1803.09853v2 [cs.Al] 31 Jul 2018

arxXiv

Generative Design in Minecraft (GDMC)

Settlement Generation Competition

Christoph Salge

School of Computer Science, University of Hertfordshire

Hatfield, UK
Department of Computer Science and Engineering,
New York University
Brooklyn, NY
ChristophSalge@gmail.com

Rodgrigo Canaan
Department of Computer Science and Engineering,
New York University
Brooklyn, NY
rodrigo.canaan@nyu.edu

ABSTRACT

This paper introduces the settlement generation competition for
Minecraft, the first part of the Generative Design in Minecraft chal-
lenge. The settlement generation competition is about creating
Artificial Intelligence (AI) agents that can produce functional, aes-
thetically appealing and believable settlements adapted to a given
Minecraft map — ideally at a level that can compete with human
created designs. The aim of the competition is to advance proce-
dural content generation for games, especially in overcoming the
challenges of adaptive and holistic PCG. The paper introduces the
technical details of the challenge, but mostly focuses on what chal-
lenges this competition provides and why they are scientifically
relevant.

CCS CONCEPTS

« Applied computing — Computer games; Architecture (build-
ings); » Computing methodologies — Artificial intelligence; Ar-
tificial life;

KEYWORDS

competition, generative design, procedural content generation,
Minecraft

1 INTRODUCTION

This paper introduces the settlement generation challenge!. The
task is to write an algorithm? that can take a given Minecraft [32]
map and, without supervision, generate a settlement on this map
by placing and deleting appropriate blocks. After the algorithm is
submitted to the competition, it will be run on several previously
unseen maps. The resulting settlements on the maps will then be
evaluated by a panel of judges based on criteria outlined later in
this paper. The team that builds the algorithm with the best average
evaluation score wins.

!More info at: http://gendesignmc.engineering.nyu.edu/
Zalso interchangeably referred to as an agent or artificial intelligence(Al)

Michael Cerny Green
Department of Computer Science and Engineering,
New York University
Brooklyn, NY
mcgreentn@gmail.com

Julian Togelius
Department of Computer Science and Engineering,
New York University
Brooklyn, NY
julian@togelius.com

1.1 Overview

The overall paper will give more details on the exact task, the frame-
work to build the algorithm in and the evaluation criteria. The focus
of this paper is to explain why we set up this challenge, and what
we hope to achieve with it. To this end, we will first talk about
motivations behind GDMC and introduce the concepts of adaptive
and holistic PCG, which we believe this competition will advance.
We will then discuss the particular challenges in settlement genera-
tion in Minecraft, and how they inform our evaluation criteria. We
will also introduce the framework the agent should be written in
and discuss the competition setup. The background section then
describes some existing approaches that can serve as a starting
point to build a settlement generator. Finally, we give an outlook
on where we think this competition will be going in the future.

1.2 Motivation

Computer science has a tradition of designing competitions which
focus development towards overcoming specific goals. Examples
include the DARPA Challenges, both for self driving cars [7] and
bipedal robots [6]. Another example is Robocup [22], a competition
about robots playing soccer which led to developments in bipedal
walking and team coordination.

Artificial Intelligence (Al), in particular, has a rich history of
prizes and competitions. Games are a popular topic here, as they
usually have well-defined goals, scoring and winning conditions,
which enable the use of many popular techniques such as tree
search, reinforcement learning, evolutionary optimization and neu-
ral networks [43].

However, not all games have clear goals, and not all Al is about
winning a game. Take for example the popular game Minecraft [32],
where players find themselves in a world made of three-dimensional
cubes of earth, wood, lava and other materials. First steps usually
include punching at a tree to obtain some wood, which is then used
to build tools to mine other blocks. While it is technically possible
to beat the game by defeating an end boss, most players entertain
themselves with building structures and obtaining stuff from the
world. There are enemies in the game, and other environmental

Figure 1: An example of a settlement in Minecraft that features both automatically generated and player generated elements.
Most of the fields, and several of the houses in the center of the picture were generated by the game’s settlement generation
algorithm during map generation. All additional elements and modifications were added by players.

hazards that can kill the player’s avatar, but it is possible to largely
avoid violence and focus on building interesting structures. The
game has been compared to a digital version of Lego [33], as it
allows the players to use blocks to build a nearly infinite variety
of structures. Building an artificial intelligence (AI) agent to play
Minecraft per se is therefore a rather ill defined task, as it is hard
to define, even to humans, what playing Minecraft well means.
Nevertheless, Minecraft offers a complex interactive environment
that can be used for Al testing [5, 16], given that an appropriate
task has been defined [15].

One common human activity in Minecraft is to create structures
that resemble settlements. Houses and lighting offer actual game
play advantages, but villages and buildings are also popular forms
of creative expression. Understanding this process of creative ex-
pression from a computational standpoint, i.e. building an Al that
can mimic it, is a challenging undertaking. Nevertheless, we be-
lieve that understanding creativity and how to generate creative
artifacts is an important part of intelligence [9]. We choose the
task of settlement generation because it offers a relatively well
contained problem, with somewhat understood evaluation criteria,
that nevertheless offers a large space of possible solutions.

We hope that our challenge will garner attention to Al problems
in areas referred to as procedural content generation [36] (PCG) or
generative design [28], which are both focused on using algorithms
to design artifacts or create content. One problem with setting

up a competition involving any kind of computational creativity
is the lack of formalized evaluation criteria. Other existing PCG
competitions, such as the GVGALI level generation competition [21],
the GVGAI rule generation competition [20] and the Mario Al level
generation competition [37] all rely on human judges for evaluation.
Consequently, we will also employ human judges, drawn from or
nominated by a panel of experts.

In contrast to existing competitions, which employ a one di-
mensional preference ranking, i.e. “Which of these two levels do
you prefer?”, we plan to evaluate generated settlements in several
categories, based on a set of criteria. We choose to employ a rather
large set of criteria to ensure that the different facets of the prob-
lem are considered, and to force participants to find an approach
balances a range of different requirements. Furthermore, we want
to encourage solutions with a greater amount of adaptivity, so we
designed criteria to encourage this.

We believe Minecraft is a suitable testbed for this competition,
for several reasons. Its popularity makes it accessible to many peo-
ple, and there is a modding community with an interest in similar
problems. Furthermore, Minecraft also comes with a built-in settle-
ment generator (see Fig.2), demonstrating that the problem is, at
some level, solvable. However, if we compare the settlements gener-
ated by the Minecraft map generator with human made settlements
in Fig. 1, we can see that there is a lot of room for improvement
(see, for example, Fig. 3). We will discuss those missing elements

in more detail in Sec. 2.5. Coincidentally, the elements missing are
those that generative design and procedural content generation are
interested in and challenged by [9, 14, 25]. So, submissions to the
Minecraft settlement generation competition should be addressing
some of the central challenges of PCG.

A=)

Figure 2: A typical Village generated by Minecraft’s map
generator. Because there is a limited selection of templates
for the buildings you can already see repeated buildings.
The road network is generated without taking the terrain
into account, and is then projected on the terrain surface.
This leads to inefficient and unbelievable layouts, with awk-
ward elevation changes and roads being interrupted by large
holes or chasms.

Figure 3: Building templates are placed on the average ele-
vation of their supporting terrain. The empty blocks below
buildings on a slope are filled in, but the building templates
are not otherwise adapted. This leads to problems like the
door of the church being several blocks above the ground
level, which keeps the villager from entering it.

1.3 Aims

This competition aims to encourage work in the area of procedural
content generation that pushes for a.) greater adaptivity to content
and b.) towards holistic PCG or orchestration. As both of these
concepts are central to our motivation, we want to introduce them
here:

1.3.1 Adaptivity to Content. By adaptivity to content we refer
to content generation that is responsive in regard to existing con-
tent (which can take many forms). Many PCG methods work in a
“vacuum” - early approaches, such as L-systems [26] or regular ex-
pressions, produce artifacts or content that is in no way responsive
to outside influence. Randomness is used to introduce variation,
and random seeds are sometimes used an an input, but the content
produced by them is not responsive to the seed in any meaning-
ful way, i.e. the seed is not guiding the algorithm towards specific
content. A step up towards greater adaptivity is the use of input
parameters. An example here is the usual approach to generating
player specific content [38], where the player’s behavior is analyzed
and broken down into a set of parameters, such as preferred diffi-
culty, and the content is then created biased by those parameters.
In this competition we want to push for even greater adaptivity,
by encouraging algorithms that respond to rich, multidimensional
input - in our specific case a three-dimensional map. While this
input can be narrowed down to a set of parameters (for example,
the biome type) there is a need to respond at least to the underlying
topography of the height map. Furthermore, there is also the prob-
lem of implicit properties, such as defensibility or beauty, which are
not immediately evident from the data. Extracting them is already
a challenge and also introduces the further problem of an agent
based perspective. A Roman general might look at a piece of terrain
and think it makes for good defenses, while a modern city-planner
might look at the same land and think of high building costs. So
maps provide a rich, multidimensional input that also have implicit
meaning, based on context and perspective. Being able to adapt to
this kind of content is important to build settlements like a human
would, but, more generally, this challenge is also important to ad-
dress if we want to move towards social or co-creativity. During
a possible follow up competition, it might be interesting to see if
an algorithm can continue or complete a settlement started by a
human. This would require an understanding of what the human
meant or intended with their initial settlement.

1.3.2 Holistic PCG. Holistic PCG refers to the challenge of en-
suring that the different types of generated content as well as the
different dimensions in which content expresses itself fit with each
other. While there are good algorithms to generate content for spe-
cific, well defined domains, such as trees, guns, dungeon layouts,
music, etc, it is often problematic to combine the generate elements
without supervision. A very similar concept has been expressed
as the orchestration of creative facets [23, 25], where facets can be
visuals, music, and rules.

One approach is to ensure that the generated content is orthog-
onal, i.e. does not affect each other. For example, a game might
generate the portrait and skill for an non-player character inde-
pendently of each other, or a level and its background music might
be generated separately. This still sometimes fails, and generates
combinations that are unbelievable or inappropriate. This approach
also often fails to produce interesting variations. Games sometimes
advertise the fact that their procedural generation can create a mil-
lion different artifacts of some type, meaning that they randomly
generate 6 characteristics and each can have 10 states. In reality,
this often feels more like 60 different kinds of content, because
the combination of different characteristics do not interfere with

Figure 4: Another typical village generated by Minecraft’s map generator. Again, we see several problems. Several identical
buildings, awkward elevation of the path leading to the middle well, and stone buildings placed directly in water. Also note
the overall similar look to the village in Fig. 2

each other (by design), and as a result, the overall ensemble has no
emergent properties arising from a result of those combinations.
More sophisticated approaches at orchestration employ hierarchi-
cal methods [40, 44], using generators within generators, or passing
parameters down a tree. For example, a game might first generate
a landmass and then generate cities on that landmass that are in-
fluenced by the properties of the land. Those cities itself then have
parameters, which in turn affect the generation of the buildings
inside. Furthermore, in reality, the flow of causal influence is often
circular, or as Liapis [23] puts it, requires an “iterative refining
process”. Here again, settlements are a good example, as they often
arise from a long history of interaction, in which different elements
affect each other in turn, i.e. a city is shaped by its environment, and
the cities environment is shaped by it in turn. This can be addressed
by simulating the process that actually generates an artifact, rather
than just trying to generate the artifact outright. This has the added
benefit of grounding the artifact in an actual developmental history
and giving it meaning, because it actually has a meaningful past.
Unfortunately, this approach is usually computationally intensive,
and poses the question of how fine grained the simulation should
be. In any case, the task of holistic PCG, where all generated content
facets are meaningfully related, is non-trivial. In the next section
we will discuss the different aspects that have to be orchestrated in
settlement generation, which should further illustrate why moving
towards human-like settlement generation should also move us
closer to holistic procedural content generation.

2 CHALLENGES FOR HUMAN-LEVEL
SETTLEMENT GENERATION

In this section we discuss challenges specific to generating a Minecraft
settlement on a given map. We think that those are some of the
obstacles that need to be overcome to move closer to human-level
design - both for this particular competition and for artificial cre-
ativity in general. We should point out, though, that this list is not
exhaustive. It is likely that there are other challenges and obstacles
to get to human-like settlement generation. Furthermore, we con-
sider the challenges outlined here ambitious goals to move towards,
and do not expect them to be fully solved right away.

At the end of the chapter we also introduce the criteria that will
be given to the human judges. They are derived from the challenges
outlined in this section, because we want participants to address
these problems.

2.1 Adaptation to Environment and Terrain

Real-life human settlements are adapted towards their surrounding
environment and terrain in multiple ways. On a per-building basis,
houses and structures reflect the climate conditions they are built in.
Furthermore, the environment of a settlement might also dictate the
available resources for construction, and certain conditions might
require specific types of buildings, such as irrigation, shelter, etc. A
house in the cold climate of Edinburgh, for example, might be built
sturdy, to protect against wind and cold and keep the warmth in.

Likewise, the easy availability of stone might influence the choice
of building material.

Real-life settlements are also adapted to the immediate terrain
they are in. Natural features, such as mountains or lakes, play a role
in the selection of where to settle. Some terrain features can be both
positive and negative for a specific settlement, and settlements are
often built to take advantage of the benefits and to compensate for
the problems. A river, for example, might provide more food and
added mobility via ship travel, but might also limit mobility by foot,
and be a potential flooding hazard. A settlement might subsequently
be built close to the river (or even more likely, at a good location
to cross the river), to take advantage of the benefits. The same
settlement might also build a dam to protect against flooding, and
houses close to the water might sit on stilts. If the settlement dumps
waste into the river there might also be a development of different
districts, where better, more desirable houses are further up on the
river.

On the other hand, humans change the terrain and environment
in a limited fashion to better suit their needs. While it might be
impossible to remove a mountain or an ocean, it might be possible
to build a canal or tunnel.

In summary, human settlements are shaped by and in turn shape
the terrain and environment around them. If we study human-built
settlements in Minecraft, we can see that these principles are real-
ized in some existing builds. Al settlement generators, on the other
hand, struggle to adapt to environment and terrain. They often
rely on flattening large areas and then building settlements that do
not reflect the surrounding map at all. Similarly, the houses and
structures built by them are often templates that get placed as a
whole unit, and are in no way reflective of the environment they are
in. As part of this challenge, we encourage participants to develop
generators that produce different settlements for different kinds of
maps, reflecting the available materials, surrounding terrain and
environmental conditions. In particular, successful entries should
generate settlement that fit into the topography of the map without
changing it too much, and build structures that fit into the topog-
raphy. We also encourage participants of the challenge to think
of other ways in which the given maps influences the generated
settlement, ideally in such a fashion that it is evident to a human
observer what kind of adaptation happened. Ideally, different maps
should lead to different settlements, and it should be clear in which
way the settlements where shaped by the map. Also note, that there
is some overlap with the other three criteria, as their particular
solutions are also often ideally adapted to the underlying map.

2.2 Functionality from an Embodied
Perspective

Minecraft is not just a creativity tool, but also a game. Subsequently,
a Minecraft settlement is not just an aesthetic artifact; it also needs
to fulfill certain functional roles. One big aspect of this is acces-
sibility and mobility. Is it actually possible to walk through the
settlement and reach its different parts? Are there doors into the
buildings, are the bridges over the river? How easy is it to navi-
gate the settlement? A second big function a settlement provides is
protection from various dangers. Is the settlement well lit, or does
it otherwise prohibit mobs from spawning? Does the settlement

manage to keep dangerous mobs outside? Are there other forms
of defenses and traps to protect the player? Finally, there is also a
need to obtain food and process it - so is there an accessible way to
produce food and not starve? This list of functional requirements
is not exhaustive - it is just meant to give some examples.

This criterion does have a certain overlap with the challenge of
adaptivity. Certain functionality only needs to be provided in some
cases. For example, bridges compensate for reduced mobility intro-
duced by obstacles. They are an adaptation to reduce the negative
effects of the terrain. Other functionality takes advantage of given
terrain features, such as river lock further enhancing the mobility
of an existing waterway.

This should also be considered, not just from a player perspective,
but also under the assumption that the NPC villagers living in the
settlement have similar needs. There is crossover here with the next
section, because some functionality displayed in typical human-
build settlement is not functional in the strict sense. For example,
in reality a lot of houses have pitched roof to ensure better rain
water runoff. In Minecraft, this is not necessary (as rain does not
pool on the ground), but players still build houses with pitched
roofs. This narrative functionality alludes to a functionality we
understand, yet is not strictly functional in Minecraft. We still
encourage the inclusion of such functional elements. Ideally, these
narrative functionalities should also be adaptive to the environment.
So, pitched roofs should be more popular in a rainy swamp than in
a dry dessert, etc.

In summary, the fact that there is an actual player in the world
gives us an embodied perspective. The avatar can interact with the
world in a variety of different ways, and a settlement can provide
different affordances [8, 12] to the player. The challenge in this
competition is to produce a generator that can ensure that the
settlement provides a maximum of functionality and affordances
for the player, while also satisfying the other criteria.

2.3 Believable and Evocative Narrative

Human settlements are not just collections of functional buildings,
but they also tell a story about how they came about, who are the
people living there, and how they see the world. When we look
at human-created Minecraft settlements, we can often see how
certain human or imagined cultures are reflected in the created
buildings. There are cities that resemble ancient Rome, mythical
Elven forest outposts, and modern US cities. Often, the buildings
also reflect very clear narrative ideas, such as "this is a defensive
mining outpost built in a harsh environment”, or "this is a capital
city, built to impress foreign and domestic visitors alike". These
settlements are evocative, i.e. they manage to transport this story
by looks alone. Relating to the earlier challenge of adaptivity, the
better settlements also evoke narratives that work well with the
terrain and biome they are in. The narrative they evoke should fit
the terrain and environment of the given map, and ideally arise
from it. Different maps should result in different narratives.
Human settlements also reflect how they came about. Medieval
cores of modern cities, for example, tell a part of a settlement’s
origin story. This is something rarely seen, even in human-made
Minecraft builds, as settlements here are created with the final
state in mind. On the other hand, procedural content generation

does have a tradition of simulationist approaches, which would
be a possibility for this challenge. An AI could simulate people
living and building a settlement over several stages, rebuilding
or replacing structures, or slowly modernizing them. This could
solve several of the previous problems, as buildings and the overall
settlement would be the actual result of an adaptive process, and
the produce of an actual sequence of events forming the basis for a
possible narrative.

There is also a certain overlap between narrative and functional
requirements. How easy the player can obtain wood for building
and further process it is a functional requirement. To satisfy this a
settlement could have a nearby forest and a workbench nearby. To
make this work with a narrative of a settlement that relies on wood
production it might also be good to build a structure that looks
like a sawmill, and a street to transport the goods to town. This
would not produce any additional functionality to the player (or
the digital villagers), but it would tell a narrative that aligns with
the functionality provided to the player. Similarly, there could also
be elements that have purely narrative functionality, i.e. structures
that have a believable fictional use that is not immediately reflected
in the game mechanics. For example, a settlement could have an
aqueduct to provide water, even though Minecraft characters do
not need to drink.

To summarize, the particular challenge here is not just about
narrative generation, but also about generating a narrative that
fits with the generated settlement, and ensuring that this narrative
is communicated to the player with the generated structures. In-
spiration by existing, historical or imagined cultures can help to
transport this narrative. The aim is to produce something that is
both believable and evocative, while still being aligned with the
previous criteria.

2.4 Visual Aesthetics

Aesthetics are arguably subjective, yet architects and city planners
usually follow a range of principles when it comes to designing a
settlement or a house. While untrained humans manage to intu-
itively realize these principles with some success, it is difficult to
design an algorithm with automated aesthetic judgment. Existing
Minecraft mods that add structures to the world circumvent this
problem by hand-designing appropriate templates, and then build-
ing a settlement out of those templates. This solution has several
problems: it allows for little variation between the buildings, as they
all need to be pre-designed, and it also allows for little adaptation
of the buildings to the surrounding buildings, the underlying ter-
rain, etc. Buildings are sometimes parameterized, and hence reflect
some specific environmental settings, such as available materials or
the climate they are in. This makes them more adaptive, but there
seems to be trade-off between controlling the exact look of a struc-
ture, and making it adaptable towards uncontrolled environmental
factors. The challenge in our case is to ensure that buildings still
follow basic design principles while being adaptive, functional and
evocative.

There is also the further problem that the overall settlement itself
should follow certain aesthetic rules. How buildings are aligned
and what sight lines exist can play an important role for the overall
feel of the settlement. Finally, there is also the question of how well

the particular aesthetic expression chosen aligns with the other
challenges. For example, a settlement which has a narrative of
being a foreboding fortress, and is designed with that functionality,
should also have an aesthetic that reflects this.

2.5 Evaluation Criteria

Based on the different challenges we designed a set of criteria that
will be used to evaluate the different algorithms. Each algorithm
will be scored based on the settlements they generated for three
different, unseen maps. The judges will award 0 to 10 points in
each of four categories - Adaptability, Functionality, Narrative and
Aesthetics. The judges will be provided with the following list
of criteria to guide their evaluation for each category, with the
understanding that this is a non-exhaustive list of what this criteria
means.

2.5.1 Adaptability.

e Do the structures in the settlement adapt to the terrain?

e Do the structures in the environment reflect the environment,
i.e. usage of available material, adaptation to the biome?

e Does the settlement take advantage of terrain features or
compensate for problems with the terrain?

o Are the settlements different in reaction to the different
initial maps?

o Are there any other ways in which the settlement adapts to
the given maps?

2.5.2 Functionality.

e Does the settlement provide protection from danger?
— Does it keep mobs from spawning?
— Does it keep mobs out?
— Protection from other environmental dangers?
o Is the settlement accessible to a player avatar in survival
mode?
- Can you walk to everywhere?
— Does the settlement provide faster modes of transport?
— How easy is it to find your way around?
e Does the settlement provide the player with additional af-
fordances?
Does the settlement make resources easy to obtain?
Is there an easy way to get food?
Does the settlement provide functionality to the villagers?
Does the settlement reflect the embodiment of the player
avatar?
e Is it appropriately scaled?

2.5.3 Believable and Evocative Narrative.

o Is the settlement evoking an interesting story?

o After looking at the settlement, could you give a short de-
scription of what this settlement is about that sets it apart
from other settlements?

o Is it clear what the function of the settlement is?

e Does this function make sense in regards to the terrain and
environment it is in? Le. is the logging camp in a forest, the
harbour town at the sea, ... ?

e Is the functionality of the settlement supporting this nar-
rative function? Le. does the fortified frontier settlement

have functioning walls, is the farming village equipped with
functioning fields?

e Does the final settlement give any indication of how the
settlement developed?

e Is is possible to look at the settlement and imagine in what
order things where built, or what stages the development of
the settlement took?

o Is there an indication of the history of the settlement evident
in the structure?

o Are there any convincing and consistent allusions to human
cultures or specific points in history that the settlement is
modeled after
- Does the settlement have a culture - either fictional or

historical - that is evident from the settlement?
— Do you know things about this culture just by looking at
the settlement?

2.5.4 Visual Aesthetics.

o Does the settlement look good?

o Is there a consistent look to the settlement? Does it appear
that all structures belong to the same settlement?

o Is there an appropriate level of variation in the existing struc-
tures?

o Are there any jarring features that make the settlement look
unbelievable?

3 COMPETITION DETAILS

The following section outlines the details for the actual competition.
Up to date rules and further information is available on our website>.
We will first introduce the framework we provide, and describe the
existing example agent. We will then outline how submission will
be evaluated.

3.1 Framework

Following the advise from Togelius [43] we wanted to keep the
barrier-to-entry to participate low. We provide a framework (avail-
able for download on GitHub) 4 built on top of MCEdit [3], an
open-source map editor for Minecraft that enables the user to cre-
ate and edit Minecraft map files. In MCEdit, you can create brand
new maps from scratch, open saved maps, move around the map
in the 3D viewer and modify it, and apply a filter over a subsection
of the map. A filter is a command associated with some effect, such
as filling all the space with air (or any material), replacing one
material for another, or building structures such as columns, walls,
staircases or entire settlements, which is the ultimate goal of this
competition.

A number of stock filters are included in the engine, and new
filters can be made by writing a Python program describing the
inputs or parameters of the filter (such as materials to be used,
dimensions or orientations of the created structures, etc.) and the
code to be executed, encapsulated in the perform function.

To participate in the competition, competitors have to write a
filter which generates a settlement. The filter file and additional
needed libraries then form the basis for the submission. Participants

3http://gendesignme.engineering.nyu.edu/
“https://github.com/mcgreentn/GDMC

can test the filter file themselves on a range of test maps, all within
the same framework. We maintain a list of additional libraries online
that will be included, and plan to extend it with reasonable request
from participants.

We evaluated different framework options, and chose this ap-
proach, as it a.) is easy to get started for participants b.) required
relatively little development effort for us to in terms of interfacing
with a Minecraft map and c.) allows us to streamline the evaluation
of submissions. Our framework currently requires submissions to
be written in Python, but we are in the midst of discussions to offer
a submission option in Java. We imagine that there might be some
further developments in terms of exact technical requirements, so
we encourage participants to read our latest up-to date-rules on
our website.

3.2 Example Agent

We included a simple example settlement generator with the frame-
work called “CASG”, short for “Cellular Automata Settlement Gen-
erator”. Given a 3-dimensional space in the Minecraft world, it uses
binary space partitioning [36] to create yards, building fence posts
around the perimeter of each yard to designate the area in which
buildings can be built. Within each yard, it selects a randomly sized
rectangle, randomly finds four different heights for the four corners
of the building, and builds columns to these heights. It then finds
the average height between these columns and builds a ceiling at
that level. The walls of the buildings are generated using cellular
automata techniques (CA) [45]: first it randomly creates walls using
a mix of glass and stone blocks, then several generations of CA are
performed until they resemble windows.

Figure 5: A settlement generated using the sample agent pro-
vided in the competition framework. This example uses Bi-
nary Space Partitioning to divide the terrain into lots, and a
Cellular Automaton to generate the buildings.

3.3 Submission

Submission will be handled via the submission website and will
consist of a file of code containing the algorithm (filter) that will
create a settlement for each given input map. Authors will provide
up to two pages of write-up detailing what techniques where used
in the algorithm and what they perceive as its strengths and unique

features. The write-up will not impact an agent’s score, as judges
will not have access to it during evaluation.

During submission the participants will be asked if they want
to make their code publicly available. If they chose so, we will also
publish their code on our competition website. In either case, we do
not take ownership of the code, but we do encourage participants
to make their code available to others.

We do not, at this point, limit the submitted algorithms in terms
of game based resources, such as how many blocks they can ma-
nipulate, or what resources are present on the map. We do require
that algorithms do not run substantially longer than 10 minutes on
a regular PC for a 256 by 256 map. This is to ensure what we can
evaluate all maps in a reasonable time frame.

3.4 Evaluation

The submitted algorithms will be judged based on a set of three
different unseen maps. Example training maps will be provided be-
forehand. Every algorithm will be run on the same three unknown
maps, and the resulting maps with settlements will be anonymized
and given to the judges. The judges will also be able to see the 3
maps in their natural state, before the algorithm was applied.

The judges will then evaluate all 3 maps for a given algorithm by
spawning at the central point (for the x and z coordinate) of the map.
Although the judges will play the game in the Peaceful mode (where
no monsters attack) to make exploration easier, they are encouraged
to walk through the settlement from a Survival perspective. They
are given a set of evaluation criteria (see Evaluation Criteria in
Sec. 2.5), and are asked to assign points based on the settlements
for the different maps. The sum of the points is the score of the
algorithm. The algorithm with the highest score wins.

The plan is to have all judges evaluate all submissions. If this is
not possible, due to high number of submissions, there might be
several evaluation rounds, where earlier rounds are used to reduce
the number of submissions by evaluating a smaller amount of maps
with only a subsection of the judges.

The results will then be published online, along with the com-
petition maps, the settlements each algorithm generated and their
respective write-ups, foll all participants. If permitted, we will also
make the code for each algorithm available online.

4 RELATED WORK

This section introduces some techniques that have been applied to
similar problems in the past. Some of the cited works might give
participants a good starting point for their own work.

4.1 Procedural Content Generation

The field of procedural content generation has developed a range of
techniques that might be useful for this task. General introductions
are available [10, 36, 39]. Lopes and Bidarra [27] also provide a
survey on adaptivity in procedural content generation for games.
While their focus is on adapting content to a player, the many
application scenarios discussed therein provide a valuable source
of inspiration.

Shaker et al. [36] propose a taxonomy of PCG, with seven di-
mensions that allow the comparison of solution, and we use it here
to help frame the problem we are interested in: generation for the

competition happens offline and automatically, as the level is fully
created before game play, with no human input after the start of
execution of the algorithm and no modifications by the agent after
the start of the game. Most content in Minecraft (including settle-
ments) can arguably be classified as optional, as the player is free to
make their own goals and either ignore large portions of the map
or build structures (such as bridges and ladders) to access otherwise
inaccessible areas. This is in contrast to many games where level
design would be considered necessary (for example, a single gap
too wide in a platformer can make the whole game unplayable).

The starting landscape can perhaps be considered a dimension of
control, as varying the features of the terrain, such as its biome and
flatness or roughness of the terrain should impact the result of the
algorithm. Other dimensions of control (such as random seed or
parameters) can be explored by the designer, but it should be noted
that the filters are expected to run during evaluation with whatever
default parameters are implemented. Content is adaptive, but unlike
most examples of adaptive content that adapt to a particular player
and their behavior, our settlements are expected to adapt to the
provided starting map. The idea of environment-adaptive PCG
highlights the limits of this taxonomy, as the input is much richer
than a parameterization of a typical content generator; it is more
akin to the input data in a data game [11].

While we welcome either stochastic or deterministic methods, a
single settlement will be generated from each map for each agents,
so that all judges will evaluate the same group of settlements for
each applicant. The choice of constructive versus generate-and-test
methods is also left to the designers. Some considerations of how
direct or simulation-based evaluation functions could be used for a
generate-and-test approach are explored in section 4.2.

It is interesting to note that Minecraft in general, and settlement
generation in particular are not perfect fits for classification in some
of these dimensions (such as necessary vs optional and adaptivity),
due to the unique characteristics of the problem at hand.

4.2 Evaluation Methods for PCG Methods

Another approach to this problem would be to write a generator
with a larger expressive range [41], and then test if the generated
settlement fits certain requirements. When it comes to evaluating
generated content, the search-based PCG framework differentiates
between three kinds of evaluation functions [46]:

e Direct evaluation functions
e Simulation-based evaluation functions
e Interactive evaluation functions

In interactive evaluation, content is evaluated during game play
by a human user. This is the form of evaluation used to judge the
competition, due to the openness of the problem. Obviously, this
approach cannot be used during the actual, unsupervised settlement
generation. Nevertheless, it would in theory be possible to generate
a lot of settlements before submission and evaluate them with
human input. This could then form the basis of a data set used
for training an algorithm such as a neural network. The trained
network could then be submitted as a filter.

Alternatively, the algorithm could use direct evaluation based
on some desirable design characteristics. These could be captured

by metrics such as number of building or roads or mean distance
between buildings, and could then be directly evaluated during the
execution of the algorithm.

A simulation based evaluation is also an option. For example, an
Al-controlled character could be designed (e.g. by using the Malmo
framework [16]) to explore the environment and test if certain areas
are accessible, certain resources are reachable, etc. Tanagra [42],
Ropossum [35], Sentient Sketchbook [24] are examples of game
authoring tools using simulation or direct methods of evaluation
of content.

Competitors could use these approaches to see if their algorithms
generate sensible content on a large number of random maps, in-
creasing the confidence that it would perform well in unseen maps.
Clearly, designing such metrics or agents is a considerable chal-
lenge in itself, so it will be interesting to see if competitors will
employ any algorithm techniques of evaluation, and how the devel-
opment of more complex generators affect this decision in future
installments of the competition.

4.3 City generation

The field of computer graphics has a range of existing approaches
to automated city generation, such as Kelly and McCabe’s City-
gen [18, 19]. They combine several existing techniques to generate
different elements. Similar to [29] they use L-systems [26] to gener-
ate roads and buildings. Perlin Noise [31] is used to generate terrain.
Parish et.al. [30] provide another example of a city generator, which
integrated real world data to obtain street and building placement.
Groenewegen et.al. [13] introduce an alternative approach that
generates city subdivisions based on land usage model and the
underlying terrain. Both approaches realize a form of adaptation to
existing content and allow the user to influence the generated city.

There are also several Minecraft mods, player generated mod-
ifications for the game, that touch on settlement generation. Mil-
lenaire [4] is a mod focused on settlement diversity. It adds a range
of villages for different cultures and with different functions, such
as farming village or fortress. It also massively enhances the func-
tionality of settlements: villagers collect resources to build new
buildings to expand their settlements. Buildings are constructed
block by block, by a villager avatar. This system is interactive to
an extent, as the player can sell resources to villagers to support
their buildings projects. The constructed settlements are also some-
what adaptive. For example, the pathways in the settlement are
created by connecting different buildings along the shortest path,
determined with an A* algorithm. Another mod, named Lost Cities
[2], changes Minecraft’s world generation so the whole world is
covered in city ruins.

There are also other games that feature automatic settlement
generation. Ultima Ratio Regum [17] is a game that heavily relies on
procedural content generation to create its gameworld. It is a prime
example of hierarchical generation, as it first generates nations and
their cultures, and then generates cities, buildings, religions and
speech to fit into these cultures.

4.4 Simulation as Generation

Rather than using simulation to evaluate generated content it is
also possible to simulate the processes that generate content in the

first place. For example, Dwarf Fortress [1] generates hundreds of
year of backstory, including biographies of historical figures, by
basically simulating hundreds of years of history (to a certain level
of abstraction). This has the advantage that the generated artifact
is usually consistent and more meaningful, as it is the product of
an actual process of creation. A possible refinement here is using a
agent based simulation, where the process is simulated by an actor
with an agent centric perspective and agent specific motivations.
Imagine a bunch of villagers, with their respective needs, building
houses and changing the world in order to survive. While these
ideas have been discussed for games, as far as we know, there is no
actual game that uses this approach.

The advantages of creating content based on actual agent adapta-
tion are discussed by Guckelsbeger et.al. [14]. There are also some
research prototypes which explore the idea of using agents driven
by intrinsic motivation to change their environment [34]. Their
experiments are done in a simplified Minecraft-like world, and they
argue that this approach allows for artifacts that reflect the embod-
iment of the agent. They also raise the issue of scalability, which
seems to be a large obstacle for their, or any other approach for
simulation as generation.

5 THE ROAD AHEAD

We named the overall competition framework “Generative Design
in Minecraft” because we hope that the Settlement Generation Com-
petition will be a first step towards more challenging competitions
that push the ideas of adaptive and holistic PCG even further. And
while a lot depends on the level of participation and what problems
prove to be hard and easy, we developed a tentative road map on
where we might see these competitions go in the future.

One path would lead us further towards co-creativity and col-
laborative generation. In the current competition, the algorithms
only have to adapt to a given terrain map, but this could easily be
extended by adding existing human-made settlements to the map.
In this case the algorithms task would be to expand and complete
the settlements, ideally in a way that complements the existing
settlement. This would touch upon a range of interesting ques-
tions, starting with style transfer and going all the way towards
understanding the intentions of the original builders of the existing
settlement from the existing content.

This could be made even more challenging, by changing the
framework to something like project Malmo, and situating the
competition algorithms inside the game. Their task would then be
to interactively assist a human who is building a settlement in real
time.

Another path ahead would be to push to even greater integration
between different kinds of content. Minecraft does offer the possi-
bility to have books with actual text in the world. One way to use
this would be to ask an algorithm to not only create an evocative
settlement that tells an interesting story, but to produce that story
as a written narrative as well - a town chronicle that is stored some-
where in the town itself. Another option to integrate written word
with world generation would be the task of automated treasure
hunt generation. Could an algorithm create a world that hides a
treasure and clues to this treasure, and then write a book that leads
a player on a merry treasure chase?

ACKNOWLEDGMENTS

CS is funded by the EU Horizon 2020 programme under the Marie
Sklodowska-Curie grant 705643. RC gratefully acknowledges the
financial support from Honda Research Institute Europe (HRI-EU).
MCG would like to thank the GAANN program for his funding.

REFERENCES

[1] Dwarf Fortress. (????). http://www.bayl2games.com/dwarves/

[2] Lost Cities. (????). https://minecraft.curseforge.com/projects/the-lost-cities

[3] MCEdit. (????). https://github.com/mcedit/mcedit

[4] Millenaire. (????). http://millenaire.org/

[5] Krishna Aluru, Stefanie Tellex, John Oberlin, and James MacGlashan. 2015.

Minecraft as an experimental world for Al in robotics. In AAAI Fall Sympo-
sium.

[6] Christopher G Atkeson, BPW Babu, N Banerjee, D Berenson, CP Bove, X Cui, M
DeDonato, R Du, S Feng, P Franklin, and others. 2016. What happened at the
darpa robotics challenge, and why. submitted to the DRC Finals Special Issue of
the Journal of Field Robotics 1 (2016).

[7] Martin Buehler, Karl lagnemma, and Sanjiv Singh. 2009. The DARPA urban
challenge: autonomous vehicles in city traffic. Vol. 56. springer.

[8] Rogelio Enrique Cardona-Rivera and Robert Michael Young. 2013. A Cognitivist
Theory of Affordances for Games.. In DiGRA Conference.

[9] Simon Colton, Geraint A Wiggins, and others. 2012. Computational creativity:
The final frontier?. In ECAL Vol. 12. 21-26.

[10] Kate Compton. 2016. So you want to build a generatordAe.
(feb 2016). http://galaxykate0.tumblr.com/post/139774965871/
s0-you-want- to-build-a-generator

[11] M Gustafsson Friberger, Julian Togelius, A Borg Cardona, Michele Ermacora,
Anders Mousten, M Mgller Jensen, V Tanase, and Ulrik Brgndsted. 2013. Data
games. In 4th Workshop on Procedural Content Generation. ACM, 1-8.

[12] James Jerome Gibson. 1966. The senses considered as perceptual systems. (1966).

[13] Saskia A. Groenewegen, Ruben M. Smelik, Klaas Jan de Kraker, and Rafael Bidarra.
2009. Procedural City Layout Generation Based on Urban Land Use Models. In
Eurographics 2009 - Short Papers, P. Alliez and M. Magnor (Eds.). The Eurographics
Association. DOI : http://dx.doi.org/10.2312/egs.20091045

[14] Christian Guckelsberger, Christoph Salge, Simon Colton, and others. 2017. Ad-
dressing the" Why?" in Computational Creativity: A Non-Anthropocentric, Mini-
mal Model of Intentional Creative Agency. (2017).

[15] Katja Hofmann. 2017. The Malmo Collaborative AI Challenge.

(2017). https://www.microsoft.com/en-us/research/academic-program/

collaborative-ai-challenge/

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. 2016. The

Malmo Platform for Artificial Intelligence Experimentation.. In IJCAL 4246-4247.

Mark R. Johnson. Ultima Ratio Regum. (????). http://www.ultimaratioregum.co.

uk/game/

[18] George Kelly and Hugh McCabe. 2007. Citygen: An interactive system for

procedural city generation. In Fifth International Conference on Game Design and

Technology. 8-16.

George Kelly and H McCABE. 2008. An interactive system for procedural city

generation. Institute of Technology Blanchardstown (2008), 25.

[20] Ahmed Khalifa, Michael Cerny Green, Diego Perez-Liebana, and Julian Togelius.

2017. General video game rule generation. In Computational Intelligence and

Games (CIG), 2017 IEEE Conference on. IEEE, 170-177.

Ahmed Khalifa, Diego Perez-Liebana, Simon M Lucas, and Julian Togelius. 2016.

General video game level generation. In Proceedings of the Genetic and Evolution-

ary Computation Conference 2016. ACM, 253-259.

Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Os-

awa. 1997. Robocup: The robot world cup initiative. In Proceedings of the first

international conference on Autonomous agents. ACM, 340-347.

[23] Antonios Liapis. 2015. Creativity Facet Orchestration: the Whys and the Hows. In
Artificial and Computational Intelligence in Games: Integration (Dagstuhl Seminar
15051), Simon M. Lucas, Michael Mateas, Mike Preuss, Pieter Spronck, and Julian
Togelius (Eds.). 1, Vol. 5. Dagstuhl Reports, 217.

[24] Antonios Liapis, Georgios N Yannakakis, and Julian Togelius. 2013. Sentient
Sketchbook: Computer-aided game level authoring.. In FDG. 213-220.

[25] Antonios Liapis, Georgios N Yannakakis, and Julian Togelius. 2014. Computa-
tional Game Creativity.. In ICCC. 46-53.

[26] Aristid Lindenmayer. 1968. Mathematical models for cellular interactions in
development I. Filaments with one-sided inputs. Journal of theoretical biology 18,
3 (1968), 280-299.

[27] Ricardo Lopes and Rafael Bidarra. 2011. Adaptivity challenges in games and
simulations: a survey. IEEE Transactions on Computational Intelligence and Al in
Games 3, 2 (2011), 85-99.

[28] Jon McCormack, Alan Dorin, Troy Innocent, and others. 2004. Generative design:
a paradigm for design research. Proceedings of Futureground, Design Research

[16

(17

[19

[21

[22

Society, Melbourne (2004).

Pascal Miiller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool.
2006. Procedural modeling of buildings. In Acm Transactions On Graphics (Tog),
Vol. 25. ACM, 614-623.

Yoav IH Parish and Pascal Miiller. 2001. Procedural modeling of cities. In Proceed-
ings of the 28th annual conference on Computer graphics and interactive techniques.
ACM, 301-308.

Ken Perlin. 1985. An image synthesizer. ACM Siggraph Computer Graphics 19, 3
(1985), 287-296.

Markus Persson. 2011. Minecraft. (2011).

Jim Rossignol. 2010. Chockablock: Minecraft Revisited. (aug 2010). https:
//www.rockpapershotgun.com/2010/08/10/chockablock-minecraft-revisited/
Christoph Salge, Cornelius Glackin, and Daniel Polani. 2014. Changing the
environment based on empowerment as intrinsic motivation. Entropy 16, 5
(2014), 2789-2819.

Noor Shaker, Mohammad Shaker, and Julian Togelius. 2013. Ropossum: An
Authoring Tool for Designing, Optimizing and Solving Cut the Rope Levels.. In
AIIDE.

Noor Shaker, Julian Togelius, and Mark] Nelson. 2016. Procedural content gener-
ation in games. Springer.

Noor Shaker, Julian Togelius, Georgios N Yannakakis, Ben Weber, Tomoyuki
Shimizu, Tomonori Hashiyama, Nathan Sorenson, Philippe Pasquier, Peter
Mawhorter, Glen Takahashi, and others. 2011. The 2010 Mario AI championship:
Level generation track. IEEE Transactions on Computational Intelligence and Al
in Games 3, 4 (2011), 332-347.

Noor Shaker, Georgios N Yannakakis, and Julian Togelius. 2010. Towards Auto-
matic Personalized Content Generation for Platform Games.

Tanya X Short and Tarn Adams. 2017. Procedural Generation in Game Design.
CRC Press.

Anthony J Smith and Joanna J Bryson. 2014. A logical approach to building dun-
geons: Answer set programming for hierarchical procedural content generation
in roguelike games. In Proceedings of the 50th Anniversary Convention of the AISB.
Gillian Smith and Jim Whitehead. 2010. Analyzing the expressive range of a level
generator. In Proceedings of the 2010 Workshop on Procedural Content Generation
in Games. ACM, 4.

Gillian Smith, Jim Whitehead, and Michael Mateas. 2010. Tanagra: A mixed-
initiative level design tool. In Proceedings of the Fifth International Conference on
the Foundations of Digital Games. ACM, 209-216.

Julian Togelius. 2016. How to run a successful game-based AI competition. IEEE
Transactions on Computational Intelligence and Al in Games 8, 1 (2016), 95-100.
Julian Togelius, Trondur Justinussen, and Anders Hartzen. 2012. Compositional
procedural content generation. In Proceedings of the The third workshop on Proce-
dural Content Generation in Games. ACM, 16.

Stephen Wolfram. 1983. Statistical mechanics of cellular automata. Reviews of
modern physics 55, 3 (1983), 601.

Georgios N Yannakakis and Julian Togelius. 2011. Experience-driven procedural
content generation. IEEE Transactions on Affective Computing 2,3 (2011), 147-161.

http://www.bay12games.com/dwarves/
https://minecraft.curseforge.com/projects/the-lost-cities
https://github.com/mcedit/mcedit
http://millenaire.org/
http://galaxykate0.tumblr.com/post/139774965871/so-you-want-to-build-a-generator
http://galaxykate0.tumblr.com/post/139774965871/so-you-want-to-build-a-generator
http://dx.doi.org/10.2312/egs.20091045
https://www.microsoft.com/en-us/research/academic-program/collaborative-ai-challenge/
https://www.microsoft.com/en-us/research/academic-program/collaborative-ai-challenge/
http://www.ultimaratioregum.co.uk/game/
http://www.ultimaratioregum.co.uk/game/
https://www.rockpapershotgun.com/2010/08/10/chockablock-minecraft-revisited/
https://www.rockpapershotgun.com/2010/08/10/chockablock-minecraft-revisited/

	Abstract
	1 Introduction
	1.1 Overview
	1.2 Motivation
	1.3 Aims

	2 Challenges for Human-level Settlement Generation
	2.1 Adaptation to Environment and Terrain
	2.2 Functionality from an Embodied Perspective
	2.3 Believable and Evocative Narrative
	2.4 Visual Aesthetics
	2.5 Evaluation Criteria

	3 Competition details
	3.1 Framework
	3.2 Example Agent
	3.3 Submission
	3.4 Evaluation

	4 Related work
	4.1 Procedural Content Generation
	4.2 Evaluation Methods for PCG Methods
	4.3 City generation
	4.4 Simulation as Generation

	5 The Road Ahead
	Acknowledgments
	References

