile

setup. The cutout mechanism would also be harder to

interact with on a smaller screen. Tangible interfaces have

also been used to enhance screen reader access in desktop

computers without a touchscreen. The Tangible Desktop [4]

showed significant improvements in task completion time

on a personal computer by replicating traditional desktop

metaphors in the physical world. However, its setup of a

potentiometer-powered scrollbar and physical icons would

be difficult to carry around. Hybrid-Brailler [31] combined

physical and gestural interaction to provide fast and

accurate Braille input. Its physical interface is on the back

of the phone where it does not block gestural interaction on

the screen. Therefore, the physical interface communicates

with phones via Bluetooth, which requires power and

increases the cost and complexity of the system.

A variety of commercial designs and products also provided

hardware solutions to text entry. The Touchfire keyboard

cover [30] added a rubber overlay for iPad keyboards.

Although useful, many reviewers were not impressed by the

$50 price [21], and the small size of a phone keyboard does

not suit the same approach. There were also customizable

stickers and screen protectors with raised dots [14], which

were only useful on a single screen, and customizable

phones with Braille buttons [25] which only offered basic

functionality such as calling and failed to meet everyday

use requirements.

In summary, there appears to be an untapped opportunity to

use tangible means to improve accessibility in mobile

touchscreen computing. Prior work has demonstrated the

potential of new software-enabled interaction techniques

which make it easier to locate objects, but these do not fully

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

133

use tangibility as a memory aid and tool to ease cognitive

load. It has also been shown that inexpensive, easily

fabricated tactile pieces have great promise but do not extend

well to a mobile setup because they have many pieces which

are difficult to manage on-the-go or lack broad deployability

on a mobile phone due to their narrow applications.

Design Goals

Considering the challenges highlighted in the related work,

we identify the following design goals.

Tangible with mobile focus: Prior research [4,20] shows

the positive impact of tangible interaction, but most such

work has been designed for large touchscreens. The

prevalence of mobile devices and apps urges us to design

for mobile touchscreens, which present a different set of

challenges than larger interfaces.

Portable, contained, and non-blocking: Because we design

for mobile devices, our solution should be portable enough

to carry on a daily basis. All hardware components should

be contained in one piece so that users do not have to carry

additional pieces and assemble them. In addition, the

system should work with built-in screen readers, and should

not block normal touchscreen interaction when not in use.

Compatible with various mobile apps: In previous

research [15,22], a tactile overlay is limited to one screen in

a single app. Carrying a piece of hardware for each screen

or app is not practical on a daily basis. We would like to

design some common functionalities that can be used in

different mobile apps.

Low-cost: There are commercial products that provide

tactile feedback (e.g., Braille phone [25]). However, they

may not be affordable to people with disabilities, a

population more likely to face socio-economic barriers [1].

Therefore, we would like to design an inexpensive solution

for better deployability.

Unpowered: Many rich tactile interactions have been

enabled through electrical [5] and electrical-mechanical

experiences [4]. However, these systems increase the cost

of assistive technologies and decrease portability, which is

important for mobile platforms. Therefore, we would like to

design an unpowered solution.

INTERACTILES DESIGN AND IMPLEMENTATION

Interactiles is an inexpensive, unpowered, general-purpose

system that increases tactile interaction on touchscreen

phones. Its hardware allows users to interact and receive

tactile feedback. Its software receives touch input on

hardware and invokes the corresponding action on the current

running app. The system is designed to work with built-in

screen readers and mobile apps without modification to

them. Currently, our software supports devices running

Android 5.0 and above (82.3% of Android devices [10]).

Before we started to design Interactiles, we spoke with two

screen reader users to learn what improvements they

desired in mobile touchscreen interaction. Their feedback

motivated us to design the selected functions. They

expressed disappointment at the disappearance of physical

phone buttons. They also cited interactions and situations

where they have particular difficulty, such as losing one’s

place while using explore-by-touch on a moving bus. This

motivated us to design the element navigation feature, as

the scroll thumb keeps one’s place on the screen. Both of

them did not like entering numbers, especially in a time-

sensitive situation. They expressed enthusiasm for physical

buttons that would help them with such problems.

Hardware Components

The unpowered and portable Interactiles hardware provides

tactile feedback to users. Inspired by prior research on

capacitive touch hardware components [7], our hardware

leverages conductive material to connect a user’s finger to

an on-screen contact point, thus registering a touch event.

Our prototype costs less than $10 in materials. Most parts of

the hardware are 3D-printed with inexpensive PLA plastic.

Some parts are handmade from silicone, conductive fabric,

conductive thread, and standard fasteners (e.g., nuts, bolts,

and washers). The print requires about 10 hours and assembly

requires about 2 hours. As it is a one-time print, the time is

unlikely prohibitive. In addition, users may receive help

from volunteer communities. For example, e-NABLE is

successful in adapting and assembling AT (e.g., prosthetic

limbs) for people with disabilities. The hardware base is a

3D-printed plastic shell that snaps on a phone, and three

hardware components are attached to the shell:

The Scrollbar is attached to the right side of the phone

shell. It consists of a 3D-printed PLA frame and a scroll

thumb. The scroll thumb is a piece of metal bent at a right

angle, encased in PLA, and covered with conductive fabric.

We chose fabric because it transmits capacitive touch

reliably, feels comfortable, and does not scratch the

touchscreen. The scrollbar is attached to the shell using a

hinge; it can be flipped out from the screen when not in use.

The Control Button is attached to the bottom of the

scrollbar. It is a silicone button sewn through with

conductive thread to transmit touch. The button was cast

using a 3D-printed mold to control button size and shape.

Silicone material was chosen to make sure the button is

comfortable to press. Because there lacks a castable,

affordable, conductive material, we sewed conductive

thread to make the silicone conductive.

The Number Pad is attached to the left side of the phone

shell. It is a 3D-printed PLA plate that contains a 4x3 grid

of silicone buttons. Similar to the scrollbar, the number pad

is hinged and can be flipped out when not in use.

Software Proxies

The Interactiles software is an accessibility service which

runs in an app-independent fashion. To increase

deployability and generalizability, our software is

implemented with standard Android accessibility APIs. It

does not require rooting a phone or access to app source

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

134

code and is compatible with Android TalkBack. Our

implementation approach was inspired by Interaction

Proxies [32], a strategy to modify user input and output on

the phone that can be used for accessibility repairs such as

adding alternative text or modifying navigation order.

Interaction Proxies [32] consist of one or more Floating

Windows, which are visible on top of any currently running

app. As these proxies sit above the app in z-order, they can

modify both the output and input of the underlying app.

Output is modified by drawing inside the floating windows.

Input is modified using Event Listeners which intercept all

touch events on the floating window using the Android

accessibility API and consume them before they reach the

underlying app. Interaction Proxies can further leverage

accessibility APIs for Content Introspection of the

underlying app as well as Automation of actions.

Using these abstractions, Interaction Proxies implemented

proof-of-concept accessibility repairs [28] that are

compatible with various mobile apps. In this paper, we

describe our implementation which, although it leveraged

concepts from Interaction Proxies, was entirely novel.

The Interactiles Service captures touch events generated

when users touch the conductive portion of a hardware

component, interprets them, and takes appropriate action. It

captures events using floating windows with attached event

listeners and delivers events using a combination of content

introspection and automation.

The event listeners monitor AccessibilityEvents [11]

generated in the currently running app and floating

windows to perform actions. User interaction with

TalkBack generates events different from standard touch

events so that we cannot use the standard gesture listener.

We implemented a custom listener to recognize the

following events that occur within the floating windows:

1) tap, 2) double tap, 3) slide (press and move scroll thumb),

and 4) long press with different durations.

The floating windows in Figure 2 sit underneath the

relevant piece of hardware, and thus do not interfere with

user interactions on the uncovered screen area. The

presence/absence of each floating window and its content

are determined by the current Interactiles mode, along with

the state of the current app or apps that are running. In

particular, our software assumes the scrollbar is always

active until the phone keyboard pops up for text entry.

Whenever the keyboard is active, the number pad floating

window appears, and the scrollbar floating window is

temporarily removed to avoid blocking the keyboard. The

user flips in the physical number pad and flips out the

scrollbar accordingly. When the keyboard is deactivated,

the number pad floating window disappears, and the

scrollbar reappears. When all hardware components are

flipped out and the software is off, the user has full access

to the touchscreen as normal.

The scrollbar floating window is implemented using a

dynamic list of buttons representing the items to be scrolled

through. When the scroll thumb slides to a button,

TalkBack announces the alternative text of the button. The

scrollbar has three modes: App Switching, Element

Navigation, and Page Scrolling. A short press on the

control button at the bottom of the scrollbar will switch

modes, announce the new mode, and update the buttons in

the floating window under the scrollbar. The number and

size of buttons are dynamically determined by the number

of elements on the current screen for Element Navigation

mode and are constant in the other two modes. The

scrollbar floating window also has an active button reserved

for the control button. For Number Entry, the number pad

floating window is implemented using a static 4x3 grid of

buttons that becomes active when a text box is in focus.

App Switching: Screen reader users typically switch

between apps using a physical button or a software button

at the bottom of the screen, and then navigate through a list

of opened apps. However, locating this button and

switching through apps can be difficult. For example,

TalkBack requires three swipes to navigate to the next app

(announce app name, open app info, close app). In our App

Switching mode, the user simply slides the scroll thumb to

hear the name of each opened app (represented as a button

in the floating window). Double-tapping the scroll thumb

opens the app. To minimize required precision, Interactiles

defaults to switching between the four most recently opened

apps, a number that can be customized if desired.

Element Navigation: TalkBack and VoiceOver users can

swipe left/right to navigate between all UI elements on the

screen in a linear order. Users can swipe quickly without

listening to the full text of each item (e.g., in a long list).

Alternatively, users can use explore-by-touch, where they

move one finger around the screen to hear about on-screen

elements. It is a faster way to skip content in a long list, but

risks missing elements with small or hard-to-reach targets.

Interactiles uses the physical scrollbar to navigate through

app UI elements; each element creates a button with its

alternative text in the floating window. Users slide the

scroll thumb to move the focus between elements and hear

Figure 2. Floating windows created for number pad (left),

scrollbar (right), and control button (right bottom). The

windows can be transparent; we use colors for demonstration.

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

135

the content of the focused element. A quick slide can skip

elements. Double-tapping the scroll thumb clicks the

focused element. When the scroll thumb arrives at the

top/bottom of the scrollbar, users can long press the scroll

thumb to move to the previous/next page.

Page Scrolling: Screen reader users may scroll pages

instead of elements, with a two-finger or three-finger swipe

on the screen. Advanced TalkBack users can also assign a

two-stroke gesture to scroll pages with one finger.

TalkBack announces the page location after scrolling

(e.g., “showing items 11 to 20 of 54”). Interactiles supports

a similar function with tactile feedback on the physical

scrollbar. If the current app screen is scrollable, users can

slide up/down the scroll thumb to scroll to the previous/next

page and hear the page number. When the scroll thumb

arrives at the top/bottom of the scrollbar, users can quickly

slide down/up the scroll thumb without scrolling screen.

Thus, users can keep scrolling in an infinite list.

Bookmarking: It can be challenging for TalkBack users to

relocate a UI element in an app. Interactiles uses the

physical control button to bookmark a UI element in an app.

In Element Navigation mode, when users navigate to an

element of interest, they can long press the control button

and hear “Bookmarked” with the alternative text of that

element. Later, when users move to a screen that contains

the bookmark (a new screen is open or the screen scrolls),

the phone vibrates and announces “Bookmark found” with

the alternative text of the bookmarked element. Currently,

our system allows one bookmark per app.

Number Entry: TalkBack users enter numbers by

switching to the symbol mode of soft keyboard. However,

locating first the symbol keyboard and then a specifc

number on the keyboard is challenging. In addition, typing

a combination of letters and numbers requires frequent

keyboard mode switching. Interactiles uses the physical

number pad to enter numbers; as seen in Figure 1 (Left) and

Figure 2 (Left), users can type letters on the soft keyboard

at the same time. The number pad floating window contains

a 4x3 grid of buttons, matching the position of the physical

buttons. The number pad uses a layout similar to a phone

keypad: the first three rows have number 1 to 9, and the

bottom row has “read the entered text”, number 0, and

“backspace”. When a button is pressed, our software

updates the content of the active text field by appending a

number or removing the last character.

System Improvement from Pilot Study

After we developed a fully working prototype of the

software and hardware, we conducted a pilot study with a

blind participant (a 38-year-old male who has used

TalkBack for 7 years) and iterated based on his feedback.

Originally, to go to the next page of elements when in

element navigation mode, the user had to switch to page

mode, scroll down a page, and switch back to element mode

Based on our pilot study, we changed the system to allow a

“next page” action while in element mode. We also added

.

more verbal feedback to help the user. The final system

announces the page number while page scrolling, the

bookmark content when found, and the entered characters

in a text box. In the final system, pages were not directly

mapped to scrollbar locations; the user goes to the next

page when at the bottom of the scrollbar by moving the

scroll thumb quickly up (faster than 10 cm/s) to get more

room, and then down slowly again.

System Validation Across Android Apps

To test robustness, we validated Interactiles compatibility in

50 Android apps from Google Play Store. Our sample apps

were 5 top free apps in each of 10 categories (i.e., Book,

Communication, Entertainment, Fitness, Navigation, Medical,

News, Productivity, Shopping, Social). For each app, we

tested page scrolling, element navigation, and bookmark on

a screen that allows scrolling. We tested number entry on a

screen that allows text entry. When possible, we tested the

main screens of apps (e.g., News Feed screen in the

Facebook app). The results are summarized in Table 1.

Page

Scrolling

Element

Navigation

Bookmark Number

Entry

App

Switching

49/50 42/50 49/50 49/49 50/50

Table 1. Number of apps in which Interactiles features worked

as expected, out of 50 sample apps. One app did not include

any text field to test number entry.

Page scrolling worked as expected in all but one app. In the

main screen of Google Play Book, our system did not scroll

the page vertically, but instead scrolled the large horizontal

banner at the top. As future work, we may allow developers

to annotate which element should be scrolled in specific

apps or may allow scrolling in multiple scrollable elements.

Element navigation did not work as expected in 8 apps. In 3

apps, there are more than 30 UI elements on a screen so that

each corresponding button on the floating window was too

small for the scroll thumb to individually select. In 5 apps,

our software ignored important UI elements (e.g., bottom

tab buttons in Reddit). These apps did not provide

alternative text on those UI elements, and therefore our

software ignored them. As future work, we may also enable

developers to annotate what elements should be ignored and

what should be included. We can also design new hardware

to support infinite scrolling (e.g., a scroll wheel) so that

each element will have a larger, constant size selection area.

Bookmarks could be created in all apps, and found in all but

one app. To display a list of products, the Amazon app used

a WebView, which exposed out-of-screen content to

accessibility APIs. Thus, our system incorrectly found the

bookmark even if it is not visible on the current screen. We

solved this by checking the visibility of elements. As future

work, we may examine other UI components that expose

out-of-screen content.

Number entry worked as expected in all apps (except Rosa,

which did not contain any text field to test). The number

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

136

pad floating window appeared when the keyboard popped

up and the pressed number was correctly updated in the

active text field. The backspace and announcement

functions worked as well.

App switching worked in all apps, as this feature did not

rely on specific app screen content.

USABILITY STUDY

To complement the feedback that informed our design of

Interactiles, we conducted a study comparing Interactiles

with TalkBack (the built-in Android screen reader). This

study collected qualitative reactions to Interactiles and

compared task completion times and user preferences.

Participants

We recruited participants (N = 5) through word of mouth,

university services, and mailing lists of organizations of

blind people. 3 participants were blind while 2 had some

level of impaired vision. In the comparative study, all

participants use mobile screen readers, primarily iOS

VoiceOver. Table 2 shows their background.

ID Age Gender Vision Screen Reader

Proficiency

P1 24 Male Blind Intermediate

P2 58 Female Blind (L)

Low Vision (R)

Basic

P3 29 Male Blind Advanced

P4 31 Female Low Vision Advanced

P5 43 Female Blind Intermediate

Table 2. Information on our study participants,

who were all VoiceOver users. The proficiency

was self-rated as basic, intermediate, or advanced.

Comparative Study Method

We conducted a comparative study in a university usability

lab and in public libraries. We employed a within-subjects

design to examine the completion time, accuracy, and user

preference between two interaction methods: A Nexus 6P

phone with TalkBack (the control condition), and the same

phone with TalkBack and Interactiles (the experimental

condition). Participants had the option to set up the phone

with their preferred TalkBack volume and speed settings.

Participants were asked to complete four tasks that isolated

specific functionality, followed by a more open-ended task

to explore the system as a whole. At the beginning of each

task, we explained the corresponding Interactiles

feature(s) and gave the participant a training task to gain

familiarity with Interactiles. The participant was also given

time to do the training task with TalkBack.

For each participant and each task, we randomized the

ordering of the conditions to counterbalance order effects.

Participant feedback was audio recorded by the researchers.

After each task, the participant was asked to give qualitative

feedback and answer Likert scale questions about the speed,

ease, intuitiveness, and confidence while using Interactiles

and TalkBack. Upon completion of the tasks, the participant

was asked to provide general feedback about Interactiles

and TalkBack and their preference.

Tasks

The specific tasks in the usability study were designed to

test each Interactiles feature. Tasks were chosen by

considering the difficulties faced in using common apps and

how Interactiles might be used in such situations. These

tasks covered target acquisition (locate), browsing speed

(locate, relocate, app switch), data entry (mixed

text/number entry), and spatial memory (relocate).

App switch: With four apps open, the participant was

asked to switch from one of the four apps to another. Then

the participant was asked to switch to another of the four

apps. This was repeated four times in total.

Locate: The participant was asked to find a specific song in

a Spotify playlist. In the Interactiles condition, the participant

was encouraged to use element navigation to search through

the current page of songs. They can slide to navigate

elements and long press at the bottom of the scrollbar to

move to the next page. When the participant found the song

in the Interactiles condition, we encouraged the participant

to bookmark the song for the relocate task described next.

Relocate: After the participant located the song in the

locate task, the playlist was scrolled back to the top and the

participant was asked to find the song again. In the

Interactiles condition, we encouraged the participant to use

page scrolling to find the bookmark from the locate task.

Because participants were novices with respect to

Interactiles, we explicitly encouraged the participant to use

Interactiles functionality.

Mixed text/number entry: The participant was asked to

compose a message in the default Messages app, which

required entering both numbers and text. The message was

dictated to the participant as follows: “My number is

[phone number]. Meet me at [address]”.

Holistic: This task consisted of three steps. The participant

was first asked to find a specific product by name on

pre-curated Amazon shopping lists without using the search

bar (a water bottle using Talkback and a backpack using

Interactiles). When the participant found the product, they

were asked to switch to Messages to enter a contact phone

number and a shipping address. In the end, the participant

was asked to switch back to Amazon and add the product to

their shopping cart. This task was designed to encourage

participant to use all Interactiles features.

Data Collection and Analysis

Our data included times for each task, accuracy for each

task, task-specific Likert scales, general Likert scales, and

qualitative feedback.

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

137

Time data was analyzed within participants in comparing

their performance using Interactiles against the control

condition but could not be directly compared across

participants because each participant used TalkBack at a

different speed. We use bar charts to show trends in the

Likert scale data. However, our sample was too small to

calculate statistics for either timing or Likert scale data. The

qualitative data was organized into themes by one

researcher and discussed as a group until agreement was

reached on what was learned.

Results

In terms of speed, Interactiles improved performance times

for the app switching and number entry tasks, as can be

seen in Figure 4. Participants were uniformly positive about

the number pad but were mixed on the usefulness of the

scrollbar and control button even though the scrollbar did

result in better task completion time for the previously

mentioned task. Average Likert scale ratings for each

condition and task can be seen in Figure 3.

App switch: As seen in Figure 4, participants performed

app switching with Interactiles almost twice as quickly as

they did with just TalkBack. Participants also had a positive

response to this task. “Compared to hunting down the

overview button every time, it was relatively quick and

painless, especially when I figured out how to operate the

slider with the thumb.”

Locate/Relocate: The scrollbar had slower task completion

times for 3 out of 5 participants than Talkback for locate, in

which participants used element navigation. For relocate, 3

out of 5 participants had faster task completion time using

Interactiles. The individual times can be seen in Figure 5.

Qualitative feedback from participants confirmed that the

scrollbar does not provide a performance advantage over

the default Talkback element navigation methods (i.e.,

swipe navigation or explore-by-touch). Though participants

did use physical location to find elements (P1 said, “This

song should be in the middle of the scrollbar…”), they were

unsure the exact scrollbar location of the element and slid

the scroll thumb slowly to avoid skipping elements. We

observed that participants varied in how they touched the

scroll thumb (index finger, thumb, or a two-finger pinch)

and how hard they pressed the scroll thumb against the

screen. P1 said, “I feel like the scrollbar with the way it

scrolls between pages isn’t quite as intuitive as I would

think,” while P2 had trouble knowing when to use element

navigation versus page scrolling. The confusion of where

and how to use the scroll thumb was also noted by P3, who

said, “I would have kind of hoped that I could use my

thumb on the scrollbar without having to lift and put it back

down [to move to the next page].” Additionally, some

behaviors registered unintended touch events on the screen

(e.g., a long press was interpreted as two short presses

because the touch contact was lost in the middle). However,

participants did see potential value in the scrollbar. Though

P5 felt that using the scrollbar required her to uncomfortably

hold the phone, she said, “It’s just nice being able to touch

something,” and later followed up with “I think for

beginners on the phone, that scrollbar would be better.”

Although relocate was faster using Interactiles than

TalkBack for 3 out of 5 participants with the help of the

Figure 3. The average Likert scale rating (strongly disagree = -2, strongly agree = 2) with standard deviation from participants

for tasks. Participants were asked how easy, quick, intuitive, and how confident they felt completing each task with the control

condition (only TalkBack) and Interactiles. Locate/relocate was rated as one task. P5 did not complete or rate the holistic task.

Figure 4. Average task completion time of each task in the

study. P4 did not complete app switching on the control

condition, and P5 did not complete the holistic task.

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

138

bookmark feature, participants were skeptical of its value

due to the current implementation. Participants expressed

desire for being able to automatically go to a bookmark. P3

said, “I question the usefulness of bookmarking mostly

because digitally when I think of bookmark I can

immediately tap a button and go to this control versus

having to scroll around a find it.”

Mixed text/number entry: Using the number pad was

much faster than the keyboard alone for all participants.

Participants also showed strong preference for the number

pad, as can be seen in Figure 3. For example, P1 said “Where

I would use this piece of hardware the most is the number

pad… [to] enter the extension 156 during a phone call…

I can’t do that fast enough [with the default keyboard].”

Similarly, P3 liked the number pad “for entering long strings

of numbers... It saves time switching to the number/symbol

keyboard and is more intuitive because the layout of the

numbers on the symbol keyboard is horizontal and that

takes a bit of getting used to.” P4 was quite enthusiastic,

saying “This I love. This is genius,” but also suggested

“rather than the key that reads aloud what’s on the screen,

I might change that to something that’s more commonly

used, maybe a pound sign or perhaps a period or a hyphen.”

Holistic value: Functions overloaded to a single component

created confusion for participants. For example, there were

two ways of going to the “next page” (long press at the

bottom of the scrollbar in element navigation, and a slide in

page scrolling). These two ways confused our participants

due to overloaded functionality on a single component and

the mode switch required to go between them. In the words

of P4, “It felt a little clumsy figuring out up/down, when to

push, how long to hold it.” On the other hand, when the

mode switches and associated functionality were clear,

Interactiles was valued. To use the number pad, participants

had to make a conscious effort to flip the number pad onto

the screen and the scrollbar off the screen. The number pad

feature, although requiring a mode switch of sorts, resulted

in high participant satisfaction.

Customizability

One sentiment expressed by P1, P2, and P3 was the desire

to personalize Interactiles to their own needs. For example,

P1 expressed enthusiasm for the number pad but did not

feel he needed the scrollbar. P2 felt the hardware was

uncomfortable to hold and wished she could move

components around. P3 was used to holding his phone by

his ear; it was difficult to use the scrollbar in that position.

All participants interacted with the scroll thumb a little

differently (index finger, thumb, or a two-finger pinch). The

user feedback suggests that a tactile approach to mobile

touchscreen accessibility needs to be physically

customizable in both the types and locations of components.

DISCUSSION

Our results demonstrate that Interactiles is particularly

useful for app switching and number entry, which are tasks

that currently require a mode switch, but may not be as

useful for tasks that are already quick even without

tangibility such as locate and relocate. Our analysis also

explores interactions that may be more helpful to map to a

scrollbar and provides design recommendations for future

work in tangible mobile touchscreen accessibility.

As shown in Figure 4, Interactiles did not provide a major

speed advantage for all tasks. However, it did improve task

completion time for app switching and number entry.

Because participants were beginners with both Interactiles

and TalkBack, this suggests that Interactiles may be of

value for novice users. Given more time to learn,

participants might also be more comfortable with

Interactiles and find greater value in its functionality.

Interactiles was least helpful for locate and relocate. It

failed to serve as a memory aid and was not reliable enough

to be trusted by participants. A secure clip for holding the

scrollbar to the screen to maintain screen contact would help

to reduce uncertainty that resulted from inconsistent touch

events. The scrollbar may be more useful for known

mappings (e.g., a menu) than unknowns (e.g., infinite

scroll). In the case of relocate, although Interactiles

improved task performance for 3 out of 5 participants,

participants wanted an additional feature to automatically

arrive at bookmarks. Given the speed benefit of bookmarking,

this could be of great value. A future implementation might

include a short strip of buttons that could be used as

bookmarks, similar to saved radio station buttons on cars.

Interactiles was slower for element navigation than

Talkback (i.e., swipe navigation or explore-by-touch).

Because of the space limitations in the mobile platform,

many apps use linear layouts to deliver content. Even

though swipe navigation and explore-by-touch do not have

tactility, they work fast enough to help the user form a

coherent understanding of the app, especially when content

is linear. One reason may be the common use of one

dimensional layout in many small screen mobile

apps. Even though swiping and explore-by-touch do not

have tactility or much of a physical mapping, they work fast

enough to help the user form a coherent understanding of

the app, especially if content is linear. We believe this is the

reason the scrollbar did not rate highly with participants,

even though it did result in faster completion times for all

participants in the app switching task and was faster for 3

Figure 5. Individual task completion time

of locate and relocate tasks.

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

139

out of 5 participants in the relocate task. Participants still

provided positive feedback on having tangible feedback on

the physical scrollbar.

One of the most difficult challenges for tangible or screen

reader interaction on mobile platforms is infinite scroll.

Ideally, there should be no distinction between elements

and pages. The Interactiles approach of chunking elements

into discrete pages that requires users to stop processing

elements to go to the next page hurts a user’s memory and

understanding of the content. However, software

implementations of infinite scroll not only load the next

page only as needed, but also may even change the order of

elements each time the user begins scrolling. Overlapping

pages may help with this, but it may simply be that swiping

is a better model for interacting with infinite scroll content.

Interactiles was most valuable both in task completion

times and participant ratings for app switching and number

entry. This suggests the interactions to target on mobile

might be those that currently already require a mode switch,

particularly a difficult one such as opening the symbol

keyboard to enter symbols and numbers.

CONCLUSION AND FUTURE WORK

We have presented Interactiles, a system for enhancing

screen reader access to mobile phones with tangible

components. The success of Interactiles for app switching and

number entry provides support for a hybrid hardware-software

approach. Supporting materials (e.g., 3D-printing files) are

available at: https://github.com/tracyttran/Interactiles.

Interactiles enhances accessibility by enabling mobile

touchscreen tactility across multiple existing apps. It is the

first mobile system compatible across apps, as opposed to a

static overlay that only works with one screen

configuration. As shown in our technical validation,

Interactiles functions effectively in most of the top 50

Android Apps. Another major advantage is its low cost and

assembly from readily available materials. Both advantages

indicate that Interactiles is highly deployable.

We would also like to explore the value of Interactiles for

additional tasks such as menu access, copy/paste, and text

editing/cursor movement. There is also an opportunity to

enable T9 text entry [23] using the number pad and explore

its design choices (e.g., how to effectively present word

prediction candidates).

For future work, our study suggests the importance of

creating a toolchain for hardware customization. Advances

needed here would include an ability to create models for

“plug and play” components that could be snapped in and

out of the phone shell and a facility for configuring

mappings between components and tasks such as

bookmarking, app switching, and text entry.

Support for adding new types of components and invoking

their associated modes would also add flexibility to

Interactiles. A simple solution might be to place a physical

component on the screen and move a finger around its

edges, using a gesture recognizer to identify the component

according to its shape. If components are not all of a unique

shape, an alternative would be for components to include

small conductive strips that create a unique pattern when a

finger is swiped over them, which can then similarly be

recognized to identify the component.

ACKNOWLEDGEMENTS

This work was funded in part by the National Science

Foundation under award IIS-1702751, the National Institute

on Disability, Independent Living and Rehabilitation Research

under award 90DPGE0003-01, and a Google Faculty Award.

REFERENCES

1. Afb.org. Statistical Snapshots from the American

Foundation for the Blind. Retrieved from

http://www.afb.org/info/blindness-statistics/2

2. Apple. Accessibility. Retrieved from

http://www.apple.com/accessibility/osx/voiceover/

3. Shiri Azenkot, Cynthia L. Bennett, and Richard E.

Ladner. 2013. DigiTaps: Eyes-Free Number Entry on

Touchscreens with Minimal Audio Feedback. In

Proceedings of the ACM Symposium on User Interface

Software and Technology (UIST 2013), 85–90.

https://doi.org/10.1145/2501988.2502056

4. Mark S. Baldwin, Gillian R. Hayes, Oliver L. Haimson,
Jennifer Mankoff, and Scott E. Hudson. 2017. The

Tangible Desktop. ACM Transactions on Accessible

Computing (TACCESS) 10, 3: 1–28.

https://doi.org/10.1145/3075222

5. Olivier Bau, Ivan Poupyrev, Ali Israr, and Chris

Harrison. 2010. TeslaTouch: Electrovibration for

Touch Surfaces. In Proceedings of the ACM

Symposium on User Interface Software and Technology

(UIST 2010), 283–292.

https://doi.org/10.1145/1866029.1866074

6. Blitab. Blitab | Feelings Get Visible. Retrieved from

http://blitab.com/

7. Tzu-wen Chang, Neng-Hao Yu, Sung-Sheng Tsai,

Mike Y. Chen, and Yi-Ping Hung. 2012. Clip-on

Gadgets: Expandable Tactile Controls for Multi-touch

Devices. In Proceedings of the International

Conference on Human Computer Interaction with

Mobile Devices and Services (MobileHCI 2012), 163–

166. https://doi.org/10.1145/2371664.2371699

8. Yasmine N. El-Glaly, Francis Quek, Tonya Smith-

Jackson, and Gurjot Dhillon. 2013. Touch-screens Are

Not Tangible. In Proceedings of the International

Conference on Tangible, Embedded and Embodied

Interaction (TEI 2013), 245–253.

https://doi.org/10.1145/2460625.2460665

9. Google. Get started on Android with TalkBack.

Retrieved from

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

140

https://github.com/tracyttran/Interactiles

https://support.google.com/accessibility/android/answer

/6283677?hl=en

10. Google. Dashboards | Android Developers. Retrieved

from

https://developer.android.com/about/dashboards/index.

html

11. Google. AccessibilityEvent. Retrieved from

https://developer.android.com/reference/android/view/a

ccessibility/AccessibilityEvent.html

12. Tiago Guerreiro, Hugo Nicolau, Joaquim Jorge, and

Daniel Gonçalves. 2009. NavTap: a Long Term Study

with Excluded Blind Users. In Proceedings of the ACM

Conference on Computers and Accessibility (ASSETS

2009), 99–106.

https://doi.org/10.1145/1639642.1639661

13. Anhong Guo, Jeeeun Kim, Xiang “Anthony” Chen,

Tom Yeh, Scott E. Hudson, Jennifer Mankoff, and

Jeffrey P. Bigham. 2017. Facade: Auto-generating

Tactile Interfaces to Appliances. In Proceedings of the

ACM Conference on Human Factors in Computing

Systems (CHI 2017), 5826–5838.

https://doi.org/10.1145/3025453.3025845

14. A T Guys. Tactile Screen Protector for iPhone 5C

Phone Otterbox Case. Retrieved from

http://www.atguys.com/store/index.php?main_page=pr

oduct_info&products_id=172

15. Liang He, Zijian Wan, Stacy Biloa, Leah Findlater, and

Jon E. Froehlich. 2017. TacTILE: a Preliminary

Toolchain for Creating Accessible Graphics with 3D-

printed Overlays and Auditory Annotations. In

Proceedings of the ACM Conference on Computers and

Accessibility (ASSETS 2017), 397–398.

https://doi.org/10.1145/3132525.3134818

16. Humanware. Victor Reader Stream. Retrieved from

https://store.humanware.com/hus/victor-reader-stream-

new-generation.html

17. Shaun K. Kane, Jeffrey P. Bigham, and Jacob O.

Wobbrock. 2008. Slide Rule: Making Mobile Touch

Screens Accessible to Blind People using Multi-touch

Interaction Techniques. In Proceedings of the ACM

Conference on Computers and Accessibility (ASSETS

2008), 73–80.

https://doi.org/10.1145/1414471.1414487

18. Shaun K. Kane, Chandrika Jayant, Jacob O. Wobbrock,

and Richard E. Ladner. 2009. Freedom to Roam: A

Study of Mobile Device Adoption and Accessibility for

People with Visual and Motor Disabilities. In

Proceedings of the ACM Conference on Computers and

Accessibility (ASSETS 2009), 115–122.

https://doi.org/10.1145/1639642.1639663

19. Shaun K. Kane, Meredith Ringel Morris, Annuska Z.

Perkins, Daniel Wigdor, Richard E. Ladner, Jacob O.

Wobbrock, and Meredith Ringel Morris. 2011. Access

Overlays: Improving Non-Visual Access to Large

Touch Screens for Blind Users. In Proceedings of the

ACM Symposium on User Interface Software and

Technology (UIST 2011), 273–282.

https://doi.org/10.1145/2047196.2047232

20. Shaun K Kane, Meredith Ringel Morris, and Jacob O.

Wobbrock. 2013. Touchplates: Low-cost Tactile

Overlays for Visually Impaired Touch Screen Users. In

Proceedings of the ACM Conference on Computers and

Accessibility (ASSETS 2013).

https://doi.org/10.1145/2513383.2513442

21. Lifewire. Review: Touchfire Keyboard for the iPad.

Retrieved from https://www.lifewire.com/review-

touchfire-keyboard-ipad-1994430

22. David McGookin, Stephen Brewster, and WeiWei

Jiang. 2008. Investigating Touchscreen Accessibility

for People with Visual Impairments. In Proceedings of

the Nordic Conference on Human-Computer

Interaction: Building Bridges (NordiCHI 2008), 298–

307. https://doi.org/10.1145/1463160.1463193

23. Nuance. T9 Text Input. Retrieved from

https://www.nuance.com/mobile/mobile-solutions/text-

input-solutions/t9.html

24. World Health Organization. 2011. World Report on

Disability. Retrieved from

http://www.who.int/disabilities/world_report/2011/en/

25. OwnFone. Make Your OwnFone. Retrieved from

https://www.myownfone.com/make-your-ownfone

26. Mario Romero, Brian Frey, Caleb Southern, and

Gregory D. Abowd. 2011. BrailleTouch: Designing a

Mobile Eyes-free Soft Keyboard. In Proceedings of the

International Conference on Human Computer

Interaction with Mobile Devices and Services

(MobileHCI 2011), 707–709.

https://doi.org/10.1145/2037373.2037491

27. Statista. 2016. Number of Available Applications in the

Google Play Store. Retrieved from

http://www.statista.com/statistics/266210/number-of-

available-applications-in-the-google-play-store/

28. Stevezhanggeek. CHI2017Demo. Retrieved from

https://github.com/appaccess/CHI2017Demo

29. Brandon Taylor, Anind Dey, Dan Siewiorek, and Asim

Smailagic. 2016. Customizable 3D Printed Tactile

Maps as Interactive Overlays. In Proceedings of the

ACM Conference on Computers and Accessibility

(ASSETS 2016), 71–79.

https://doi.org/10.1145/2982142.2982167

30. Touchfire. Touchfire Ultra-Protective Magnetic Case

and 3D Keyboard. Retrieved from

https://touchfire.com/

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

141

https://support.google.com/accessibility/android/answer/6283677?hl=en
https://support.google.com/accessibility/android/answer/6283677?hl=en
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent.html
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent.html
http://www.atguys.com/store/index.php?main_page=product_info&products_id=172
http://www.atguys.com/store/index.php?main_page=product_info&products_id=172
https://store.humanware.com/hus/victor-reader-stream-new-generation.html
https://store.humanware.com/hus/victor-reader-stream-new-generation.html
https://www.lifewire.com/review-touchfire-keyboard-ipad-1994430
https://www.lifewire.com/review-touchfire-keyboard-ipad-1994430
https://www.nuance.com/mobile/mobile-solutions/text-input-solutions/t9.html
https://www.nuance.com/mobile/mobile-solutions/text-input-solutions/t9.html
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/

31. Daniel Trindade, André Rodrigues, Tiago Guerreiro,

and Hugo Nicolau. 2018. Hybrid-Brailler: Combining

Physical and Gestural Interaction for Mobile Braille

Input and Editing. In Proceedings of the ACM

Conference on Human Factors in Computing Systems

(CHI 2018). https://doi.org/10.1145/3173574.3173601

32. Xiaoyi Zhang, Anne Ross, Anat Caspi, James Fogarty,

and Jacob O. Wobbrock. 2017. Interaction Proxies for

Runtime Repair and Enhancement of Mobile

Application Accessibility. In Proceedings of the ACM

Conference on Human Factors in Computing Systems

(CHI 2017), 6024–6037.

https://doi.org/10.1145/3025453.3025846

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

142

	Interactiles: 3D Printed Tactile Interfaces to Enhance Mobile Touchscreen Accessibility
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	Use Case Scenario
	Overview

	RELATED WORK
	Challenges in Graphical Interface Accessibility
	Software-based Touchscreen Assistive Technologies
	Tangible Accessibility
	Design Goals

	INTERACTILES DESIGN AND IMPLEMENTATION
	Hardware Components
	Software Proxies
	System Improvement from Pilot Study
	System Validation Across Android Apps

	USABILITY STUDY
	Participants
	Comparative Study Method
	Tasks
	Data Collection and Analysis
	Results
	Customizability

	DISCUSSION
	Conclusion AND FUTURE WORK
	ACKNOWLEDGEMENTs
	REFERENCES

Accessibility Report

		Filename:

		fp044-zhangA.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 29

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

