
Examining Image-Based Button Labeling for Accessibility
in Android Apps through Large-Scale Analysis

Anne Spencer Ross1, Xiaoyi Zhang1, James Fogarty1, Jacob O. Wobbrock2
1Paul G. Allen School of Computer Science & Engineering, 2The Information School

DUB Group, University of Washington, Seattle, WA, USA
{ansross, xiaoyiz, jfogarty}@cs.washington.edu, wobbrock@uw.edu

of their abilities or use of assistive technologies. However,
prior work has shown there still exist important accessibility
barriers within apps [20,21,37,40,42,43].

Awareness of the need to create more accessible apps is
increasing. Google and Apple are the primary organizations
that facilitate mobile technology and the app marketplace,
through the Android and iOS platforms. Both have released
developer and design guidelines for accessibility [16,30],
provide accessibility services as part of their platforms
[2,15], have app development libraries that include built-in
compatibility with assistive technologies, and have released
accessibility testing scanners [17,28] and suites [10]. Some
companies creating popular apps have also made statements
and taken actions to create more accessible apps [19,45].
Such approaches have included creating internal guidelines
[45], having specialized accessibility teams [19], actively
prioritizing accessibility [19,45], and working with people
with disabilities during app development and testing [45].

Despite these accessibility-focused efforts, studies of relatively
small groups of apps have found they still include significant
accessibility barriers [20,21,37,42,43]. This suggests a
continuing need for accessibility improvements, however,
the field lacks a detailed understanding of the state of mobile
app accessibility at a large-scale, “population” level.

Many design patterns in mobile apps are image and icon
focused and use image-based buttons for main functionalities.
One key component of accessibility for screen reader users
is labeling image-based buttons. This need is parallel to the
need for alt-text for images on the web. However, there is no
large-scale understanding of the prevalence of unlabeled
image-based buttons, how effective tools are at promoting
labeling, nor the potential causes of failure to label. Ross et
al. [42] present an epidemiology-based framework that
suggests large-scale analyses can help answer some of these
questions. The framework emphasizes that apps do not exist
in isolation. It suggests that, in addition to testing individual
apps, additional benefits and insights can be gained by
exploring app accessibility at the population-level, situated
within the richer ecosystem of influential factors. Such
analyses can give unique insights into the state of app
accessibility and opportunities for improvements. An
epidemiologically-inspired analysis can also establish a
baseline against which to measure the evolution of app
accessibility over time.

ABSTRACT
We conduct the first large-scale analysis of the accessibility
of mobile apps, examining what unique insights this can
provide into the state of mobile app accessibility. We
analyzed 5,753 free Android apps for label-based
accessibility barriers in three classes of image-based buttons:
Clickable Images, Image Buttons, and Floating Action
Buttons. An epidemiology-inspired framework was used to
structure the investigation. The population of free Android
apps was assessed for label-based inaccessible button
diseases. Three determinants of the disease were considered:
missing labels, duplicate labels, and uninformative labels.
The prevalence, or frequency of occurrences of barriers, was
examined in apps and in classes of image-based buttons. In
the app analysis, 35.9% of analyzed apps had 90% or more
of their assessed image-based buttons labeled, 45.9% had
less than 10% of assessed image-based buttons labeled, and
the remaining apps were relatively uniformly distributed
along the proportion of elements that were labeled. In the
class analysis, 92.0% of Floating Action Buttons were found
to have missing labels, compared to 54.7% of Image Buttons
and 86.3% of Clickable Images. We discuss how these
accessibility barriers are addressed in existing treatments,
including accessibility development guidelines.
Author Keywords
Mobile app; large-scale analysis; accessibility; image-based
buttons
ACM Classification Keywords
• Human-centered computing~Empirical studies in
accessibility • Human-centered computing~Heuristic
evaluations

INTRODUCTION
Mobile applications (apps) are becoming increasingly
important in daily life, providing information and services in a
range of settings that include banking, communication,
education, entertainment and travel. It is important that these
powerful capabilities are available to all people, regardless
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

ASSETS '18, October 22–24, 2018, Galway, Ireland
© 2018 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-5650-3/18/10…$15.00
https://doi.org/10.1145/3234695.3236364

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

119

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3234695.3236364&domain=pdf&date_stamp=2018-10-08

This work provides the first large-scale analysis of image-
based button labeling for accessibility in free Android apps.
Using Ross et al.’s epidemiology-based framework [42], we
look at three label-based accessibility errors: missing label,
duplicate label, and uninformative label. We analyze the
occurrence of these errors in three popular classes of
interactive image-based buttons: Clickable Images, Image
Buttons, and Floating Action Buttons (FABs). Elements are
tested in a dataset of 5,753 apps. We explore patterns of error
occurrences within apps as well as within the three classes of
image-based button. We also discuss potential factors
contributing to these patterns, such as whether and how these
errors are presented in existing developer guides.

Our analysis demonstrates a concrete application of concepts
from Ross et al.’s epidemiology-inspired framework [42].
We present a large-scale analysis of the labeling of image-
based buttons. Additionally, we explore how accessibility
barriers are presented and addressed in the tools and
techniques developers may use to create and test Android
apps. We discuss how that presentation may relate to the
results of the app analysis. The insights gained through this
research can guide data-driven enhancements to app
accessibility. Our work additionally demonstrates the value
of large-scale app accessibility analysis.
RELATED WORK
Although there has not been a prior large-scale analysis of
mobile app accessibility, related work has been performed
on apps and websites. Small-scale analyses have identified
that app accessibility is still a problem and informed our
choice to focus on label-based inaccessibility in buttons. The
small-scale analyses highlighted the need for a more holistic
understanding of app accessibility at a larger scale. Prior
work performing large-scale analyses of apps for purposes
other than accessibility has demonstrated that such analyses
can provide unique views into the state of apps. One such
study also provided the data analyzed in this work [24].
Finally, prior work in large-scale analyses of web
accessibility exemplifies the types of insights that can be
gained through large-scale and longitudinal study.

Small-Scale App Accessibility Analysis
App accessibility has been investigated in small-scale
studies. These analyses reveal the continued existence of
accessibility barriers within apps, notably label-based barriers.

Some accessibility analyses focused on specific categories of
apps, as in health [37], smart cities [20], and government
engagement [43]. Others took a more general sample of apps
[21,40]. The number of apps analyzed ranged from 4 to 10.
These studies help characterize accessibility problems.
However, the small scales at which they were performed
make it difficult to more generally assess the state of
accessibility in mobile apps.

For accessibility metrics, these studies largely used adapted
versions of the Web Content Accessibility Guidelines
(WCAG) [20,21,22,43,44]. Industry-released guidelines [37]

and Section 508 [37] were also used for creating assessment
criteria. One of our tests for label-based accessibility barriers
in image-based buttons is based on best labeling practices
presented in guidelines. The other two tests we apply are
based on the Accessibility Test Framework for Android [29].
This testing framework covers the same concepts for image
labeling as the metrics of prior work. It is also specifically
designed for testing Android apps.

Image labeling has been explicitly noted as a significant
problem [20,37,40,43]. Park et al. [40] rated the severity of
errors as well as frequency. Missing labels was rated as the
highest severity of the ten errors they tested, at 6.5 out of 7.
These results show that accessibility barriers exist within
apps and label-based errors are a worthwhile initial focus.

Large-Scale App Analysis
Large-scale app analyses have been used to explore app
characteristics other than accessibility. These studies
demonstrate the richness of insights that can be gained from
large population-level analyses.

App sample sizes for these large-scale analyses were on the
order of thousands of apps [18,24,25,26,34,39]. Another
study collected app usage data from 77 participants over nine
months [38] instead of focusing on a specific set of apps.

A range of topics was explored, including security [1,26,34],
design patterns [24,25], and code reuse trends [39]. App
usage has also been explored, including usage contextualized
by time and location [18,26] or social context [38]. Ours is
the first population-scale exploration of app accessibility.

Large datasets of Android apps have been released for
analysis. Deka et al. [24] crawled ~10,000 free Android apps
and collected metadata, screen shots, and View hierarchies,
as discussed in the Data section below. The data is available
in the Rico repository [23]. Deka et al. [24] analyzed the
dataset for common app design patterns. We use the Rico
dataset for our analysis due to its size and detail.

Alli et al.’s Androzoo [1] project has collected over 5 million
app APKs1 and makes them available for academic use. App
APKs have been regularly added to the dataset since 2011.
Refining methods to capture data from app APKs is an
opportunity for future work that could allow leveraging this
dataset for large-scale, longitudinal accessibility analysis.

Large-Scale Web Accessibility
The web has a long history of automated accessibility
analysis, including at a large scale. Insights gained from
these large-scale analyses further motivate the need for
similar studies of app accessibility. Hanson et al. [33]
performed a longitudinal study of 100 top government and
commercial websites over 14 years. Findings include that
accessibility overall improved over time. In follow-up work,

1APKs are Android’s file package for the installation and
running of apps. It is similar to a .exe file in Windows.

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

120

Richards et al. [41] discussed potential factors that contribute
to these trends, such as changes in overall web coding
practices. Kane et al. [35] analyzed 100 websites for
accessibility, including for missing labels. They found “[o]n
average, 77% of significant (non-decorative) images were
labeled on each page.” (p153). This again shows that
unlabeled images are an important problem.

ANDROID BACKGROUND
Understanding the context in which apps are created and
tested is imperative to understanding how that context
impacts app accessibility. Android is a large, open, and
diverse ecosystem. There are many styles, methods, guides,
and tools for creating apps. We focus our analysis on
approaches to creating image-based buttons that are part of
the core Android API. We chose image-based buttons
because they are a key component of interactivity in apps.
The image-based nature of these buttons makes them
particularly susceptible to label-based accessibility barriers.

The components of the app ecosystem we focus on are:
(1) three Android element classes for creating image-based
buttons; (2) Android-released design and development tools;
and (3) testing tools. In this section, we define important
concepts in each component to establish a foundational
understanding of the Android app environment. Each of the
concepts described plays a key factor in our analysis.

Relevant Android Classes of Image-Based Buttons
Our analysis is performed on three commonly-used classes
of Android image-based button: Clickable Image, Image
Button, and Floating Action Button (Figure 1). We present
details on the usage of each class of button as well as how
the three classes relate to one another, including the date each
class of button was added to the Android platform. Knowing
how long the class has been available provides context for
later discussions on how well the element has been integrated
into the larger Android app environment.

The image-based nature of the classes of button we analyze
make them susceptible to label-based errors. In order to
properly label an image-based button such that it interacts
properly with screen readers, alternative text descriptions
must be added in the button’s content description field.

Clickable Images
Images can be rendered in an app using elements from the
Android API class android.widget.ImageView [9]. If
the clickable property is set to true, the image functions as a
button (Figure 1b). We call such elements Clickable Images.

Clickable Images have slightly different defaults and
rendering than Image Buttons (which are discussed below).
Non-decorative images should be labeled with a content
description. The ImageView class has been in the Android
API since Android 1.0, released in September 2008.

Some images may be decorative and therefore should be
labeled with a null string to properly be avoided by screen
readers. The interactivity of clickable images indicates a
non-decorative functionality. We therefore treat all assessed
Clickable Images as non-decorative, and a null string label
as a missing label accessibility barrier (discussed in the
Label-Based Inaccessible Button Disease subsection below).
Image Button
Image Buttons are from the Android API base class
android.widget.ImageButton [8]. This is a sub-class of
the Clickable Image’s ImageView class. As the name
suggests, Image Buttons are buttons that visually present an
image rather than text (Figure 1a). Image Buttons were part
of the Android 1.0 release in September 2008.

Floating Action Button (FAB)
Floating Action Buttons (FABs) are visually prominent
buttons that “float” above an underlying interface (Figure 1c).
According to Google’s Material Design guidelines [27],
“a floating action button represents the primary action in an
application.” Simple icons, such as a heart or pencil, are
usually the visual label. FABs rarely have visual text labels.
Given the importance of FABs for key functionality and their
image-based style, proper labeling with content descriptions is
imperative for screen reader compatibility.

FABs are from the class android.support.design.
widget.FloatingActionButton [6]. It is a sub-class of
ImageButton and a sub-sub-class of ImageView. FABs
were added in Android 22.2.0 in May 2015 [6], much later
than the other two classes of image-based button.

Current Android Tools
The explicit or implicit emphasis that app development and
testing tools put on accessibility (e.g., in their default
settings, in tests they perform, in the guidance they give) can
impact the accessibility of apps created with that tool. If a
tool is widely used, that can amount to a large influence. We
present here a suite of Android development and design tools
and testing suites. Some of these tools are focused on
enhancing accessibility. In the Analysis section below, we
analyze these tools as potential factors that influence app
accessibility. We focus heavily on Android authored tools,
due to their impact, availability, and because the classes of
image-based buttons we focus on are part of Android’s base
API. The analysis approaches used and the insights gained
are likely transferrable to other tools.

Android Design and Development Tools
Android publishes many resources to aid designers and
developers in creating Android apps. These resources
include guidelines and example code. Guides address good
practices for creating and testing apps [12,28,32,36]. The

Figure 1: Screens from apps with examples of image-based
buttons using (a) an Image Button, (b) a Clickable Image, and
(c) a Floating Action Button.

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

121

design guidelines are called Android Material Design [36].
A subset of these guides focus on accessibility [3,30].
Android also has Quality Guidelines [12] to articulate what
key components an app should have and what fundamental
tests an app should pass to be ready for distribution. The
Quality Guidelines do not explicitly mention accessibility.

Android additionally provides example source code to aid in
app development. Within the collection of code samples are
specific example projects for using FABs [7] and for
accessibility-minded development [5]. In the Analysis section
below, we discuss how the content of the Material Design
and developer guidelines might impact app accessibility.

Android Testing Tools
Android has a set of testing tools to run while developing
Android apps. We focus on the general testing tool Android
Lint (v23.0.0) [10] and the accessibility-specific Accessibility
Test Framework for Android [29]. We describe these tools
here and the sections below explore details of these tests that
may impact the app accessibility trends seen in our analysis.

Android Lint is a code scanning tool that can help “identify
and correct problems with the structural quality of your code
without your having to execute the app or write test cases”
[10]. Bugs detected by Lint include some instances of label-
based button accessibility barriers. The details of which
barriers are caught in what context are explored in the
Analysis section. Android Lint is both available as a
standalone tool and also integrated into Android Studio
v3.0.1 [14], Google’s development environment for apps.
The Accessibility Test Framework for Android [29] is a
testing suite released by Google. It tests for accessibility
barriers in apps, including missing labels and duplicate labels
on image-based buttons. It can be integrated into unit or
automated testing. This test framework is the basis for two
of our three error tests, as explained in the Method section.

APPLYING AN EPIDEMIOLOGY-INSPIRED FRAMEWORK
We structured our analysis using an epidemiology-inspired
framework [42]. In the framework, accessibility barriers are
cast as inaccessibility diseases within a population of apps.
This framing puts the onus of accessibility on the app. The
epidemiology framework instigates an analytical approach
by which we investigate the label-based inaccessible button
disease in the population of free Android apps. The
framework provides motivation and structure for large-scale,
multi-factor analyses. We focus on the key concepts of
disease, population, diagnostic criteria, prevalence, risk
factors, and treatments, and how they relate to the higher-
level objectives of determining the extent of a disease, and
evaluating treatments. Further detail on these definitions and
their role in the larger framework can be found in [42].

Key Terminology
The following key terminology provides a language with
which to discuss the data and phenomena that we analyzed.

Label-Based Inaccessible Button Disease: a barrier to using
an image-based button with a screen reader due to the button

not having an appropriate alternative label. The
determinants, or causes, of this disease that we test for are:
missing a label, having a label that is a duplicate of other
labels on the screen, or having an uninformative label.

Populations: a group of individual units of measurement that
we wish to better understand. We consider the population of
apps that have at least one element of any of the three classes
of image-based button: Clickable Image, Image Button, or
Floating Action Button. We additionally analyze the
population of image-based buttons, grouped by class.

Diagnostic Criteria: the metrics used to determine if an app
or image-based button has a label-based inaccessible button
disease. Our diagnostic criteria are captured in our tests for
missing, duplicate, or uninformative labels. Implementation
of these tests is detailed in the Method section below.

Prevalence: the count or proportion of units (i.e., apps or
image-based buttons grouped by class) with a specific
determinant (i.e. missing, duplicate, or uninformative label)
of the label-based inaccessible button disease.

Risk Factors: a characteristic of an app or image-based
button that affects how likely it is to have the disease. An
app’s rating is an example app characteristic. That a class of
image-based buttons is frequently used in sample code is
another example factor.

Treatment: a technique used to prevent (i.e., preventative) or
repair (i.e., therapeutic) an inaccessibility disease. Treatments
include design and development guidelines and testing tools.

Objectives of Our Analysis
The epidemiology-inspired framework [42] is centered
around a set of primary objectives. In addition to
terminology, we focused on two objectives to structure our
analysis: determining the extent of a disease in a population
and evaluating existing and new treatments.

Determining the Extent of a Disease
Understanding how often different accessibility barriers
occur is one metric for understanding the impact of those
barriers. It can also inform how to allocate resources for
enhancing app accessibility or how to develop new
interventions. The power of these types of insights is
captured in the epidemiology-inspired objective of
determining the extent of a disease in a population. The main
metric we use for measurement is prevalence.

Measuring the extent of a disease over time can provide new
insights. For example, longitudinal comparisons can indicate
if the accessibility of apps is improving over time. Analyses
can additionally provide guidance regarding significantly
impactful factors. For example, if a wide-spread decrease in
accessibility is seen after a major operating system update, it
may indicate that the update should be investigated for its
impact on accessibility. The analysis in this paper offers a
baseline with which to compare future analyses of label-
based inaccessible button diseases on Clickable Images,
Image Buttons, or FABs.

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

122

Evaluating Existing and New Treatments
Tools, techniques, and tests (collectively called treatments),
aimed at enhancing the accessibility of apps exist, such as
those described in the above section. Evaluating the
effectiveness of these treatments aids in creating tools that
have the largest impact in the most efficient way. Large-scale
analysis can guide such evaluations. Patterns of prevalence
within a population can indicate what elements or apps are
more or less likely to be inaccessible.

Motivated by this objective, we explore the existing
treatments listed in the above section as potentially impacting
accessibility. A discrepancy in the prevalence of missing
labels between the three classes of image-based buttons
informed our treatment exploration. We compare how the
three types of elements are represented in the treatments.

Large-scale analysis alone cannot prove causation between
treatments and the resulting accessibility of apps. However,
it is a powerful component to guide complementary work
such as interviews and user studies.

METHOD
The app data used in this work was a subset of data from the
Rico repository [23]. We executed tests for three
determinants, or causes, of the label-based inaccessibility
button disease, checking for (1) missing labels, (2) duplicate
labels, and (3) uninformative labels. The tests for missing
and duplicate labels are based on the Accessibility Test
Framework for Android [29]. The test for uninformative
labels is based on a list of labels in our data that obviously
violated good labeling practices, as determined by the first
author. The dataset and the test definitions and
implementations are detailed in the following sections.

Ratios are the primary metric used to present the prevalence
findings. Ratios were chosen for our analysis to compare
apps that had a range of number of elements used. The range
of elements used within the extreme prevalence groups
mirrors that of the overall apps, as described in the Analysis
sections. This suggests that the insights gained apply across
a variety of apps. Prior work has explored multiple methods
for accessing accessibility on the web and compared the
strengths and weaknesses of different approaches [46]. Such
a comparison of the trade-offs in methods for assessing app
accessibility is an opportunity for future work.
Data
Our dataset is a subset of the Rico repository [23]. We focus
on the app metadata and View hierarchies. The metadata
provides characteristics of each app, including its rating. The
View hierarchies contain all captured elements of the screen
in a nested, hierarchical structure. Each element has a set of
characteristics including text, content description, class,
ancestor classes, and children elements. Details of this dataset
can be found in the paper published by Deka et al. [24].

We obtained our dataset by filtering the 9,772 free Android
apps collected in the Rico repository [23] by the exclusion
criteria described below. Our subset of the data contained

5,753 apps. The captured image-based buttons from these
apps include 134,506 Clickable Images, 137,665 Image
Buttons, and 6,579 FABs.
Exclusion Criteria
If a View hierarchy file was null, the screen it represented
was ignored. In the dataset, every app is identified by its
package_name. Each View hierarchy has an
activity_name field of the form <package
name>/<activity name> that indicates which app was in
focus when the screen was captured. If the package name in
the activity_name field did not match the
package_name of the app being assessed, that specific
screen was ignored. This rule eliminated screens captured
that were outside of the app, such as the Android home
screen, the lock screen, or a redirection to a website. If an
app had no valid screens, and therefore zero captured
elements, the entire app was ignored.

Because this analysis focuses on three image-based buttons
(i.e., Clickable Images, Image Buttons, and FABs), only apps
which had at least one such button are considered. The class
of an element was determined by the class field in the
View hierarchy. It is possible that other class names
represented widgets from one of our classes of image-based
buttons of interest, such as through class name mutations
(e.g., for obfuscation or minification [13]). Because we did
not have knowledge of what mutation algorithms may have
been used, we did not attempt to use any nodes whose class
field did not exactly match our class names of interest.

Limitations
Due to challenges in collecting such a large dataset of
Android apps, some sets of captured screens were not
representative of the meaningful screens and functionality
within the apps. For example, the data collected for the
WhatsApp Messenger app, which has over 185 in-app
screens in the dataset, represents only the country selection
and phone number verification screens within the app. This
results from a limitation of current data collection techniques
(i.e., the Rico crawler became “stuck” in these screens).
Future large-scale analyses of accessibility will benefit from
improved methods for data collection.

The Rico repository was originally collected for analysis of
app design patterns, not for accessibility assessment. Using
a dataset outside of its intended purpose adds limitations. For
example, some characteristics of the screens that would allow
for a better accessibility assessment, such as the “checkable”
attribute or the “important for accessibility” flag, were not
captured in the View hierarchies.

Despite the limitations of the Rico repository, it contains a
significant amount of useful information that is otherwise
difficult to collect. We believe this data is a solid foundation
for this analysis and supports meaningful insights into the
state of image-based button accessibility in apps.

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

123

Talkback Focusable
Not all interactive image-based buttons of an Android screen
View hierarchy are useful for a screen reader. For example,
if an element is in a hidden tab then it should not be focused.
We isolated elements of interest according to the heuristics
used by Android’s TalkBack screen reader. Specifically, we
translated the isAccessibilityFocuasable function
from the TalkBack 6.0 source code [31] from Java to Python,
using the element characteristics available in the captured
View hierarchies. The checkable property of an element
was not available in the dataset and that heuristic was
skipped. Although this approach likely misses some important
elements or includes some elements that are not of interest,
it is the approach used by the Accessibility Test Framework
for Android and is a good first iteration on the analysis.

Label-Based Inaccessibility Disease
Much like alt-text for images on the web, image-based
elements in Android must be labeled with meaningful
information for screen readers. For the three classes of
buttons we consider, this information is added in the content
description field of the button itself or inherited from a non-
interactive child with a label. We test for three ways in which
a button can fail to be appropriately labeled: missing label,
duplicate label, and uninformative label.

The diagnostic criteria used to detect if an element had a
missing or duplicate label was translated from the Google-
released Accessibility Test Framework for Android 2.1 [29].
The criteria for the uninformative label test was developed
by comparing labeling best practices to a preliminary manual
exploration of labels seen within the dataset.

Missing Label
A major labeling error is the complete absence of a label. In
such a case, a screen reader will speak an unhelpful label
such as “unlabeled button” or just “button,” if it announces
any label at all. The missing label test was translated into
Python from the SpeakableTextPresent test in the
Accessibility Test Framework for Android 2.1 [29].

Duplicate Label
Having multiple clickable elements on a screen with the
exact same label may be confusing to screen reader users.
Examples of how this can be problematic are presented in
Figure 4. This problem is tested by comparing the labels of
all clickable, TalkBack-focusable elements on a single
screen. If two or more elements have the exact same label,
they are all flagged as having a duplicate label error. This
criterion is based on the DuplicateSpeakableText-
ViewHierarchyCheck from the Accessibility Testing
Framework for Android 2.1, looking only at clickable elements.

Uninformative Label
If a developer adds labels to elements, it is crucial the labels
are meaningful. We did not test whether labels were accurate,
such as whether a button labeled “back” actually functioned
as a back button. However, a list of “uninformative labels”
was constructed by the first author. The first author read over

the set of all labels of the captured image-based buttons and
noted labels whose content was only a reflection of the class
or the field (i.e., the label was composed of only the words:
button, image, content, description or “desc” for short, icon,
and view). The resultant set of “uninformative labels” is: alt
image, button, Button, contentDescription, desc, Desc,
Description, Description Image, icon desc, [image], image,
Image, images, Images, image description, Image Des,
image description default, Icon, Image Content, ImageView,
and View. Other labels may be equally uninformative and
the identification of such labels is an opportunity for future
work (e.g. through crowdsourced judgements).

ANALYSIS
The analysis was structured using the epidemiology-inspired
concepts of determining the extent of a disease, identifying
potential risk factors, and evaluating existing treatments.
These objectives were applied to the population of apps as
well as the population of classes of image-based buttons
(Clickable Image, Image Button, or FAB).

Prevalence of Missing Label in Apps
All 5,753 apps in our dataset were tested for missing labels
on their captured, TalkBack-focusable, image-based buttons.
The number of image-based buttons captured per app in this
group has mean=28, median=2, and range=0-5,536.

The distribution of the proportion of buttons in an app
missing labels is bimodal (Figure 2). At the positive extreme,
2,067 apps (35.9%) have less than 10% of their image-based
buttons missing labels. The distribution of image-based
buttons captured per app in this group of apps has mean=26,
median=12, range=1-1,315.

On the negative extreme, 2,638 apps (45.9%) have at least
90% of their image-based buttons missing labels. The
distribution of the number of image-based buttons captured
in apps at this extreme has mean=69, median=24, range=1-
5,536. The remaining 1,048 apps (18.2%) are relatively

Figure 2: The distribution of the proportion of image-based
buttons within an app with a missing label. A total of 5,753 apps
were tested. A higher proportion is an app with more errors.
The high number of apps at the extremes along with the
uniform, non-zero distribution between the extremes hints at a
rich ecosystem of factors influencing if an app’s image-based
buttons are labeled.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

124

uniformly distributed between the two extremes (i.e., have
10-90% of their elements missing labels).

The bimodal nature of the distribution reflects two prominent
groups of apps. These groupings may capture that some apps
exist in environments with knowledge about and interest in
accessibility and other apps do not. Additionally, the 18.2%
of apps between the two extremes indicate a third interesting
group of apps which are sometimes developed with
accessibility features. The existence of this group points to
the richer ecosystem encompassing apps, as articulated by
Ross et al.’s epidemiology framework [42]. Factors such as
different developers, different tools, competing priorities, or
the evolution of new features may explain these sometimes-
accessible apps. More work is needed to uncover what
interactions between factors exist.
Prevalence of Missing Label in Classes
The first step of analysis considered apps as individual units
in the population. We now analyze the prevalence of
accessibility barriers within our three classes of image-based
buttons (Clickable Image, Image Button, or FAB). This
analysis gives insight into factors about the class itself that
may affect the likelihood it is labeled.

Clickable Images, Image Buttons, and FABs are extremely
similar in functionality. The steps for adding labels to these
elements are the same. We explore if the impact of factors that
differ between the classes negate the influence of their code-
level and functional similarity by comparing the proportion
of errors within each class of elements.

Our analysis shows discrepancies in the prevalence of the
missing label determinant of the label-based inaccessible
button disease between the classes of buttons (Table 1). The
total number of errors and the number of apps that use an
element of each class (regardless of whether it has an error)
are also listed in Table 1. These results support the rich
ecosystem of factors that differ between the classes heavily
influences the button’s likelihood of being labeled.
Addressing those factors can help decrease the prevalence of
disease in these commonly used classes; this can have a large
impact on app accessibility over the whole population.

Evaluating Treatments for Missing Labels
The app ecosystem contains myriad factors that may impact
a button’s accessibility. Treatments, or tools that aim to
reduce inaccessibility diseases in apps, are one group of
factors. We explore a set of existing treatments, including
general Android development and design guides [3,30],

guides that are specific to ensuring accessibility [30], and
accessibility testing tools [10]. The details of these tools are
discussed in the Android Background section above.

We evaluated occurrences of Clickable Images, Image
Buttons, and FABs in these tools for how they may affect
accessibility. This evaluation provides insight into potential
factors that contribute to the discrepancy in the prevalence
of label-based inaccessible button diseases between the
classes of buttons. It also exemplifies how this analysis can
be used as a guide in the evaluation of tools.

The Accessibility subsection of Android Material Design’s
Usability Guide [3] indicates the necessity of supporting
screen readers by “add[ing] audible descriptions to input
controls and other elements.” This necessity is echoed in the
Android Accessibility Development Guidelines “Labeling UI
Elements” section [30]. Although the guidelines discuss the
need to label all graphical elements, they explicitly use Image
Views (the class encompassing Non-Clickable and Clickable
Images) and Image Buttons as examples. Image Buttons are
further used in the code sample demonstrating the addition of
a content description to an element. FABs are not explicitly
mentioned in the accessibility development guides.

Android Lint v23.0.0 [10] has a set of accessibility warnings.
Some unlabeled elements trigger warnings such as “Image
without contentDescription.” This warning will trigger for an
unlabeled Clickable Image or Image Button. It will not
trigger for an unlabeled FAB. The Android Test Framework
for Accessibility [29] and the Android Accessibility Scanner
v1.1.2 [28] based on that framework detect missing content
descriptions in Clickable Images, Image Buttons, and FABs.

Android provides sample code demonstrating the use of
different elements or techniques. The “Basic Accessibility”
code sample [5] has an Image Button element and a non-
clickable Image View element with content description
labels. A comment within the code describes the need for
content descriptions. Another comment notes that if the
Image is decorative, it does not need a content description.
FABs are not represented in the “Basic Accessibility” code
sample. The copyright date on the sample is 2013.

FABs have a dedicated developer guide page [4] and a code
sample FloatingActionButtonBasic [7]. Neither resource
mentions the need to label FABs. Content descriptions are
also missing for the FAB examples in both resources. The
FAB developer guide was updated in March 2018. The
copyright date on the FAB code sample is 2014.

We cannot conclude with certainty that the discrepancies in
representation of the three classes within these treatment
tools cause, or even impact, the discrepancy in error
prevalence between classes of button. However, the
omissions within the guidelines combined with the high
prevalence, suggest an opportunity to test the success of
guidelines. This analysis presents ways in which the
guidelines may be improved. Implementing these
improvements and then testing the impact of guideline usage

Table 1: The number of apps that have image-buttons of each
class is shown in the # Apps column. The number of image-
based buttons with a missing label and the percent out of all
tested image-based buttons is presented per class in the # Error
and % Error columns.

Missing Label
Class # Apps # Error % Error
Clickable Image 2858 116124 86.3%
Image Button 4063 75303 54.7%
FAB 590 6055 92.0%

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

125

on app accessibility could give insight into the effectiveness
of guidelines Such testing may include comparing the
disease prevalence of apps known to have been made by
consulting the guidelines against the disease prevalence
within the general population.

The error percentages of all classes of image-based buttons,
(i.e., including the Image Button class, which is well represented
in the guidelines), also suggests these treatments are not
sufficient to prevent all label-based accessibility barriers.
Further investigation is needed to determine opportunities
for improving existing or developing novel treatments. This
analysis can help focus those efforts by revealing patterns in
errors and best- and worst-case example apps. These
examples may reveal good and bad practices within the
richer ecosystem, such as common tools used by developers.
Prevalence of Duplicate Label in Apps
Duplicating labels among multiple elements on the same
screen can cause confusion (Figure 4). To avoid an
overpowering effect of missing label errors, we perform
duplicate label analysis only on the 3,398 apps that have at
least one labeled image-based button. Figure 3 shows the
distribution of proportion of labeled buttons with duplicate
labels per app. In 2,961 of those apps (87.1%), less than 10%

of their captured, image-based buttons have duplicate labels.
On the negative end of the distribution, 174 apps (5.1%) have
over 90% of their buttons with duplicate labels. The
remaining 263 apps (7.7%) are distributed relatively uniformly
over the remaining spectrum of 10-90% error rates.

Prevalence of Duplicate Labels in Classes
We also analyzed the prevalence of duplicate labels within
the considered classes of image-based buttons. Table 2
presents the percentage of elements of each class of button
with duplicate labels out of all captured labeled buttons of
that class. We exclude buttons missing labels. We present the
number of elements of each class of button with a duplicate
label. There is a discrepancy in prevalence between the
classes of button.

We performed a preliminary manual inspection of the labels
of buttons with duplicate labels and discuss two noted
patterns. One pattern was inappropriately having elements
used for layout, not functionality, be clickable. This error
causes the layout elements to be TalkBack-focusable and
inherit a label from a contained button element.
Another noted pattern was apps that had a large proportion
of Clickable Images, Image Buttons, or FABs with the same
duplicate label on the same screen. Figure 4 shows examples
of apps in which the duplicated label on many buttons
contains no useful information related to their functionality.
There are also cases in which duplicate labeling is not an error.
An example of such an app from our dataset is a music app
with a list of songs and artists. The artist for all of the songs
was unknown, so labeling all of those elements “Unknown”
was appropriate. More nuanced evaluations are needed to
distinguish between valid and invalid duplicate labels.

This preliminary manual label inspection suggests types of
errors developers make that can cause erroneous duplicate
labels. More sophisticated methods are needed to gain a
richer understanding of labeling practices that may further
lead to or prevent duplicate labeling errors.

Prevalence of Uninformative Label in Apps and Classes
Uninformative labels occur when an image-based button has
a non-null label that provides no helpful information to the
element’s functionality. For analyzing uninformative labels,
we considered only apps with at least one labeled element to
reduce the overpowering effect of elements with missing labels.
Out of 3,396 total apps with at least one labeled element,
3,342 apps (98.4%) have less than 10% of their buttons with

Figure 4: Two example app interfaces with duplicate label errors
on image-based buttons. (left) The Clickable Image buttons for
drawing different types of figures in a graphing app are all labeled
“Tool Image.” (right) In the Ghost Sounds app, all of the Clickable
Image buttons for playing different ghost sounds as well as the
settings and home button are labeled only “Ghost Sounds.”

Figure 3: The distribution of the proportion of labeled image-
based button elements within an app that have a duplicate label.
A total of 3,398 apps were tested. Most apps have a very low
proportion of their image-based buttons with the error. The more
negative extreme of having 90%-100% of elements with the
error has a small spike as well.

Table 2: The number of labeled image-based buttons with a
duplicate label and the percent out of all tested elements are
presented per class in the # Error and % Error of Labeled
columns. There is a notable discrepancy between the percentage
of errors between the different classes image-based buttons.

Duplicate Label:
Class # Error % Error of

Labeled
Clickable Image View 8599 46.8%
Image Button 5542 8.9%
FAB 104 19.9%

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

126

uninformative labels. The low prevalence of uninformative
labels is mirrored in the class analysis (see Table 3).

Without a point of comparison, it is hard to say if the
percentage of uninformative labels is “good,” “acceptable,”
or “still problematic.” However, the lower prevalence of
uninformative labels compared to the prevalence of missing
labels indicates that this problem is not as worrisome. It
suggests that, if a label is added, it tends to at least contain
an attempt at informative content. Further work is needed to
do a more nuanced analysis of labels to determine their quality,
perhaps using crowdsourcing to judge label usefulness.

Evaluating Treatments of Poor Labeling
Duplicate and uninformative labels are examples of poor
labeling techniques in which a content description is added
but not useful. The Material Design’s Accessibility
Guidelines [3] and the “Making Apps More Accessible”
developer guidelines [11] include labeling image-based
elements as key steps. The guides provide some indication of
what a description should be, such as “provide useful and
descriptive labels that explain the meaning and purpose of each
interactive element to users” [11]. There is also guidance on
practices to avoid when labeling, such as “Note: Many
accessibility services, such as TalkBack and BrailleBack,
automatically announce an element’s type after announcing
its label, you shouldn’t include element types in your labels.
For example, ‘submit’ is a good label for a Button object, but
‘submitButton’ isn’t a good label” [11]. Avoiding duplicate
labels is not explicitly mentioned in the guides.

Within the “Basic Accessibility” Android code sample [5],
each of the elements with a content description has a unique
label. Comments within that code sample offer guidance on
what a label should be: “Since the contentDescription
is read verbatim, you may want to be a bit more descriptive
than usual, such as adding ‘button’ to the end of your
description, if appropriate.” Note this advice is counter to
current best practices; adding the element type of “button” to
a content description will cause a redundant label because
TalkBack automatically announces the element type.
Duplicate labels are not mentioned in the code sample.

Android Lint v23.0.0 scans do not warn about duplicate
labels. The Accessibility Testing Framework for Android

[29], and the Accessibility Scanner v1.1.2 [28] based on it, do
have a test for duplicate labels. No tests within these tools
cover any type of uninformative labels.
Relationship Between Rating and Missing Label
App accessibility relates to other factors in the ecosystem.
Without detailed analyses, we do not know which factors are
important or in what way they may impact accessibility.
Identifying relationships between app accessibility and
environmental factors can guide accessibility improvement
efforts. Large-scale analyses give insight into such relationships.

For example, app ratings can inform an app creator of
people’s satisfaction with an app and can help other users
find “good” apps. Accessibility is an important component
of apps that needs to be expressed. Understanding the
relationship between rating and disease prevalence, if one
exists, can help us understand whether the current rating
systems capture app accessibility. We focus on the missing
label error because it had the highest prevalence and most
varied distribution out of the three errors we analyzed.

We conducted a Spearman rank-order correlation test between
an app’s rating and the app’s proportion of image-based
buttons that were missing labels. We found a statistically
significant relationship (ρ = -0.05, p = .001). Although
statistically significant, the correlation coefficient is very
low, suggesting that if a relationship exists, it is extremely
weak. Looking at the distributions of proportion of missing
labels by rating (Figure 5), we note there is high variability of
missing labels over the entire range of app ratings.

The weakness of the relationship between app rating and
missing label error rates suggest that the current app rating
system may not sufficiently capture the missing labels
component of accessibility. Given the importance of capturing
and presenting end-user satisfaction with an app’s
accessibility, it may be beneficial to give apps an additional
accessibility rating, better factor labeling into existing
ratings, or otherwise highlight missing label barriers which

Table 3: The total number of labeled image-based buttons
tested, the number of labeled image-based buttons with an
uninformative label, and the percent out of all tested elements
are presented per class in the Total, # Error and % Error of
Labeled columns. Uninformative labels are much less prevalent
compared to missing and duplicate labels.

Uninformative Label:
Class Total # Errors % Error of

Labeled
Clickable
Image

18,372 1,802 9.8%

Image Button 62,306 1,278 2.1%

FAB 524 0 0%

Figure 5: There is high variability in the relationship between an
app’s rating and its proportion of image-based buttons with
missing labels. A statistically significant, but very weak
correlation exists between the two factors (ρ = -0.05, p = .001).
The weakness of the relationship suggests current ratings do
not reflect the missing labels component of app accessibility.

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

127

may be encountered in that app. Having access to a rating
that reflected how well labeled an app is could allow an
individual to more easily find apps that support their assistive
technologies. Presenting these accessibility ratings as
prominently as existing ratings may also draw broader
attention to the state and importance of accessibility,
potentially inspiring public pressure to improve labeling
practices. Finally, accessibility ratings provide another
avenue to inform app developers on the state of labels in their
app in a form that emphasizes its importance.

DISCUSSION AND CONCLUSION
Applying Ross et al.’s [42] epidemiology-inspired
framework provided a valuable lens for understanding the
state of inaccessibility and its causes. Our large-scale
analysis, the first of its kind, gives novel insight into the state
of image-based button accessibility in free Android
applications. We show label-based inaccessible button
disease is still a large problem. Of the three determinants, or
causes, for which we tested, missing labels was the most
prevalent, uninformative labels was the least prevalent, and
duplicate labels fell in between.

The tested classes of image-based buttons (Clickable Image,
Image Button, and Floating Action Button (FAB)) have
strong similarities in function and steps needed to prevent
label-based errors (i.e. add an appropriate label in the
contentDescription field). Despite these similarities,
our analysis revealed discrepancies between the classes in
the prevalence of missing labels.

The multi-factor analysis guided additional insight into what
may have impacted the difference in disease prevalence
between the classes. Looking to existing treatments, we see
differences in how the three classes are represented in tools
for design, development, and testing. These differences may
account for some disease prevalence discrepancies. For
example, FABs are neither explicitly mentioned in
accessibility guides nor are the FABs in general example
code labeled. Contrastingly, Image Buttons are labeled and
appear often throughout the accessibility guidelines.

Investigating if the current app rating system captures the
missing label accessibility barrier, we tested the relationship
between app ratings and missing label prevalence. Based on
the weakness of the correlation coefficient, we conclude
current ratings may not adequately capture missing labels.

Label-based accessibility barriers in image-based buttons are
only one inaccessibility disease that impacts app
accessibility. Our future work will expand the analysis of this
dataset to encompass a broader range of inaccessibility
diseases, such as ensuring interactive elements are large
enough. Considering a larger set of classes will also enhance
the analysis. Such further analysis will provide insight into
the susceptibility of different classes to a larger range of
inaccessibility diseases.

The Rico repository represents the state of free Android apps
at a single snapshot in time. Developing tools to support

collecting large-scale mobile app data would allow for
continued and more complex analysis, including longitudinal
analyses. Such analyses would support ongoing investigation
into techniques to improve app accessibility.

This analysis demonstrates that label-based image-based button
accessibility barriers are still a prominent and widespread
problem. In addition, utilizing the epidemiology-inspired
framework [42] provided a useful structure to examine and
understand the state of these barriers in the context of the app
ecosystem of contributing factors. Continuing to collect and
analyze large-scale data on app accessibility will help enable
data-informed progress in enhancing the accessibility of apps.
ACKNOWLEDGEMENTS
This work was funded in part by the National Science
Foundation under award IIS-1702751 and a Graduate
Research Fellowship, by a Google Faculty Award, and by the
Mani Charitable Foundation.
REFERENCES
1. Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein,

and Yves Le Traon. (2016). AndroZoo: Collecting
Millions of Android Apps for the Research Community.
Proceedings of the 13th International Workshop on
Mining Software Repositories - MSR ’16, 468–471.
http://doi.org/10.1145/2901739.2903508

2. Android Accessibility Overview. Accessed April 12th,
2018.
https://support.google.com/accessibility/android/answer/
6006564.

3. “Android Open Source Project.” Accessibility -
Usability - Material Design. Accessed April 12th, 2018.
https://material.io/guidelines/usability/accessibility.html
#accessibility-writing.

4. “Android Open Source Project.” Add a Floating Action
Button | Android Developers. Accessed April 12th, 2018.
https://developer.android.com/guide/topics/ui/floating-
action-button.html.

5. “Android Open Source Project.” BasicAccessibility |
Android Developers. Accessed April 12th, 2018.
https://developer.android.com/samples/BasicAccessibilit
y/res/layout/sample_main.html.

6. “Android Open Source Project.” FloatingActionButton |
Android Developers. Accesed April 12th, 2018.
https://developer.android.com/reference/android/support
/design/widget/FloatingActionButton.html

7. “Android Open Source Project.”
FloatingActionButtonBasic | Android Developers.
Accessed April 12th, 2018.
https://developer.android.com/samples/FloatingActionB
uttonBasic/res/layout/fab_layout.html

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

128

8. “Android Open Source Project.” ImageButton | Android
Developers. Accessed April 12th, 2018.
https://developer.android.com/reference/android/widget/
ImageButton.html

9. “Android Open Source Project.” ImageView | Android
Developers. Accessed April 12th, 2018.
https://developer.android.com/reference/android/widget/
ImageView.html

10. Android Open Source Project. Improve Your Code with
Lint. v23.0.0. Accessed April 12th, 2018.
https://developer.android.com/studio/write/lint.html

11. “Android Open Source Project.” Making Apps More
Accessible | Android Developers. Accessed April 12th,
2018.
https://developer.android.com/guide/topics/ui/accessibili
ty/apps.html

12. “Android Open Source project.” Quality Guidelines |
Android Developers. Accessed April 12th, 2018.
https://developer.android.com/develop/quality-
guidelines/index.html

13. “Android Open Source Project.” Shrink Your Code and
Resources | Android Studio. Accessed April 12th, 2018.
https://developer.android.com/studio/build/shrink-
code.html

14. Android Studio.
https://developer.android.com/studio/index.html

15. Apple. Accessibility - iPhone. Accessed April 12th,
2018. https://www.apple.com/accessibility/iphone/

16. Apple Accessibility Developer Guidelines. Accessed
April 12th, 2018.
https://developer.apple.com/accessibility/ios/

17. Apple Accessibility Scanner. Accessed April 12th, 2018.
https://developer.apple.com/library/content/documentati
on/Accsssibility/Conceptual/AccessibilityMacOSX/OS
XAXTestingApps.html

18. Matthias Böhmer, Brent Hecht, Johannes Schöning,
Antonio Krüger, and Gernot Bauer. (2011). Falling
asleep with Angry Birds, Facebook and Kindle – A
Large Scale Study on Mobile Application Usage.
Proceedings of the Conference on Human Computer
Interaction with Mobile Devices and Services
(MobileHCI ’11), 47–56.
http://doi.org/10.1145/2037373.2037383

19. “Business Wire.” (2017). Wells Fargo Launches
Enterprise Accessibility Program Office.
https://www.businesswire.com/news/home/2017113000
5201/en/Wells-Fargo-Launches-Enterprise-
Accessibility-Program-Office

20. Lucas Pedroso Carvalho, Bruno Piovesan Melchiori
Peruzza, Flávia Santos, Lucas Pereira Ferreira, and
André Pimenta Freire. (2016). Accessible Smart Cities?:
Inspecting the Accessibility of Brazilian Municipalities’
Mobile Applications. Proceedings of the 15th Brazilian
Symposium on Human Factors in Computer Systems -
IHC ’16. http://doi.org/10.1145/3033701.3033718

21. Raphael Clegg-Vinell, Christopher Bailey, and Voula
Gkatzidou. (2014). Investigating the Appropriateness
and Relevance of Mobile Web Accessibility Guidelines.
Proceedings of the Web for All Conference (W4A ’14),
1–4. http://doi.org/10.1145/2596695.2596717

22. Michael Cooper, Peter Korn, Andi Snow-Weaver,
Gregg Vanderheiden, Loïc Martínez Normand, and
Mike Pluke. (2013). Guidance on Applying WCAG 2.0
to Non-Web Information and Communications
Technologies (WCAG2ICT).
http://www.w3.org/TR/wcag2ict/

23. “Data Driven Design Group.” Rico: A Mobile App
Dataset of Building Data-Driven Design Applications.
Accessed http://interactionmining.org/rico

24. Biplab Deka, Zifeng Huang, Chad Franzen, Joshua
Hibschman, Daniel Afergan, Yang Li, Jeffrey Nichols,
and Ranjitha Kumar. (2017). Rico: A Mobile App
Dataset for Building Data-Driven Design Applications.
Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology - UIST ’17,
845–854. http://doi.org/10.1145/3126594.3126651

25. Biplab Deka, Zifeng Huang, and Ranjitha Kumar.
(2016). ERICA: Interaction Mining Mobile Apps.
Proceedings of the Symposium on User Interface
Software and Technology (UIST ’16), 767–776.
http://doi.org/10.1145/2984511.2984581

26. Trinh-Minh-Tri Do and Daniel Gatica-Perez. (2010). By
their apps you shall understand them: mining large-scale
patterns of mobile phone usage. Proceedings of the 9th
International Conference on Mobile and Ubiquitous
Multimedia - MUM ’10, 1–10.
http://doi.org/10.1145/1899475.1899502

27. Floating Action Button Usage Guidelines. Accessed
April 12, 2018.
https://www.material.io/guidelines/components/buttons-
floating-action-button.html%0A

28. Google. (2016). Accessibility Scanner. v1.1.2.
https://play.google.com/store/apps/details?id=com.googl
e.android.apps.accessibility.auditor

29. Google. (2015). Accessibility Test Framework for
Android. Accessed February 25, 2018.
https://github.com/google/Accessibility-Test-
Framework-for-Android

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

129

30. Google. Android Accessibility Developer Guidelines.
Accessed April 12, 2018.
https://developer.android.com/guide/topics/ui/accessibili
ty

31. Google. (2018). TalkBack Source Code. Accesed
Febrary 14, 2018. https://github.com/google/talkback

32. “Google Open Source Project.” Develop Apps | Android
Developers. Accessed April 12th, 2018.
https://developer.android.com/develop/index.html

33. Vicki L. Hanson and John T. Richards. (2013). Progress
on Website Accessibility? ACM Transactions on the
Web, 7(1), 1–30.
http://doi.org/10.1145/2435215.2435217

34. Shuai Hao, Bin Liu, Suman Nath, William G J Halfond,
and Ramesh Govindan. (2014). PUMA: Programmable
UI-Automation for Large-Scale Dynamic Analysis of
Mobile Apps. http://doi.org/10.1145/2594368.2594390

35. Shaun K. Kane, Jessie A. Shulman, Timothy J.
Shockley, and Richard E. Ladner. (2007). A Web
Accessibility Report Card for Top International
University Web Sites. Proceedings of the 2007
international cross-disciplinary conference on Web
accessibility (W4A) - W4A ’07, 148.
http://doi.org/10.1145/1243441.1243472

36. Material Design. Accessed April 12th, 2018.
https://material.io/guidelines/

37. Lauren R. Milne, Cynthia L. Bennett, and Richard E.
Ladner. (2014). The Accessibility of Mobile Health
Sensors for Blind Users. International Technology and
Persons with Disabilities Conference
Scientific/Research Proceedings (CSUN 2014), 166–
175. http://doi.org/10211.3/133384

38. Trinh Minh, Tri Do, Jan Blom, and Daniel Gatica-perez.
(2011). Smartphone Usage in the Wild : a Large-Scale
Analysis of Applications and Context. Proceedings of
the Conference on Multimodal Interfaces (ICMI ’11),
353–360. http://doi.org/10.1145/2070481.2070550

39. Israel J. Mojica, Bram Adams, Meiyappan Nagappan,
Steffen Dienst, Thorsten Berger, and Ahmed E. Hassan.
(2014). A Large-Scale Empirical Study on Software
Reuse in Mobile Apps. IEEE Software, 31(2), 78–86.
http://doi.org/10.1109/MS.2013.142

40. Kyudong Park, Taedong Goh, Hyo-Jeong So, Hyo-
Jeong Association for Computing Machinery., HCI
Society of Korea, and Hanbit Media (Firm). (2014).
Toward accessible mobile application design:
developing mobile application accessibility guidelines
for people with visual impairment. Proceedings of HCI
Korea -- HCIK ’15, 478.
https://dl.acm.org/citation.cfm?id=2729491

41. John T. Richards, Kyle Montague, and Vicki L. Hanson.
(2012). Web Accessibility as a Side Effect. Proc.
ASSETS 2012, 79.
http://doi.org/10.1145/2384916.2384931

42. Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and
Jacob O. Wobbrock. (2017). Epidemiology as a
Framework for Large-Scale Mobile Application
Accessibility Assessment. Proceedings of the 19th
International ACM SIGACCESS Conference on
Computers and Accessibility - ASSETS ’17, 2–11.
http://doi.org/10.1145/3132525.3132547

43. Leandro Coelho Serra, Lucas Pedroso Carvalho, Lucas
Pereira Ferreira, Jorge Belimar Silva Vaz, and André
Pimenta Freire. (2015). Accessibility Evaluation of E-
Government Mobile Applications in Brazil. Procedia
Computer Science, 67, 348–357.
http://doi.org/10.1016/J.PROCS.2015.09.279

44. Clauirton Siebra, Tatiana Gouveia, Jefte Macedo,
Walter Correia, Marcelo Penha, Fabio Silva, Andre
Santos, Marcelo Anjos, and Fabiana Florentin. (2015).
Usability requirements for mobile accessibility.
Proceedings of the 14th International Conference on
Mobile and Ubiquitous Multimedia - MUM ’15, 384–
389. http://doi.org/10.1145/2836041.2841213

45. “Starbucks Newsroom.” (2015). Global Accessibility
Awareness Day: Starbucks Celebrates Digital Inclusion.
Accessed April 12th, 2018 .
https://news.starbucks.com/news/digital-accessibility-in-
starbucks-
stores?hootPostID=0df1827b8efbc8223734e48ae2b64f4
3

46. Markel Vigo and Giorgio Brajnik. (2011). Automatic
Web Accessibility Metrics: Where We Are and Where
We Can Go. Interacting with Computers, 23(2), 137–
155. http://doi.org/10.1016/j.intcom.2011.01.001

Session 3: Accessing Information ASSETS’18, October 22–24, 2018, Galway, Ireland

130

	Examining Image-Based Button Labeling for Accessibility in Android Apps through Large-Scale Analysis
	ABSTRACT
	Author Keywords
	Mobile app; large-scale analysis; accessibility; image-based buttons
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	Small-Scale App Accessibility Analysis
	Large-Scale App Analysis
	Large-Scale Web Accessibility

	ANDROID BACKGROUND
	Relevant Android Classes of Image-Based Buttons
	Clickable Images
	Image Button
	Floating Action Button (FAB)

	Current Android Tools
	Android Design and Development Tools
	Android Testing Tools

	APPLYING AN EPIDEMIOLOGY-INSPIRED FRAMEWORK
	Key Terminology
	Objectives of Our Analysis
	Determining the Extent of a Disease
	Evaluating Existing and New Treatments

	METHOD
	Data
	Exclusion Criteria
	Limitations

	Talkback Focusable
	Label-Based Inaccessibility Disease
	Missing Label
	Duplicate Label
	Uninformative Label

	ANALYSIS
	Prevalence of Missing Label in Apps
	Prevalence of Missing Label in Classes
	Evaluating Treatments for Missing Labels
	Prevalence of Duplicate Label in Apps
	Prevalence of Duplicate Labels in Classes
	Prevalence of Uninformative Label in Apps and Classes
	Evaluating Treatments of Poor Labeling
	Relationship Between Rating and Missing Label

	DISCUSSION AND CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

Accessibility Report

		Filename:

		fp114-rossA.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 2

		Passed manually: 0

		Failed manually: 0

		Skipped: 1

		Passed: 29

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

