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ABSTRACT

Applied games are increasingly used to collect human subject data
such as people’s performance or attitudes. Games afford a motive
for data provision that poses a validity threat at the same time: as
players enjoy winning the game, they are motivated to provide
dishonest data if this holds a strategic in-game advantage. Current
work on data collection game design doesn’t address this issue.
We therefore propose a theoretical model of why people provide
certain data in games, the Rational Game User Model. We derive a
design approach for human subject data collection games that we
call Intrinsic Elicitation: data collection should be integrated into
the game’s mechanics such that honest responding is the necessary,
strategically optimal, and least effortful way to pursue the game’s
goal. We illustrate the value of our approach with a sample analysis
of the data collection game Urbanology.
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1 INTRODUCTION

Games and game design are increasingly popular ways to elicit data
from people, particularly large online populations [2, 25, 63, 74].
Such applied games for data collection fulfil a dual function: they
(1) structure a data-providing task and (2) motivate participation by
turning data provision into enjoyable gameplay. For example, the
ESP Game turns the tagging of images into a game of mind-reading:
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players are randomly paired with other anonymous players, pre-
sented with a series of images, and for each, have to guess and
type what word the other player would associate with it [1]. Thus,
the game (1) structures the task (providing concrete instructions,
goals, materials, tools), and (2) motivates it, evidenced by 13,000+
players voluntarily producing 1.2 million labels in the course of
four months [1]. A key factor of the success of such data collec-
tion games is their design [2, 19, 61]. Existing work has explored
design strategies for either motivating players or ensuring data
quality after collection [56, 60]. Validation strategies for the lat-
ter include agreement designs, reputation systems, and automatic
checks, while motivation strategies have focused individual game
design elements like rewards, effectively ‘gamifying’ data collection
games. This overall gamification+validation approach frames the
key design challenge of data collection games as one of post-hoc
filtering and checking a maximized volume of player-provided data.
As such, it treats player motivation and data quality as separate con-
cerns. Yet different forms of motivation have been shown to directly
affect the kind and quality of data provided [62, 82]. This marks a
significant shortcoming of gamification+validation approaches and
invites the search for broader elicitation approaches that integrate
both motivation and data quality: models and design principles for
motivating players to provide desired data in a desired quality from
the outset. Such approaches are of particular relevance where there
is no straightforward way of post-hoc validating data against an
objective or consensus ground truth, e.g. when eliciting human
subject data such as people’s preferences, beliefs, or performance.

In this paper, we introduce such an integrated design approach
which we call intrinsic elicitation, akin to the principle of intrinsic
integration in e.g. educational games or gamification [23, 41]. In
short, intrinsic elicitation captures the idea that generating desired
data in a desired quality should be integrated into the mechanics of
the game in such a way that it is the necessary, strategically optimal,
and least effortful way for the player to pursue the game’s goal. We
will develop and defend this approach as follows: First, we situate
data collection games within the wider field of applied gaming. We
argue that data collection games as games introduce a systematic
motivational driver and threat to data validity at once which ex-
isting gamification+validation work hasn’t addressed. Therefore,
we present a theoretical model of why players provide particular
kinds of data in a game, the Rational Game User Model, integrating
Jonas Heide Smith’s Rational Player Model [75] with existing the-
oretical and empirical work on data collection games and survey
engagement. From this model, third, we derive the design approach
of intrinsic elicitation, comprising three heuristics for how to inte-
grate data collection into a game’s mechanics: necessity, centrality,



FDG’18, August 7-10, 2018, Malmo, Sweden

and veracity. We illustrate the utility of our approach as a predic-
tive model and evaluative tool by analysing the location-based data
collection game Urbanlogy [15] through its lens.

2 BACKGROUND
2.1 Applied Games for Data Collection

Applied gaming is the design and use of games to achieve an ulte-
rior purpose [66], such as learning in game-based learning, belief
and attitude change in persuasive games, or changed health beliefs,
attitudes, and behaviours in games for health. One growing domain
of applied gaming is research and data collection, sometimes called
“gamifying research” [25] or “game-based methods” [74]. Examples
abound, with games prompting players to discover protein and
RNA structures (Foldit, EteRNA), report and classify bird sightings
(eBird), classify images of galaxies Galaxy Zoo [17], reveal their
cognitive processes (The Great Brain Experiment [10]) or assess
their fluid intelligence [31]. Outside science, we find data collection
games for digitizing and labelling archive material [16, 30], tagging
images|[2], or codifying knowledge for machine learning [3]. The
literature uses several terms to denote these kinds of games [67]:
“citizen science game” [17] foregrounds the participation of citizen
volunteers in science. “Crowdsourcing games” [39] denotes the
enlistment of large online populations in a task. “Human compu-
tation games” and “games with a purpose”[2] revolve around the
offloading of computing tasks to humans. Related to but distinct
from such data collection games is gamified data collection — using
game design elements [23] to e.g. motivate participation in surveys
[48] or crowdsourcing [54]. Finally, game intelligence describes the
opportunistic (re)use of entertainment games data for scientific
purposes [27].

No matter the label, the main reason for using game-based data
collection has been participant motivation. Applied games harness
the appeal of games for their ulterior purpose, hoping to attract
and motivate large populations to play voluntarily, thus increas-
ing participation and retention rates and reducing the need for
costlier means of motivation such as payment [17, 63]. Applied
games therefore have a dual, interlinked design goal [23]: they
need to (a) motivate players to (b) engage in play that produces the
desired outcome — valid data in the case of data collection games.
With‘valid’, we here mean more generally data of a kind and quality
that is fit for its intended purpose, which may be drawing valid
inferences (standard scientific validity [53]), making good hiring
decisions based on in-game performance, directing crisis respon-
ders to likely survivors spotted on satellite imagery of a flooded
region, etc. No matter the purpose, if gameplay is engaging but
produces little or invalid data, the game is ineffective. Similarly, if
gameplay generates valid data but is not enjoyable, players won’t
come and generate the desired quantity of data.

2.2 Current Design Approaches and Research

For these reasons, numerous researchers have studied how to de-
sign data collection games for motivation and data quality. Several
studies have probed the underlying motives of players, converging
on constructs of gaming enjoyment (e.g. fun, competence, relax-
ation), community participation (status, recognition, social norms),
and meaning (making a contribution to science, helping others,
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growing oneself), with monetary benefits being rarely used and
reported [20, 37, 38, 78]. In their systematic analysis, Tinati and col-
leagues [78] suggest that these motives can be classified following
self-determination theory [21] into intrinsic motivations (gaming
enjoyment factors like competence, the community factor related-
ness, and all meaning factors) and extrinsic motivations (monetary
benefits, achievement, status, recognition, social norms). This is
particularly relevant as research on crowdsourcing and survey de-
sign suggests that intrinsic motivation leads to higher participation
rates and higher-quality data [62, 80, 82] — comparable work on
data collection games is unfortunately harder to find [58, 59].

As for motivational design strategies, the literature has chiefly ex-
plored individual game design features such as difficulty balancing
[64], visual appeal [81], graded goals [34], narrative and theming
[59], and reward systems [33, 39, 59, 72], though with various re-
sults. In a sense, the existing literature has been less concerned with
what core loops and mechanics [23, 69, 71] fit what data collection
tasks than with ‘gamifying’ data collection games - adding and
tweaking presumed-engaging design features. This is arguably be-
cause the majority of data collection games follows the template of
the early successful and much-publicized GWAPs of Louis von Ahn
and colleagues[2]: players classify or transcribe presented (usually
visual) data, receiving points for every (correct) input. A second
such influential template is Foldit by Seth Cooper and colleagues
[17], where players generate solutions to problems where the theo-
retically possible optimum is known but not the actual best possible
solution; here, players score based on the number and optimality of
provided solutions. There are good practical reasons for the popu-
larity of these templates: they offer working models that are easily
replicated via open access platforms like Galaxy Zoo; they address
classification and solution discovery tasks with broad applications;
and they provide straightforward means of validating generated
data - the second main design concern of data collection games.

Commonly used validation strategies are agreement designs, au-
tomatic solution evaluation, and reputation systems [19]. In agree-
ment designs found in GWAPs and most data classification games,
a player’s input is assessed on how much it agrees with the inputs
of other players on the same stimulus or task [2]. Poor responses
are filtered out or demoted in their weighing as they are unlikely to
‘agree’ with the consensus of the majority and/or trusted players.
This is somewhat data-inefficient as it requires multiple people to
solve the same task. In contrast, solution discovery games like FoldIt
[18], automatically evaluate the quality of each submitted solution
against known and computationally formalized optimality criteria.
Solutions are ranked and scored based on how close they come to
the theoretical optimum. While potentially more data-efficient than
agreement designs, this validation strategy obviously requires prior
knowledge of solution requirements that can be computationally
expressed and validated. Finally, both agreement and automatic
evaluation designs often feed into reputation systems that track
player performance over time to identify which players reliably
provide high- or low-quality data [19]. These reputation scores can
then be used to weigh answers in agreement designs, filter out
data by low-scored players, or optimize player-task matching, e.g.
serving difficult or unsolved tasks to high-scoring players first [64].

To summarize, current design research on data collection games
has chiefly focused on variations of GWAP-style data classification
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games and Foldit-style solution discovery games, replicating their
core game mechanics based on validation strategies [17, 57, 60].
In this, research has treated player motivation and data quality as
mostly separate design concerns addressed with separate solutions:
‘gamifying’ data generation with reward systems etc. to maximise
data volume, then validating generated data with agreement, auto-
matic evaluation, or reputation systems to maximise data quality.
This gamification+validation approach works with the somewhat
wasteful assumption that some or even significant amounts of poor-
quality data are inescapable: as long as some players provide good
data, ground truth will out and can be used to identify and reward
high-quality data. More importantly, this approach necessarily re-
quires some validation against a known objective or consensus
ground truth.!

2.3 The Challenge of Human Subject Data

Exactly this requirement sets GWAP- and Foldit-like games apart
from games designed to collect human subject data like short-term
memory processes [10] or people’s performance [6]. It also limits the
applicability of their underlying gamification+validation approach.?
Contrary to classification tasks or solution discoveries, for human
subject data, the ground truth is often unknown and unknowable to
anyone but the subject, and data validity can not be equated with
players doing ‘as best they can’. For subjective attitudes, values,
or preferences, there is by definition no subject-external ground
truth to assess them against. We often aggregate such data (‘people
on average give this service a 7.5 net promoter score’), but in that
usually want each subject to honestly report their independent
evaluation, not their ‘best guess’ at what an average evaluation
would be. Similarly, much of human subject research is interested
in covert, non-conscious processes, tendencies, dispositions, states,
or traits that reveal themselves in people’s ‘spontaneous’ responses,
e.g. the preferred walking speed as an expression of fitness or wage
levels and derived valuations of time [11, 50]. In these instances,
the moment one communicates one answer to be ‘more true’ or
‘more optimal’, this would distort the generated data. Even where
there are operationalizable scales for performance (such as IQ or
money earned in a game theoretical experiment), people may be
motivated to overstate (or understate) their ‘true’ performance
ability because it is socially desirable or rewarded by the game.
And again, for individual capabilities like IQ, there is no subject-
external ground truth to assess how accurately the subject’s current
recorded performance reflects its ‘true’ underlying capability.’
More generally, the collection of human subject data introduces
specific data types, validity criteria and validity threats that gamifi-
cation+validation approaches don’t reliably address. Worse, where
gamification+validation approaches model or even reward certain
responses as ‘better’ or ‘more true’ than others, they generate par-
ticular new validity threats. In education and gamification, these

ISee e.g. Siu, Zook and Riedl’s [73] framework of mechanics for human computation
games, which includes validation as a necessary component.

For clarity, we here delineate human subject data collection games as games intention-
ally designed and used to generate data about the playing human participants through
play, e.g. to assess their performance, survey their attitudes and preferences, or gather
data for basic and applied human and behavioral science research.

3Beyond these instrumental challenges, human subject data collection games open a
plethora of ethical questions, especially if assessment occurs covertly under a playful
veneer. For reasons of space, we cannot engage with these here, though see [26] .
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threats have been discussed as gaming the system [4, 7, 83] or cheat-
ing [52]. Individuals game the system when they find ways within
the rules of a system to maximise their evaluation metrics at the
expense of the substantive goals intended by the system, e.g. giving
short nonsense answers in a question and answer platform because
every answer receives points irrespective of content. Individuals
cheat when they covertly gain an advantage through means outside
the rules of a system, such as secretly copying answers for a test
from a colleague.

This raises the obvious question what game design approaches
are better suited to human subject data than the currently preva-
lent gamification+validation approach. Education and gamification
research are plausible sources of alternatives since both often in-
volve human subject data collection and have dealt with gaming
the system and cheating. One consistent argument across these
two fields, going back to Thomas Malone [51], is that the outcome
of applied gaming — teaching particular skills, making a particular
activity more engaging — should in some way be integrated into
the game’s mechanics [23, 41, 77]. In game-based learning, this
principle is called intrinsic integration [41]. It is ‘intrinsic’ in that
(a) the learning material is part and parcel of the enjoyable, intrin-
sically motivating core mechanic of the game, and (b) the game’s
mechanics and thematic world embody and represent the learning
material. Deterding [23] suggests in direct analogy that effective
gamification is intrinsically integrated by turning the target activity
into the core mechanic of the game, reorganizing its ‘core loop’
to support intrinsic motives like competence. There is some evi-
dence that intrinsically integrated educational games and gamified
interventions outperform their alternatives [12, 28].

This notion of intrinsic integration is not without parallels in data
collection games. Tuite [79] cautions that GWAPs should “match
mechanics to purpose”. Observing that existing validation templates
are insufficient to design new GWAPs, Galli [32] offers a range of
standard game mechanics that match different GWAP task types,
e.g. memorisation maps clustering. Jamieson, Hall and Grace [44]
suggest identifying mechanics for human computation games by
finding mechanics or real-world activities that are “isomorphic” to
the structure of the computational task. However, Jamieson and
others argue for this as a way to reduce extraneous effort and
cognitive load and ease problem-solving, and none of them address
the particular validity threats of games for collecting human subject
data. For these, we need an intrinsic integration approach that not
only matches a mechanic to a particular data type, but also motivates
players to provide honest data without biasing results, especially in
instances where there is no subject-external ground truth to validate
responses against. Such an approach arguably requires developing
a clear idea of what motivates players of data collection games to
take particular in-game actions (and thus provide particular data)
rather than others. That is the purpose of the next section.

3 THEORY
3.1 The Rational Player Model

Implicitly or explicitly, game designers, researchers, and members of
the public hold different mental models of players [75]. For instance,
we may view players as mostly passive objects of game stimuli
(a view proposed by strong media effects research), or as highly
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autonomous subjects appropriating games as a mere material for
their own ends, as in e.g. Sicart’s humanist rhetoric of play [70]. The
model underlying much if not most game design practice is what
Jonas Heide Smith has elucidated as the Rational Player Model [75].
In short, the Rational Player Model states that in-game, players are
self-determined and rational actors “whose main (or only) concern
is to optimize [their] chances of achieving the [game’s] goals.” [75]
Put more simply, people play to win.

This model holds substantial merit despite and because of its
simplicity. Games are often distinguished from toys solely through
the possession of a goal [46]. Striving towards goals is widely seen
as what distinguishes ‘gaming’ from ‘playing’ [23]. Across studies
of player motivation and experience, players state that experiences
of competence, mastery, and achievement gained from achieving
game goals make playing engaging [8]. In addition, ‘playing to win’
is an important and actively sanctioned social norm of most gam-
ing encounters: to make no visible effort to win during gameplay
usually results in being reprimanded as a‘spoilsport’ (see[22], pp.
174-5 for a review). Gaming is one of the few types of social situa-
tions where “setting aside all personal feelings and all impulsive
inclinations” to rationally maximise one’s own goal attainment is
allowed and indeed expected ([36], p. 96). And in any domain of
everyday life, goals are extensively and effectively used to motivate
and direct effort [40]. Within a game, goals have a similar function,
directing player effort towards particular future states.

Starting with the assumption that players try to act strategi-
cally optimal to attain a game’s goals is not only well-supported: it
also opens the way to powerful conceptual tools for analysing and
predicting how particular game design choices will affect in-game
actions, as Smith demonstrates in his formalisation of the Rational
Player Model [75]. He explicates the Rational Player Model using
game theory, the mathematically formalized study of strategic inter-
action when two or more actors make decisions with clearly defined
objectives, taking their knowledge and expectations of the other
actors’ objectives and decisions into account [55]. As such, game
theory shares basic assumptions (and mathematical inclinations)
with rational choice theory in sociology and economics, namely
that people are individual agents acting to rationally maximize their
personal utility [68]. Translated into gameplay, players are rational
agents seeking to optimise their utility as defined by the game’s
goals. In this view, ‘gaming the system’ as defined previously is nor-
mal and indeed expected gaming behaviour, as is cheating: cheating
is likely when the expected utility of cheating (minus the expected
disutility of the chance of being caught) is bigger than the utility of
available alternative actions.

Being caught leads us to the point that player’s in-game choices
are affected by more considerations than winning. Juul [47] for
instance articulates at least three concerns from which players can
and often do assess in-game actions: The first is goal-orientation
or the desire to win, matching the Rational Player Model. This
is nested in a concern for gameplay as an interesting experience:
players try to maximise their enjoyment, perhaps by playing in a
way that is strategically sub-optimal but more novel and interesting.
Even this is coached in a third wider consideration of the social
implications of game actions. We often self-handicap when playing
against children, for example. However, all these concerns do not
speak against a game theoretic analysis of gameplay. Rather, they
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Figure 1: The Rational Game User Model.

highlight a common narrow misconstrual of the concept of util-
ity. Originating in Bentham’s utilitarianism, utility expresses the
tendency of an object or action to "produce benefit, advantage, plea-
sure, good, or happiness" (and reduce or prevent the opposite) [9].
In later economics, this substantive conception has been replaced
by an operational definition of utility as the preferences of individu-
als, as revealed in their choices [9]. Either conception is perfectly
in keeping with any and all considerations Juul (and others) have
brought forward as informing in-game actions. If we value and
derive pleasure from making a child happy, and more so than win-
ning ourselves, then self-handicapping is the rational choice that
maximizes our utility, as revealed in our choice to self-handicap.
The utility that a rational player seeks to maximise can include
the joy of winning, other joys of gameplay, and surrounding social
norms at once.

3.2 The Rational Game User Model

For the design of data collection games, we therefore suggest a
strong rational choice-style abstraction that starts with the strate-
gic utility of in-game actions for accomplishing game goals. We
see five main benefits to doing so. Firstly, this ‘in-game’ utility
elegantly compresses many known important considerations of
players outlined above, from mastery to the social norm of ‘playing
to win’. Second, Smith’s own empirical work indicates that play-
ers do rationally play to win in-game and modulate arising social
concerns through parallel out-of-game talk[75]. Third, it is literal
textbook practice and therefore easy to adopt by practitioners: game
design textbooks regularly advise to use game theory to calculate
the strategic utility of in-game actions and objects as part of balanc-
ing to afford interesting decisions and a perceived ‘fair’ chance at
winning [65]. Fourth, it allows to articulate clear, mathematically
expressed hypotheses and predictions, enabling rigorous empirical
testing and robust design guidance. Fifth and finally, we concur
with Healy [42] that ‘nuance’ in theory is overrated: theory is more
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pragmatically powerful when it needs less starting assumptions and
data to make good-enough predictions, and knowledge generation
can be more usefully guided and integrated by extending simple
models with variables like ‘social context’ only if and when the
data requires it.

Still, we recognise that in-game actions do not occur in a vacuum.
For human subject data collection games in particular, we need to
consider what utilities existing research has identified beyond game
enjoyment. Here we can draw on literatures on motivations for par-
ticipating in human subject research (particularly online surveys),
volunteer crowdsourcing, and citizen science, as they are struc-
turally comparable to data collection games. For web surveys in
specific, researchers have developed and tested rational choice mod-
els that predict participation decisions [29]. Surveying major recent
reviews [5, 29, 35, 62, 80], a picture broadly concordant with the
data collection game literature emerges, notably excluding gaming
enjoyment factors. First and foremost, participation is intrinsically
motivated by meaning factors: helping others, contributing to sci-
ence, growing oneself through learning. Second, participation is
extrinsically motivated by perceived social norms like reciprocity
and, where offered, tangible rewards like money. Third and finally,
participants take into account the disutility of labor involved in
participating, such as the opportunity costs of foregone alternative
ways of spending the same time and the active displeasure of doing
something boring or strenuous [76]. In online surveys for instance,
overly long surveys or poor usability lead to low participation, high
abandonment, careless responding or satisficing: doing just enough
to achieve a somewhat satisfactory answer [29, 49].

Given the general concordance of the different motivation liter-
atures, we assume that these out-of-game factors or utilities also
operate when players choose which in-game action to take (and
thus data to provide) in a data collection game. We summarize these
factors in what we call the Rational Game User Model (illustrated
in figure 1): As a rational game user, players want to maximise
their total utility. This includes out-of-game extrinsic utilities
like social norms and tangible rewards: playing the game because
doing so is incentivized and/or socially expected or sanctioned.
On their own, extrinsic utilities will motivate players to play the
game/provide data just enough to satisfy incentive criteria or social
expectations with minimum effort, honesty, and care: they invite
gaming the system and careless responding [62, 80, 82]. They also
invite dishonest responding [45] if participants consider it socially
desirable to over- or under-report certain traits or beliefs. This
stands in stark contrast to intrinsic utilities, especially meaning.
As players are motivated to help others or science and find the game
itself a valid means of doing so, they will attempt to provide data
that optimally serves the game’s ulterior purpose, e.g. answering an
open-ended question in detail and truthfully, despite the involved
effort or social undesirability of the answer.

The second, game-specific intrinsic utility is game enjoyment.
This is where the model incorporates the rational player. To maxi-
mize game enjoyment, the rational game user analyzes the current
game state as a rational player trying to maximize their in-game
utility as expressed in the game’s goals. To do so, they assess each
currently possible action for its virtual utility (how much or likely
the action moves them closer to goals and virtual disutility (the
opportunity costs of in-game resources spent on the action). While
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game enjoyment uniquely motivates data provision in data col-
lection games, it also opens a second, game-specific route to the
validity threat of gaming the system: if an action/data provision
maximizes in-game utility more than the more honest or ‘sponta-
neous’ option, players are systematically more likely to choose the
more in-game optimal and thus enjoyable action.

Finally, the rational game user model acknowledges that data
provision is effortful labor — else, there would be no need to moti-
vate it with a game. Thus, beyond extrinsic and intrinsic utility, a
rational game user will consider an action’s extrinsic disutility.
Playing a game involves effort and displaces other activities we
could have done instead. One may object that because gameplay
is intrinsically motivating and enjoyable, it lacks the common dis-
pleasures of labor and should be one of the most highly preferred
activities. But players do regularly report negative experiences
like frustration during gameplay e.g. due to poor playability and
usability[38], and phenomena like goldfarming demonstrate that
some aspects of gameplay (like ‘grinding’) have a high enough
disutility that people pay money to free their time for other, more
preferred activities[43]. Even in enjoyable games, players regularly
satisfice, making good-enough choices instead of investing more
time and effort into calculating the absolute optimal move. For data
collection games, this means that all else being equal, responding
honestly or spontaneously should be the most effortless option,
or at least as effortless as any other available choice. As displea-
sure and opportunity costs increase, players will be more likely to
respond carelessly, satisfice, or even abandon the game.

4 INTRINSIC ELICITATION

From the Rational Game User Model, we can derive requirements
for translating human subject data collection into applied games,
specifically their mechanics and core loops, which are commonly
considered the primary formal aspects of a game[23]. Game me-
chanics refer to the methods by which an in-game agent effects
a game state change [69]. They are the verbs of the game, like
‘jumping’, ‘shooting, or ‘drawing a card’. Loops describe cycles of
mechanic actuation, system processing, and system feedback rela-
tive to one or more game goals [23, 70]. Mechanics can be actuated
in multiple ways with differing effort: we can jump high or low,
and shoot with careful or careless aim. Thus, any in-game action
involves two degrees of freedom: First, a player must choose which
mechanic to actuate. Second, they choose how to actuate it. This lat-
ter how defines the sensitivity or expressive range of mechanics as
measurement instruments. Just like a 5-point Likert scale can only
support operationalisations that rely on the selection between five
ordinal values, and endless runner game with a single jumping me-
chanic delimits measurement to timed button presses in response
to on-screen events. Combining this with the Rational Game User
Model, we derive three systematic principles for games that enable
and motivate participants to generate valid human subject data. We
summarisingly refer to these principles as the Intrinsic Elicitation
approach to data collection game design 2:

(1) Necessity: Players only engage in data provision that changes
game states. Requirement: Embody data provision tasks as
the game’s interesting mechanics.
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(2) Centrality: Players select mechanics to maximise utility. Re-
quirement: Make data-providing mechanics as strategically
central and effortless as possible.

(3) Veracity: Players actuate mechanics to maximise utility. Re-
quirement: Where honest responses are needed, ensure that
they have the highest strategic utility and lowest effort, or at
least the same utility and effort as any other available option.

In summary, Intrinsic Elicitation states that data generation should
be integrated into the game’s mechanics such that responding hon-
estly is the necessary, strategically central, most in-game advanta-
geous and least effortful choice for pursuing the game’s goal.

4.1 Necessity

A rational player will only engage with game mechanics, because
these are the only means to affect the game state and thus approach
the game’s goals. For the rational game user, any activity not related
to mechanics only increases extrinsic disutility, unless it constitutes
metagaming [70] like making the opponent nervous or satisfy ex-
trinsic utilities like social norms. That is, the model acknowledges
out-of-game actions, but suggests that designers can most reliably
steer data provision through in-game mechanics. For data provision
to occur, it must be instrumental in a mechanic. That is, it must be
impossible to actuate the given mechanic without supplying the
desired kind of data. Furthermore, the game mechanics themselves
must be part of enjoyable game loops — actuating the mechanic in
the pursuit of game goals should be an interesting challenge or deci-
sion that elicits experiences of curiosity, competence, achievement,
and the like. If acting rationally to win isn’t enjoyable, players are
less likely to do it, or do it well [23].

Take The ESP Game[1] as an example. Two players each try to
provide input that matches the other player’s. Each round, the game
provides both players with an image and prompts them to submit a
written image label that they think the other player would use. The
mechanic here is ‘submit label, which is actuated by typing one or
more letters and hitting the submit button. Without doing so, and
the game state doesn’t change. Game mechanic and data provision
are one and the same, and mind-reading others is an inherently
interesting challenge. This necessity principle restates earlier sug-
gestions that data collection games should “match mechanics to
purpose” [32, 44, 79]. E.g., a game for assessing fluid intelligence
should involve mechanics and goals whose successful accomplish-
ment requires fluid intelligence, like Portal 2 puzzles[31]. A game
eliciting people’s preferences in vacations should involve mechan-
ics whose actuation expresses preferences, e.g. ranking photos of
vacation places.

A corollary is that if data can be provided in different kinds that
require different levels of effort, actuating the mechanic should at
minimum require data of the target kind, not data of a kind that
requires less effort. E.g., if we want to collect data about people’s
pronunciation of words with a game where they steer a plane by
speaking, the game needs to be able to recognise and require actual
spoken words. The mechanic should not be actuated by e.g. volume
or pitch alone, as producing humming and nonsense sounds of
different volume and pitch is likely less effortful than thinking of
and speaking a large variety of actual words.
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Centrality Necessity Veracity
Strategic Mechanic Data Valid
Choice Use Provision| | Target Data

Figure 2: Intrinsic Elicitation

4.2 Centrality

Often the data-providing mechanic is not the only mechanic avail-
able in the game. This may be because the game designer wants
to offer meaningful choice between different courses of action,
interesting variety, or because the data-providing mechanic and
surrounding loop are not inherently enjoyable and therefore require
additional loops and mechanics that are enjoyable. In any case, the
rational player will at any step select to actuate the mechanic with
the greatest current perceived in-game utility. Therefore, the data-
providing mechanic should be central to gameplay, either because
it is the only or core mechanic the player necessarily actuates over
and over (submitting words in The ESP Game, running in Super
Mario Bros.), or because it is the strategically optimal choice in
the majority of situations. Where this does not hold, the rational
game user will spend the majority of their time on other mechanics,
making the game inefficient.

4.3 Veracity

When actuating a data-providing mechanic, people choose how to
actuate it: they have to pick a datum out of a set of possible datums.
The rational game user will provide the datum which maximises
their total utility. Where utility is constant, they will provide the
datum that requires the least effort. Where effort is constant, they
will provide the datum of the highest utility. This has different
implications for different kinds of human subject data. Where we
are interested in assessing a participant’s aptitude as expressed in a
maximum performance (such as fitness, range of vocabulary, IQ),
the design is relatively straightforward: maximum performance
should maximize in-game utility. The long jump in athletics is such
a simple applied game for learning the maximum jumping distance
of participants. The game’s mechanic (jumping) is necessarily inte-
grated with the to be provided data (jumped distance), and as its
sole mechanic, it is strategically central to the game. The required
datum for actuating the mechanic is a jump of any distance. If the
player were only rewarded for jumping, no matter how far, they
would rationally minimise their effort and jump as short as possible
- they would game the system. Therefore, the veracity principle
requires that the in-game utility of jumping further needs to contin-
ually increase and do so in excess of the required additional effort
to motivate players to make an honest effort to jump as far as they
can. The player could still jump dishonestly, but in that case would
cheat themselves out of their own utility.

But what about revealing subjective attitudes, values, prefer-
ences, or spontaneous inclinations? Here the veracity requirement
flips into a cautionary principle. For these kinds of data, designers
need to ensure that all possible data — all possible ways of actuating
the connected mechanic - are of equal overall utility, that is equally
strategically worthwhile/worthless and equally effortful/effortless.
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In such a case, there is no marginal utility to providing one da-
tum over another. The reasons for choosing one over the other are
therefore fully sensitive to the inclinations of the individual (or non-
conscious variables under study). For instance, assume a party game
designed to reveal personality traits like agreeableness. Each round,
players draw a card describing a social situation and three further
cards describing various personality traits (agreeable, neurotic, etc.),
asking the player to choose one trait to act out. The game designer
wants to assess personality by observing which of the three trait
card a player spontaneously chooses to act out. Assume further
that the other players decide whether to give the acting player a
point for their performance or not. If they are instructed to give
points based on how much they liked the performance, acting play-
ers will be strategically biased to choose the most likable trait to
act out. If certain traits are systematically more difficult to act out
than others no matter one’s preference, actors will be biased not to
choose those. Only if choosing one trait card over the others has
no such marginal utility or disutility will it be an honest signal of
the players’ spontaneous inclinations.

As a rational game user, the player will only maximize marginal
in-game utility to the extent that doing so doesn’t incur larger mar-
ginal costs in disutility or extrinsic utility, which can be connected
to honesty. E.g., if truthfully revealing one’s sexual preference in a
game of Truth or Dare is perceived to be highly socially undesirable,
even if doing so would earn more points for one’s team, the rational
game user will be more likely to lie or choose a dare task. Con-
trariwise, the alibi function of games [24] may enable more honest
responding: as players can claim plausible deniability (I didn’t want
to do it, I had to do it to win), this lowers the perceived disutility of
acting in accord with one’s spontaneous inclinations, even if they
are thought to be socially undesirable.

5 EVALUATION

The most immediate use of Intrinsic Elicitation is as an heuris-
tic evaluation tool to assess game designs for data elicitation. To
demonstrate this, we will discuss Urbanopoloy [15], an applied game
for data collection. Urbanopoly is a competitive multiplayer mobile
game for gathering location-based data about urban landmarks,
clothed in the fiction of players being rich landlords. The goal is to
have the most virtual cash by buying and trading real venues on
the game map that generate different daily cash bonuses every day
the player logs into the game. When players open the game, they
can see and click on venues in their geographic vicinity. When a
venue is free, they can purchase it. Is the venue already owned, the
player spins a “wheel of fortune” resulting in a venue-related task
such as making an advertisement (entering venue information and
shooting a photo of it), answering venue-related quiz questions, or
rating photos. All these activities receive virtual cash rewards. The
wheel can also trigger a chance to take the venue from the owner or
paying rent to the owner. Once multiple entries are collected on a
venue, a weighted majority agreement algorithm is used to identify
consensus truth and trigger a cash penalty for non-consensus an-
swers. Thus, Urbanopoly has nine mechanics or verbs: log in, move
to venue, buy, spin wheel, answer quiz, judge photos, take venue,
pay rent (figure 3).
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Move to venue

Buy venue
Pay $ price to buy
Enter name, category

Login

+$ per venue owned

Advertise
Enter address, photo
+$ per correct entry

Pay
Pay $ rent to owner

Data-providing
mechanics are shown
in orange

Judge
Rate photo
+$ per rating

Answer quiz
Pick address, name
+$ per correct answer

Take

Pay $ price x 1.5 to
owner

Figure 3: The core game loop of Urbanopoly.

5.1 Necessity

The necessity principle requires data provision to be inherent to
the mechanics changing the game state. Four of Urbanopoly’s nine
mechanics entail data provision: purchasing venues requires buyers
to enter their name and category from a predefined list; advertise
(enter information and photo); answer quizzes (pick the correct
datum from a list of previous player answers); and rate photos on a
scale of 1-5.In each case, the game state doesn’t change until players
enter data. Yet the data provision is sometimes weakly integrated
into the mechanics: There is no diegetic or practical reason why
buying a venue should entail entering its name and category -
the interesting choice is which venue to purchase based on price
and likely earnings. Thus, entering data during purchase does not
partake in or contribute to the intrinsic utility of game enjoyment.
Contrast this with answering quiz questions, where guessing the
answer and providing verification data are one and the same. Rating
a photo, finally, is data provision as a game mechanic, but barely an
interesting core loop: there is no challenge or interesting decision
to expressing one’s preference, as any rating is equally rewarded.
Finally, the daily log in and rent payment allow players to advance
towards their game goal (earning cash) without entering any data.

5.2 Centrality

The presence of such “pure gaming features” [14] isn’t problematic
as long as data-providing mechanics are strategically central to
winning the game, which makes it optimal to spend the majority
of playtime actuating them (centrality principle). Translated into
Urbanopoly: Are the data-providing mechanics the best time invest-
ment for virtual cash earned? Given the fact that players need to
physically move to venues to actuate them, and that verifying or en-
tering data may require checking house numbers, street names, and
the like, each game action comes with non-trivial time and effort.
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Here, the game shares one major downside with its inspiration, Mo-
nopoly: Once a player owns a range of properties, checking in daily
and receiving rent payments from other players become a steady
cash source compared to which the effort of data-providing actions
seems hardly worth it. The less venues a player owns, the more
rational it is to invest time into selecting venues and spinning the
wheel, as only this allows to acquire cash through data-provision
tasks (which are more likely to show on the wheel than the pay
rent option) and take venues from their owner. Here, the centrality
principle can guide the balancing of virtual cash rewards per me-
chanic: these should be arranged so that the data provision most
desired by the system designer delivers the best cost/benefit ratio.

5.3 Veracity

The veracity principle states that providing the desired kind of data
should have the highest utility and the least effort. Here, Urbanopoly
faces the challenge that it cannot distinguish honest from dishonest
entries at the time at which initial data is provided, as it relies
on multiple entries on the same item to derive a consensus truth.
This means that (in the short term), it is rational for players to
game the system and enter as many data points as fast as possible
regardless of their accuracy, as every entry is rewarded equally.
However, players are warned that their ‘karma’ will penalise them
if their entries are later found to be incorrect. This phrasing calls
on meaningfulness and social norms, but it also refers to the fact
that players whose entries lie outside the consensus will receive
a cash penalty later. This is arguably a good first step to ensure
veracity, but relies on players understanding said delayed penalty.
However, it misses out on optimising for broad coverage as a data
quality. Players receive the same amount of reward for doing the
same data-providing activities repeatedly for the same places. And
since venue density varies geographically, a rational player will
move to and provide data on the same close-by, densely packed
venues again and again.

5.4 Summary Evaluation

Analysing Urbanopoly through the lens of the three principles of
Intrinsic Elicitation immediately foregrounded several design short-
comings. Evaluating for necessity showed that entering data is
weakly integrated into the buy venue mechanic, likely causing
player frustration not enjoyment. As for centrality, the more venues
a player owns, the less central data-providing mechanics become to
them, suggesting to rebalance the cash payouts per mechanic. The
biggest takeaway came from the veracity principle. While intro-
ducing a cash penalty for non-consensus answers should prevent
careless responses, the current game design makes it rational to
revisit the same cluster of close-by venues constantly, rather than
providing new data on venues not yet covered.

6 DISCUSSION AND CONCLUSION

We began this paper with the observation that current applied
games for data collection are dominated by two basic templates —
GWAP-style classification games and Foldit-style solution discovery
games. For both, the literature provides a general design approach
of gamification+validation: data volume is motivated with particu-
lar game design elements, data quality is then separately ensured
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with validation strategies. While popular, we noted that this ap-
proach falls short when it comes to human subject data, as these
often involve no subject-external ground truth to validate against,
which the gamification+validation approach requires. Furthermore,
by making certain in-game responses more enjoyable or strategi-
cally opportune, gamification strategies may threaten validity by
biasing or overshadowing ‘spontaneous’ expressions of preferences,
attitudes, or beliefs. In response, we articulated the need for broader
elicitation approaches that integrate motivation and data quality at
once. Based on literature on data collection games, crowdsourcing,
survey response, and citizen science, we developed a rational choice
model explaining why players choose to provide certain data in
games, the Rational Game User Model. Building on and incorpo-
rating Jonas Heide Smith’s Rational Player Model, it predicts that
players choose in-game actions providing data that maximise their
overall utility, comprising three factors: extrinsic utility such as
social norms and monetary incentives, extrinsic disutility such as
opportunity costs and displeasure of the effort of providing the
data, and intrinsic utility, comprising meaning and game enjoy-
ment. Game enjoyment in turn is maximised by the player trying
to maximise their in-game utility, i.e. choosing the course of action
that maximises their odds to win. From this model, we then derived
three principles for designing human subject data collection games
we summarisingly call the Intrinsic Elicitation approach. A good
data collection game integrates data generation into its enjoyable
mechanics and core loops such that it is (a) necessary to actuate the
mechanics, (b) strategically central to gameplay, and (c) providing
spontaneous or honest data has the highest utility and lowest effort,
or at least equal utility and effort compared to all other available
options. Finally, we illustrated the value of our approach by using it
as a heuristic evaluation tool for the existing data collection game
Urbanopoly.

6.1 Limitations

The simplicity of our model is both strength and weakness. It al-
lows us to generate clear predictions to test, falsify, or refine the
model. For instance, it predicts that players will abandon the game
when the perceived overall disutility is greater than the perceived
extrinsinc and intrinsic utility. Similarly, if the perceived marginal
loss of meaning due to a strategically optimal but dishonest in-
game action is greater than the perceived marginal gain in game
enjoyment, we predict that players would refrain from choosing
it. In terms of limitations, we fully expect that in the course, sev-
eral assumptions will need to be complicated. First, behavioural
economics demonstrates that people’s rationality is bounded by
biases and heuristics [13]. Second, we know that players gain game
enjoyment from more than just playing optimally: curiosity, sur-
prise, engrossment, relatedness are other important sources [8].
For instance, a key aspect of good game design is giving players
meaningful choices. Dominant strategies (where there is only one
rational move) are not a concern for the rational player, but rational
game users may feel like they lack autonomy or are not making
any meaningful choices in this situation, reducing their overall
game enjoyment. Against the centrality principle, game designers
may therefore need to introduce alternative mechanics that are
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sometimes the preferable choice so as to make choosing the data-
providing mechanic a non-trivial choice. Third, we suspect that
there may be systematic causal effects between individual factors
that we didn’t specify - e.g., self-determination theory would pre-
dict that adding tangible rewards may undermine intrinsic game
enjoyment [21]. Designers may wish to use their own more nuanced
knowledge of player behaviour to violate some of the principles.

Beyond these conceptual limitations, it may not be possible for
every kind of data to be integrated into a game in such a way that
satisfies all aspects of intrinsic elicitation. For example, it might
be technically impossible for the game to distinguish target from
non-target data — in a language elicitation game, natural language
processing algorithms may not be fast or sophisticated enough, for
instance. Following the model, however, it is possible to suggest
implications for such limit cases. In the example, we would expect
noisy data as players produce both target and non-target forms. If
some forms are more effortful to produce than others, we can expect
that the collected data will be biased against those forms, and we
may want to use statistical techniques to identify and counteract
this bias.

6.2 Next Steps

The first necessary next step for the Rational Game User Model is to
empirically test its predictions. Here, we consider the suggestions
of Siu and colleagues instructive [73]: designing a series of studies
and replications where we define and hold player experience and
task completion metrics constant while varying individual factors
of our model in controlled A/B design experiments, with data col-
lection goals where the ground truth can be cross-validated against
pre-existing data — for instance prior responses of participants to
standard personality instruments, of replicating well-established
spontaneous inclinations. A second necessary step is testing the
usefulness and ease of use of the design approach of intrinsic elic-
itation with data collection designers. If the model and approach
prove reliable and useful for human subject data collection, a third
step would be to test its generalizability for data collection games
like GWAPs as well.
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