This is the post peer-review accepted manuscript of:

Emanuele Vitali, Davide Gadioli, Gianluca Palermo, Andrea Beccari, Cristina Silvano
Accelerating a Geometric Approach to Molecular Docking with OpenACC
Workshop on Parallelism in Bioinformatics, 2018

The published version is available online at: https://doi.org/10.1145/3235830.3235835

©2018 ACM. Personal use of this material is permitted. Permission from the editor must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Accelerating a Geometric Approach to Molecular Docking with
OpenACC

Emanuele Vitali*, Davide Gadioli*, Gianluca Palermo*, Andrea Beccari*, Cristina Silvano*

*Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, Milan, Italy
*Dompé Farmaceutici SpA, L’Aquila, Via Campo di Pile, 67100, Italy

ABSTRACT

In a drug discovery process, the Molecular Docking task aims at
estimating the three-dimensional pose of a molecule when it inter-
acts with the target protein. This task is usually used to perform a
screening on a large library of molecules to find the most promising
candidates. The output of this task is used to estimate the actual
strength of atomic interactions. In this document we focus on an
application that performs molecular docking using geometrical
features of the molecule and of the protein, to quickly screen the
target chemical library.

Due to the size of the chemical library and to the complexity
of the task, the application is a typical batch job that runs in an
HPC platform, optimized for CPU processing. Given the amount of
parallelism of this application, we evaluate the possibility to run
such application on a GPU node, leveraging the OpenACC directive
language.

Preliminary results show that we are able to achieve a significant
speedup on the kernel that was the bottleneck on the CPU (up to
16x), while we achieve a modest speedup on the overall execution
(5x).

CCS CONCEPTS

« Computing methodologies — Massively parallel and high-
performance simulations; - Software and its engineering —
Software performance; « Applied computing — Computational
biology;

KEYWORDS
Molecular Docking, GPU, OpenACC, HPC
ACM Reference Format:

Emanuele Vitali*, Davide Gadioli*, Gianluca Palermo*, Andrea Beccari®,
Cristina Silvano*. 2018. Accelerating a Geometric Approach to Molecular
Docking with OpenACC. In PBio 2018: 6th International Workshop on Par-
allelism in Bioinformatics (PBio 2018), September 23, 2018, Barcelona, Spain.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3235830.3235835

1 INTRODUCTION

Drug discovery is a complex process aimed to find new drugs.
This process comprehends different phases ranging from computer
simulations to test in vivo. Molecular Docking is a phase of this
process performed in silico, working on two different inputs. On

PBio 2018, September 23, 2018, Barcelona, Spain

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in PBio 2018: 6th
International Workshop on Parallelism in Bioinformatics (PBio 2018), September 23, 2018,
Barcelona, Spain, https://doi.org/10.1145/3235830.3235835.

the main hand, we have the target binding site of a protein, named
pocket . On the other hand, we have a molecule, named ligand, that
interacts with the pocket . The main goal of this phase is to estimate
the three-dimensional displacement of the ligand ’s atoms, after
the interaction with the target pocket , i.e. the pose of the ligand
after the docking in the binding site of the pocket .

Molecular Docking is usually employed in two different tasks of
the drug discovery process. It might be used to perform an accurate
simulation for estimating the correct ligand pose to forward on
later stages of the discovery process. However, it might also be
used to perform a virtual screening of a given chemical library of
molecules. In this scenario, we have as input a single pocket and a
very large number of ligands to evaluate. The output of this task
is the set of the most promising ligands to consider in the more
accurate simulation. In this paper, we focus on the latter task.

Given that it is possible to process each ligand of the chemical
library in an independent way, this problem is data parallel, there-
fore it is embarrassing parallel. The complexity of this task is due
to the high number of ligands to evaluate and to the computational
effort required to evaluate a single ligand -pocket pair. In fact, a
subset of the ligand chemical bonds generates two disjoint set of
atoms, i.e. fragments, that can be rotated independently from each
other, changing the shape of the ligand . Therefore, on top of the six
degrees of freedoms to move a rigid body in a three-dimensional
space, the docking process shall consider the internal degrees of
freedom of each ligand . Moreover, the final pose of the ligand de-
pends on chemical and geometric properties of both, the pocket and
the ligand .

In the context of the LiGen [2] work-flow, the application that per-
forms the molecular docking, LiGenDock [1], employs a two-phases
approach. At first, it considers geometric features for docking a
ligand , to filter out the incompatible ones. Then, it simulates the
chemical and physical interaction between the pocket and the re-
maining ligands to further reduce the number of promising ligands.

Due to the complexity and parallelism of the screening task,
LiGenDock is a typical example of batch application optimized for
homogeneous HPC platforms. In the last decade, energy consump-
tion has become an important issue also in the HPC domain For
this reason, a switch from homogeneous systems to heterogeneous
systems has begun. By using different hardware accelerators, such
as GPUs or Xeon-phi, heterogeneous systems usually have better
energy efficiency and are able to provide more FLOPs. Indeed, most
of the top positions in the Green500 list (as of November 2017,
[6]) are occupied by heterogeneous machines. The improvement
in efficiency often implies an increment on programming complex-
ity, since application developers must use different paradigms to
leverage features of these co-processors. In particular, GPUs have

https://doi.org/10.1145/3235830.3235835
https://doi.org/10.1145/3235830.3235835

PBio 2018, September 23, 2018, Barcelona, Spain

many computational cores that expose a much higher level of par-
allelism than CPUs. However, with respect to CPUs cores that have
complex features, such as out-of-order and speculative execution,
GPUs cores have a simpler architecture. Therefore, complex code
and control flow operations lead to a significant degradation of the
performance of a GPU application.

LiGenDock is able to leverage the parallelism on the ligand level
using a classic MPI master/slave approach. However, in this paper
we investigate the possibility to offload the geometrical docking
kernel on GPU, to leverage its internal parallelism for decreasing
the time to solution, leading to two main benefits for the end-user.
On one hand, it decreases the monetary cost of the drug discovery
process. On the other hand, it enables an increment of the number
of ligands analyzed by LiGen, increasing the probability to find a
good candidate.

To summarize, the main contributions of this work are the fol-
lowing:

e We create a kernel for accelerating a geometric docking
application, using OpenACC directives.

e We analyze the obtained performance.

e We discuss the language and algorithm limits, comparing it
with the CPU baseline.

The article is structured as follows: Section 2 describes related
works, Section 3 describes the algorithm and the methodology that
we used to create the accelerated kernel. In section 4 we present
and describe the experimental results. Finally, section 5 concludes
the paper.

2 RELATED WORK

Molecular Docking is a well-known problem in literature which is
addressed using stochastic and deterministic approaches. Stochastic
approaches leverage genetic algorithms [17], [18] or Monte Carlo
simulations [7] to derive the ligand pose. These approaches are
interesting, however, the final output may change between the
subsequent execution of the application. Since expensive laboratory
tests depend on the outcome of the screening task, pharmaceutical
companies usually value repeatable results.

Deterministic algorithms for molecular docking leverage chemi-
cal and geometrical properties to drive the docking process, dealing
with the ligand flexibility. Examples in this category are Dock 4.0
[4], FLEXX [10], Surflex-Dock 2.1 [8] and LiGenDock [1].

To harness GPU capabilities, application developers may choose
between two main approaches. In the first approach, they use spe-
cific computing languages, such as CUDA [11] or OpenCL [16],
for writing device code and for managing data transfers. Those
languages provide to application developers the finest control of
the computation. However, even if the language is based on C/C++,
they require to rewrite the algorithm according to the memory
model and the parallelization scheme of the chosen language. More-
over, they introduce a maintainability problem since the device
code is not usually suitable for running on the host device, that
leads to code duplication.

A second approach is to decorate the original source code with
compiler directives to highlight the region of code to offload and to
describe data transfers between the host and device memory. The
compiler generates automatically the device code and the required

Vitali et al.

Algorithm 1: Pseudo-code of the original algorithm that per-
forms the geometrical docking for the CPU.

Input: Target Pocket and the initial pose of the ligand
Output: The geometric score of the evaluated poses

1 repeat

2 Generate_Starting_Pose(Pose_id);

3 for angle_x in range(0:360) do

4 Rotate(angle_x, Pose_id);
5 for angle_y in range(0:360) do
6 Rotate(angle_y, Pose_id);
7 Evaluate_Score(Pose_id)
8 end
9 end
10 for fragment inligand_fragments do
11 for angle in range(0:360) do
12 Rotate(fragment, angle, pose_id)
Bump Check(fragment, pose_id)
Score(fragment, pose_id)
13 end
14 end

15 until Pose_id < N;

glue code for data transfer. The benefit of this approach is that the
application is written in a single language, which may run on the
device and on the host as well. However, since the device code is
automatically generated, it may suffer from performance penalties.
Moreover, application developers are still in charge of exposing
enough parallelism and of minimizing control flow operations, to
have a performance improvement.

In this work we use the directive language OpenACC [5] to
exploit GPU capabilities. Moreover, the original CPU code was
already designed to expose parallelism, to leverage the CPU vector
units.

3 METHODOLOGY

This section describes the approach that we followed to accelerate
the geometrical docking kernel of the docking application on GPUs.
First, we analyze the application to identify opportunities to offload
computation to the GPU. Then, we describe how we seized those
opportunities to improve the application performances.

3.1 Application Description

LiGenDock application uses a mixed approach for docking a ligand
in the target pocket . It starts considering geometric features, then
it simulates the actual physical and chemical interaction for the
most promising ligand poses. In this paper, we focus only on the
geometrical docking phase, used to filter out incompatible ligands .

Algorithm 1 shows the pseudo code of the geometrical docking.
Due to the high number of degree of freedom, it is unfeasible to
perform an exhaustive exploration of the possible pose of the ligand.
For this reason, the application implements a greedy optimization
heuristic with multiple restarts.

The outer loop generates N different initial poses for the target
ligand , maximizing the probability to avoid local minimum. Each

Accelerating a Geometric Approach to Molecular Docking with OpenACC

Alignment

Pose optimization

Y Y Y

PBio 2018, September 23, 2018, Barcelona, Spain

Initial N poses

Rigid rotations
[360x360 poses]

Rotate Fragment 1
[360 poses]

Rotate Fragment 2

Rotate Fragment M

4R Final N poses

Figure 1: Algorithm work-flow that estimates the ligand final poses, highlighting the independent computations. In this ex-
ample, we use the 1fm9 pocket with the related co-crystallized ligand .

iteration of the outer loop aims at docking the i — th initial pose of
the ligand .

Within the body of the outer loop, the docking algorithm is
divided into two sections. The first one (lines 3-9) performs rigid
rotations of the ligand , to find the best alignment with the target
pocket , according to the scoring function. We will refer to this
section of the algorithm as Rigid Rotation. In the last section of
the algorithm (lines 10-14), we optimize the shape of the ligand by
evaluating each fragment in an independent fashion (line 10). In
particular, we rotate each fragment to find the angle that maximizes
the scoring function without overlapping with the other atoms of
the ligand (lines 11-13). We will refer to this section of the algorithm
as Optimize Pose. We need to evaluate each fragment sequentially,
since a fragment may include another fragment. Therefore, if we
parallelize the pose optimization over the fragments, we might
change the ligand structure in an unpredictable way, invalidating
the outcome of the application.

Finally, Figure 1 depicts the geometric docking work-flow, high-
lighting data dependencies. In particular, the initial poses are in-
dependent, since every initial pose represents the actual starting
point of the docking algorithm. For every starting pose, we perform
rigid rotations to select the most suitable alignment of the initial
pose of the ligand for the target pocket . After the Rigid Rotations,
we proceed with the Pose Optimization phase, evaluating each frag-
ment of the ligand sequentially. As output, we retrieve N poses, one
for each starting pose.

3.2 Profiling

To identify bottlenecks of the application on CPU, we profiled the
application using Score-P, a well-known profiling tool [9]. Figure 2
reports the result of this analysis for the most significant functions.
In particular, for each function we report the percentage of time
spent in that function, comprehending children, and the number of
times that it is called in the algorithm. From the results, we noticed
that the main bottleneck of the application is the scoring function.

PBio 2018, September 23, 2018, Barcelona, Spain

Worker (98.69%, 1)
Rigid Rotation (80.49% ,256)

Rotate (3.53%, 3#107)

Evaluate Score(75.62%, 3% 107)

Optimize Pose(17.97% ,768)
L Optimize Fragment(17.97%, 16 10%)

Rotate (0.62%, 6% 10°)
Evaluate Score(17.04%, 6 10°)

Bump Check (0.05%, 6x10%)

Figure 2: The application profiling result. For each signifi-
cant function, we show two information: the percentage of
time spent in that function (comprehend sub-functions) and
the number of calls.

Even if the function itself is rather simple, we need to call it every
time we modify the ligand structure, to drive the pose optimization
process. In particular, the scoring function evaluates “how good” is
the position of every atom of the ligand with respect to the pocket .
The actual score of the ligand is the average score of the atoms. Due
to the code optimization, this function leverages the CPU vector
units to process the score of each atom, leading to an execution
time of less than 100ns. However, due to the high number of calls
from the algorithm (107), this function becomes the bottleneck of
the application. Moreover, the functions that actually rotates the
ligand atoms or that test whether a pose is valid, have a negligible
impact on the overall execution time, since they are also able to
exploit the vector units of the CPU.

From the profiling analysis, the application complexity is not
restricted to a single complex function, but it is due to the high
number of alternative poses to evaluate for finding the best one.
Moreover, since the algorithm is greedy, we need to perform mul-
tiple restarts to lower the probability of finding a local minimum.
Therefore it seems to fit the parallel nature of the GPU paradigm.
On the other hand, we don’t have a single kernel to offload to
the GPU, but we need to address the whole algorithm, or the data
transfer cost would be higher than the benefit.

From the implementation point of view, we decided to use the
OpenACC directive language to offload application code to the
kernel. Moreover, OpenACC provides to application developers
the possibility to explicitly control data transfers, minimizing the
related overhead.

3.3 Implementation

From the CPU profiling of the application, we implemented a first
version of the algorithm that aims at minimizing data transfer, while
maintaining the application structure. We decided to introduce
parallelism on the number of poses (they can all be managed in
parallel and are completely independent). In this way, we transfer

Vitali et al.

Algorithm 2: Pseudo-code of the final algorithm oflloaded to
the GPU, where the Rigid Rotations are parallelizable.

Input: Target Pocket, initial pose of a ligand

Output: A set of scores, one for each pose
1 repeat
2 Generate_Starting_Pose(Pose_id);
until Pose_id < N;
for angle_x in range(0:360) do

for angle_y in range(0:360) do
repeat
‘ Rotate_and_Score(angle_x, angle_y, Pose_id);

8 until Pose_id < N;
9 end

©

N oo e

10 end
11 Reductions

12 repeat

13 for fragment inligand_fragments do

14 for angle in range(0:360) do

15 Rotate(fragment, angle, pose_id)
Checkbump(fragment, pose_id)
Score(fragment, pose_id)

16 end

17 end

s until Pose_id < N;
9 ResultRetrieval fromGPU

=

-

data only at the beginning and at the end of the docking algorithm
(i.e. once in the lifetime of the ligand).

From the implementation point of view, the following changes
are required to generate the binary of the offloaded kernel, i.e.
the parallel region in OpenACC jargon. All the data structures
interacting with the offloaded kernel have to be compliant with
the OpenACC guidelines [15] for handling data. Moreover, it is
mandatory to mark each function called inside the parallel region
with the OpenACC “routine” directive.

Since our plan is to parallelize the computation over the initial
poses, we require a private data structure to represent the initial
pose of the ligand. However, when we tried to run the application it
failed: it resulted in illegal accesses to the GPU memory when trying
to copy the private data structure. Since it is a class containing
arrays, whose copy constructor has been redefined according to
the OpenACC manual [14], it is not clear the source of the problem.
Therefore, we decided to bypass the issue by replicating the initial
pose and by using a manual management of the data. Even if a fair
code refactoring was required, we still tried to maintain the original
structure of the application.

With this modification, we fixed the illegal access issue, but the
GPU application was slower than the CPU one. We analyzed the
problem and noticed that this was not due to data movement since
everything was resident on the GPU. We found out that we were not
really exploiting the parallelism of the GPU because parallelizing
the computation of all the poses was not giving enough work to the
GPU. The use of the same data structure for all the Rigid Rotations
of one pose was limiting the amount of exposed parallelism.

Accelerating a Geometric Approach to Molecular Docking with OpenACC

To obtain an advantage from the use of the accelerator, we had to
rework the source code to find (and expose) more parallel computa-
tion, as shown in Algorithm 2. To achieve the desired result, we had
to modify the rotation and scoring functions, unifying them to avoid
to store all the temporary ligand poses. With this modification, we
were able to expose more parallelism, since the rigid rotations are
no more sequentially executed on a shared data structure. After
the computation, we schedule a reduction to retrieve the best score,
storing only the best pose of the ligand for the following step.

This implementation improved the computation efficiency, mov-
ing the bottleneck from the Rigid Rotation section to the Optimize
Pose function. As previously stated, since we have to process the
fragments sequentially, it is not possible to expose more parallelism
with respect to the first approach.

4 EXPERIMENTAL RESULTS

We performed the measurement on a target machine with an Intel(R)
Xeon(R) CPU E5-2630 v3 @ 2.40GHz CPU and a Nvidia Tesla K40m
GPU. The operating system was CentOS 7.0, and we compiled the
program using PGI 17.10. We compiled the baseline using GCC
5.4, with the avx flag to enable vectorization on top of the O3
optimization level.

We analyzed the performance of the GPU kernel using nvprof
[13], in terms of execution time, occupancy and multiprocessor
activity. The GPU occupancy is the number of used warps, in per-
centage. The multiprocessor activity is the percentage of time when
the streaming multiprocessors have one or more warps issuable, i.e.
not in a stalled state.

The input dataset for the experiments uses 23 different ligand
and pocket pairs, taken from PDB database [3]. In particular, we
used the following pockets: 1b9v, 1br6, 1c1b, Ictr, 1cvu, 1cx2, 1d3h,
lezq, Ifcx, 1f13, 1fmé, 1fm9, 1fq5, 1gwx, 1hp0, 1hvy, 1lpz, 1mq6, loyt,
1pso, 1519, 1uml and 1ydt. For each pocket we docked the relative
co-crystallized ligand . We used those molecules to have a correct
estimation of the execution time of the application.

4.1 Performance evaluation on the GPU

To optimize the application performance, we tried different map-
ping of the computation on the GPU. OpenACC offers three levels
of parallelism: vector, worker, and gang. Vector level parallelism is
the SIMT (Single Instruction, Multiple Threads) level on GPU. Gang
level is the outer-most parallelism level, where all the elements are
independent and the communication between gangs is forbidden.
Worker is an intermediate level used to organize the vectors inside
a gang. We investigated how these levels of parallelism are mapped
on Nvidia GPUs by the PGI compiler. The only related informa-
tion was found in the PGI development forum, where one of the
developers mentioned that "worker is a group of vectors which
conceptionally maps to a CUDA warp. Our actual implementation
maps a vector to threadidx%x and worker to threadidx%y." Which
means that the vector and worker levels are the dimensions of a
CUDA block, while the number of gangs is the CUDA grid. There-
fore, we split the initial poses at gang level, since all of them are
independent. We set all the functions that change the position of
the atoms at vector level. The intermediate loops are set at worker

PBio 2018, September 23, 2018, Barcelona, Spain

columnwidthcolumnwidth.

Figure 3: Total execution time of the accelerated kernel, for
all the 23 pockets, divided into the different functions.

10000

min —
avg .
max ===

1000

100

10 mE |

Optimize Rigid Reduction
Pose Rotation

Time (logscale, ms)

Figure 4: execution time of a single call of each function.

level. From the CUDA specification, it is known that the block max-
imum size is 1024 [12], that can be divided into three dimensions.
However, only 2 dimensions are addressable with OpenACC. Us-
ing this information, we performed a Design Space Exploration to
tune the block size, taking into account Nvidia recommended best
practices. From experimental result, the best size configuration for
each function is:

e Rigid Rotations: 8 workers and 128 vector length.
e Optimize Pose: 64 workers with 1 as vector length.

In particular, Figure 3 reports the total execution time of the
GPU kernels. The total time is the sum of the execution time of a
function across all the different datasets. We can notice that on GPU
the bottleneck shifted from the Rigid Rotations to the Optimize
Pose function.

Focusing on the execution time of single functions, we can notice
from Figure 4 that the Optimize Pose has the greatest variance. This
result is expected since this function depends on the number of
fragments of each ligand , and on how likely they overlap with each
other. We can also notice that the execution time for the Reductions
is constant.

We also tried to let the compiler to select the configuration. In
this case, the automatically selected configuration led to a decrease
in the performance. For example, the compiler selected to organize
Rigid Rotations in blocks of 128 vectors, with no workers, and in 360
gangs, with all the intermediate loop serialized. This configuration
achieved a low occupancy (24%) and 4.5 times the execution time
(67 seconds). The best solution we found in terms of execution time
for the Optimize Pose is to avoid vector parallelism, due to control
flow issues in the inner loop.

Even if the selected configuration is the best for the execution
time, none of these kernels was able to obtain a full utilization
of the GPU. It is possible to see the result of this experiment in
Figure 5a: We were able to reach an almost full utilization only
in the Reduction.The Rigid Rotations kernel was able to reach a
50% utilization. The Pose Optimization has a low utilization, due
to the inherent control flow, i.e. the sequential optimization of the

PBio 2018, September 23, 2018, Barcelona, Spain

100

min m—
90 | avg .
max
80
g 70
>
2
& 60
[=3
3
S5 50
o
z 40
O
30
20
10
Optimize Rigid Reduction

Pose Rotation

100

min —
99 avg
-~ max
9 98
> 97
2
k9] 96
<
< 95
@
& o4
2
£ 93
=l
= 92
91
90
Optimize Rigid Reduction

Pose Rotation

Figure 5: GPU utilization of the accelerated kernel, divided
into the different functions, and multiprocessor activity in
the kernel.

100

80

60

Size (MB)
Time (ms)

40

20

Host Device
To To
Device Host

Figure 6: Data Transfer between CPU and GPU

fragments.However, as reported in Figure 5b, we can notice that all
the involved processors, in all the considered functions, are heavily
loaded: the lowest result is indeed 90%.

Finally, we analyze the cost of data transfer. From Figure 6 we can
notice that it can be considered negligible: the total amount of data
transferred, considering all the 23 different dataset execution, is less
than 100MB as can be seen from the left y axis. The total elapsed
time in data transfers is around 15ms, across all the executions, and
it can be seen in right y axis.

Vitali et al.

1000

100

Time (logscale, s)

10

Rigid Optimize
Rotation

100

10

Time (logscale, ms)

Rigid Optimize
Rotation

Figure 7: Execution time of the original kernel on the CPU.

4.2 Performance comparison with baseline

Figure 7 shows the execution time of the original kernel on the
CPU. As previously mentioned, the most expensive function is Rigid
Rotation that takes 206 seconds. We can notice that for this kernel
the GPU version has a speedup of 16x (from 206s to 12s). On the
other side, the Optimize Pose has only a 2x speedup (from 80s to
34s), even if in the GPU version we are performing all the initial
poses in parallel. This behaviour is expected since we are able to
exploit more parallelism in the Rigid Rotation function, while the
sequential nature of Optimize Pose hinders the GPU performance.

If we observe the single function execution times for the CPU in
Figure 7b, we can notice that even on CPU, the Optimize Pose has
the largest variance.

4.3 Performance evaluation on the CPU

One of the reasons for choosing OpenACC over a CUDA implemen-
tation was to have a single source code for different architectures.
Given the changes in the application that we made to optimize the
performance on the GPU, this experiment aims at evaluating the
performance of the new application on the CPU. From the execution
time perspective, we noticed almost a 3x slowdown. To investigate
the reasons behind this behaviour, we used linux perf to analyze the
performance counters. The results of the experiment are reported
in Table 1.

Even if the IPC is slightly lower, the cache misses are 3 orders of
magnitude higher. Moreover, the number of instructions is more
than doubled. As expected, the replicated initial poses of the ligand

Accelerating a Geometric Approach to Molecular Docking with OpenACC

Metric Original OpenACC Version
Execution Time 298s 831s
Number of Intructions | 2,849,354,869,375 | 6,309,979,483,835
Cache Misses 380,672 783,114,693
IPC 3 2.4

Table 1: Comparison of the original application and the ex-
ecution of the OpenACC application on the CPU: OpenACC
version shows worse performance overall due mostly to data
management, as the huge increase in cache misses shows.

and the inserted code to perform the reductions deteriorates the
performance on the CPU. If the GPU programming paradigm re-
quires independent data, to leverage the architecture parallelism,
CPU architectures benefit from data locality. Moreover, on GPU
the best practice is to perform the same operation on different data,
while on CPU it is better to perform different operations on the
same data.

5 CONCLUSIONS AND FUTURE WORK

In the drug discovery process, the virtual screening of a large chem-
ical library is a crucial task. The benefits of an improvement in
the time spent on evaluating the interaction from a ligand and the
target pocket , are twofold. On one side it reduces the monetary cost
of the process, on the other side it enables the end-user to increase
the number of the evaluated ligands , increasing the probability of
finding a better solution.

In this paper, we focus on a geometrical approach for molecular
docking, optimized for the CPU architecture of an HPC platform. In
particular, we leverage the OpenACC directive language, to offload
the most intensive kernels on the GPU. We performed an experi-
mental campaign to evaluate the performance of the application in
terms of execution time, occupancy and multiprocessor activity.

We believe that it is possible to further improve the obtained
results with a different approach. For future work, we plan to reor-
ganize the application structure to exploit asynchronous queues to
offload only the sections with heavy parallelism, while using the
CPU for the other sections.

ACKNOWLEDGMENTS

This work has been partially funded by the EU H2020-FET-HPC
program under the project ANTAREX - AutoTuning and Adaptivity
appRoach for Energy efficient eXascale HPC systems (grant number
671623)

REFERENCES

[1] Claudia Beato, Andrea R Beccari, Carlo Cavazzoni, Simone Lorenzi, and Gabriele
Costantino. 2013. Use of experimental design to optimize docking performance:
The case of ligendock, the docking module of ligen, a new de novo design program.
Journal of Chemical Information and Modeling 53, 6 (2013), 1503-1517.

[2] Andrea R Beccari, Carlo Cavazzoni, Claudia Beato, and Gabriele Costantino. 2013.
LiGen: a high performance workflow for chemistry driven de novo design.

[3] Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat,
Helge Weissig, Ilya N Shindyalov, and Philip E Bourne. 2006. The protein data
bank, 1999-. In International Tables for Crystallography Volume F: Crystallography
of biological macromolecules. Springer, 675-684.

[4] Todd JA Ewing, Shingo Makino, A Geoffrey Skillman, and Irwin D Kuntz. 2001.
DOCK 4.0: search strategies for automated molecular docking of flexible molecule
databases. Journal of computer-aided molecular design 15, 5 (2001), 411-428.

—_
2

[10]

[11

[12

[13

[14

[15

[16]

[18

PBio 2018, September 23, 2018, Barcelona, Spain

Rob Farber. 2016. Parallel programming with OpenACC. Newnes.

Wu-chun Feng and Kirk Cameron. 2007. The Green500 List: Encouraging
Sustainable Supercomputing. Computer 40, 12 (Dec. 2007), 50-55. https:
//doi.org/10.1109/MC.2007.445

Richard A Friesner, Jay L Banks, Robert B Murphy, Thomas A Halgren, Jasna J
Klicic, Daniel T Mainz, Matthew P Repasky, Eric H Knoll, Mee Shelley, Jason K
Perry, et al. 2004. Glide: a new approach for rapid, accurate docking and scoring.
1. Method and assessment of docking accuracy. Journal of medicinal chemistry
47,7 (2004), 1739-1749.

Ajay N Jain. 2007. Surflex-Dock 2.1: robust performance from ligand energetic
modeling, ring flexibility, and knowledge-based search. Journal of computer-aided
molecular design 21, 5 (2007), 281-306.

Andreas Kniipfer, Christian Rossel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Mal-
ony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk
Schmidl, Sameer Shende, Ronny Tschiiter, Michael Wagner, Bert Wesarg, and
Felix Wolf. 2012. Score-P: A Joint Performance Measurement Run-Time Infras-
tructure for Periscope,Scalasca, TAU, and Vampir. In Tools for High Performance
Computing 2011, Holger Brunst, Matthias S. Miiller, Wolfgang E. Nagel, and
Michael M. Resch (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 79-91.
Bernd Kramer, Matthias Rarey, and Thomas Lengauer. 1999. Evaluation of the
FLEXX incremental construction algorithm for protein-ligand docking. Proteins:
Structure, Function, and Bioinformatics 37, 2 (1999), 228-241. https://doi.org/10.
1002/(SICI)1097-0134(19991101)37:2< 228::AID-PROT8>3.0.C0;2-8

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable
Parallel Programming with CUDA. Queue 6, 2 (March 2008), 40-53. https:
//doi.org/10.1145/1365490.1365500

NVIDIA. 2018. CUDA Toolkit Documentation. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#features-and- technical-specifications.
NVIDIA. 2018. Profiler User Guide. https://docs.nvidia.com/cuda/
profiler-users-guide/.

OpenACC-Standard.org 2017. The OpenACC Application Programming Interface.
OpenACC-Standard.org. https://www.openacc.org/sites/default/files/inline-files/
OpenACC.2.6.final.pdf.

OpenACC.org. 2015. OpenACC Programming and Best Practices
Guide. https://www.openacc.org/sites/default/files/inline-files/OpenACC_
Programming_Guide_0.pdf.

John E. Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A Parallel Pro-
gramming Standard for Heterogeneous Computing Systems. IEEE Des. Test 12, 3
(May 2010), 66-73. htps://doi.org/10.1109/MCSE.2010.69

René Thomsen and Mikael H Christensen. 2006. MolDock: a new technique for
high-accuracy molecular docking. Journal of medicinal chemistry 49, 11 (2006),
3315-3321.

Oleg Trott and Arthur J Olson. 2010. AutoDock Vina: improving the speed and
accuracy of docking with a new scoring function, efficient optimization, and
multithreading. Journal of computational chemistry 31, 2 (2010), 455-461.

https://doi.org/10.1109/MC.2007.445
https://doi.org/10.1109/MC.2007.445
https://doi.org/10.1002/(SICI)1097-0134(19991101)37:2<228::AID-PROT8>3.0.CO;2-8
https://doi.org/10.1002/(SICI)1097-0134(19991101)37:2<228::AID-PROT8>3.0.CO;2-8
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html##features-and-technical-specifications
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html##features-and-technical-specifications
https://docs.nvidia.com/cuda/profiler-users-guide/
https://docs.nvidia.com/cuda/profiler-users-guide/
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.6.final.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.6.final.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf
https://doi.org/10.1109/MCSE.2010.69

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Application Description
	3.2 Profiling
	3.3 Implementation

	4 Experimental Results
	4.1 Performance evaluation on the GPU
	4.2 Performance comparison with baseline
	4.3 Performance evaluation on the CPU

	5 Conclusions and Future Work
	Acknowledgments
	References

