
Do Android Taint Analysis Tools Keep Their Promises?
Felix Pauck

University Paderborn
Paderborn, Germany

fpauck@mail.uni-paderborn.de

Eric Bodden
University Paderborn
Paderborn, Germany

eric.bodden@uni-paderborn.de

Heike Wehrheim
University Paderborn
Paderborn, Germany

wehrheim@uni-paderborn.de

ABSTRACT

In recent years, researchers have developed a number of tools to
conduct taint analysis of Android applications. While all the re-
spective papers aim at providing a thorough empirical evaluation,
comparability is hindered by varying or unclear evaluation targets.
Sometimes, the apps used for evaluation are not precisely described.
In other cases, authors use an established benchmark but cover it
only partially. In yet other cases, the evaluations differ in terms
of the data leaks searched for, or lack a ground truth to compare
against. All those limitations make it impossible to truly compare
the tools based on those published evaluations.

We thus presentReproDroid, a framework allowing the accurate
comparison of Android taint analysis tools. ReproDroid supports
researchers in inferring the ground truth for data leaks in apps, in
automatically applying tools to benchmarks, and in evaluating the
obtained results. We use ReproDroid to comparatively evaluate on
equal grounds the six prominent taint analysis tools Amandroid,
DIALDroid, DidFail, DroidSafe, FlowDroid and IccTA. The re-
sults are largely positive although four tools violate some promises
concerning features and accuracy. Finally, we contribute to the area
of unbiased benchmarking with a new and improved version of the
open test suite DroidBench.

CCS CONCEPTS

• Software and its engineering→ Empirical software valida-

tion; Software testing and debugging;

KEYWORDS

Android Taint Analysis, Tools, Benchmarks, Empirical Studies, Re-
producibility.

ACM Reference Format:

Felix Pauck, Eric Bodden, and Heike Wehrheim. 2018. Do Android Taint
Analysis Tools Keep Their Promises?. In Proceedings of the 26th ACM Joint
European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE ’18), November 4–9, 2018, Lake Buena
Vista, FL, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3236024.3236029

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236029

1 INTRODUCTION

With smartphones becoming a part of everyone’s daily life, users
frequently downloading new apps to their phones and even per-
forming security critical applications like banking, or the coor-
dination of medical treatments, the probability of an undesired
leak of private data increases steadily. Such data leaks may arise
form coding mistakes but also may be the result of malicious at-
tacks. According to Gartner [12], currently 86% of all mobile phones
use Android as operating system. In the past, researchers have pro-
posed a number of tools to detect data leaks in Android applications.
The tools employ various analysis techniques, ranging from static
[2, 7, 9, 11, 13, 15, 17, 19, 28] over dynamic [10, 29] and hybrid [1]
analyses to methods built on logical reasoning [8]. Static analysis
tools often employ a form of taint analysis: sensitive data (i.e., data
from specific private sources) is tainted and then statically tracked
through the application’s data flow and sometimes control flow.
Whenever tainted data reaches a pre-defined public sink, the taint
analysis tool reports a privacy leak.

Since several decades, static analysis is known to be undecid-
able [24]. Undecidability forces static taint analysis tools to approxi-
mate the data flows they compute. In case of an over-approximation,
the taint analysis might report spurious warnings, so-called false
positives, while in the case of under-approximations it may miss
actual data flows, resulting in false negatives. While all static taint
analysis tools naturally share the idea of tracking taints, each tool
has its own strengths and weaknesses. For instance, some but not
all tools have good support for handling component lifecycles, call-
backs or inter-component communication (ICC). Further, the tools
provide different levels of precision by supporting (or not) an ob-
ject, field or context-sensitive analysis [26]. Due to these various
features, both researchers and practitioners wonder which tool is
the optimal choice in which application context—a question that
can only be answered through a comparative evaluation.

Many papers proposing taint-analysis tools evaluate those tools
using benchmarks such as the open test suites DroidBench [2] or
ICC-Bench [28]. These so-called micro-benchmarks consist of ar-
tifical mini-apps developed for benchmarking purposes only. Each
app or a predefined combination of multiple apps represents one
benchmark case. Benchmark cases contain intentionally encoded
data leaks, e.g. flows of data from a statement accessing the de-
vice’s serial number getDeviceId() to a statement sending SMS
sendTextMessage(...). While the usage of such common bench-
mark suites seems to provide a solid basis for an unbiased and
systematic comparison, it suffers from some fundamental draw-
backs: For instance, the micro-benchmarks mostly lack information
about the exact data leaks contained in each test case, i.e., the so-
called ground truth. Instead comparisons take place on the grounds
of just counting the number of data leaks found and comparing it
against the one given for the benchmark case. This hides incorrect

ar
X

iv
:1

80
4.

02
90

3v
2

 [
cs

.S
E

]
 3

0
Ju

l 2
01

9

https://doi.org/10.1145/3236024.3236029
https://doi.org/10.1145/3236024.3236029
https://doi.org/10.1145/3236024.3236029

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Felix Pauck, Eric Bodden, and Heike Wehrheim

leak detections in cases where these numbers match up coinciden-
tally. As our experiments confirm, this problem exists not just in
theory but has impaired past evaluations.

The comparison gets even less systematic when moving to real-
world apps, i.e., apps that can be downloaded from an app market
such as Google’s Play store.1 The inclusion of such apps in experi-
ments is indispensable when it comes to evaluating the tools for
scalability. Yet, in most recent works reporting the evaluation of
Android taint analysis tools it is quite unclear which apps exactly
have been used in the respective evaluation. To give one example
of many, Li et al. state "We randomly selected 50 apps from our
Googleplay set for our study." without naming them [17]. An addi-
tional related problem is that it is unclear which exact data leaks are
to be found and have been found. Since for real-world apps not even
the number of actual data leaks is known (let alone their exact data
flows), the evaluations simply report the number of leaks found,
without being able to assess which fraction of the tools’ warnings
might be false, and how many leaks are missed. In fact, this way of
measuring success rewards rather than penalizes false positives, as
higher numbers are frequently seen as better results. In summary,
tool benchmarks frequently lack confirmability and reproducibility.

The goal of this work is to remedy this unsatisfactory situa-
tion by enabling a reproducible, fair and unbiased comparison.
Specifically, we present ReproDroid, a framework allowing for the
accurate and systematic benchmarking of Android taint analysis
tools. The approach comprises the following original contributions.
First, we introduce the Android App Analysis Query Language (AQL)
which is used to precisely define analysis questions and answers.
In questioning, the usage of AQL allows us to run all examined
tools on the same target, i.e., inspect the existence of the same flow
of data. On the answer side, AQL acts as a standardized language
for describing the flows found. Second, the associated AQL-System
delegates analysis questions to appropriate tools by matching the
question subject against tool capabilities, and converts the produced
answers into the AQL format. Through those unique features, the
AQL-System supports the completely automatic benchmarking of
tools. Third, we present the Benchmark Refinement and Execution
Wizard (Brew), which helps one to refine, execute and evaluate
precisely formulated benchmarks. Brew allows us and others to
more easily determine the ground truth of data leaks for test apps.

As another major contribution of this work, we use ReproDroid
to carry out a reproducible comparison of some of the most promi-
nent taint analysis tools for Android apps: Amandroid, DIAL-
Droid, DidFail, DroidSafe, FlowDroid and IccTA, on 265 apps
(235 micro-benchmarks and 30 real-world apps). We find that the
experiments reproduce most but not all results of previously pub-
lished evaluations. To further contribute to the area of systematic
benchmarking, we provide all benchmarks, now precisely defined,
within a new version of the open test suite DroidBench.2

To summarize, this paper presents the following contributions:
• the Android App Analysis Query Language (AQL), a mecha-
nism to precisely define taint-analysis queries and responses,

• the AQL-System, which dispatches AQL queries to tools and
consolidates their responses,

1Google Play store https://play.google.com/store/apps
2https://FoelliX.github.io/ReproDroid/#droidbench

• the Benchmark Refinement and Execution Wizard (Brew),
a tool to refine, execute and precisely evaluate formulated
benchmarks, and

• a large-scale, comparative empirical evaluation of Aman-
droid, DIALDroid, DidFail, DroidSafe, FlowDroid and
IccTA onDIALDroid-Bench,DroidBench, ICC-Bench and
21 newly developed test apps.

The remainder of this paper is structured as follows. Section 2
introduces some basic concepts and a running example. Section 3
details ReproDroid’s three major components. Section 4 and 5
present our large-scale comparative evaluation and its results for
the six mentioned taint analysis tools. We discuss related work in
Section 6 and conclude in Section 7.

2 BACKGROUND

In this section, we start with introducing basic terminology and
concepts, in particular explain taint analysis and the current form
of benchmark suites.

2.1 Taint Analysis

The purpose of taint analysis is to track the flow of sensitive data
within programs. For smart-phone apps, a data leak occurs when
private data (phone numbers, device identifiers, contact data) flows
from sensitive sources to public sinks (Internet, SMS transmission).
In this case, sensitive data is leaked. Taint analyses are most fre-
quently used to detect such leaks: it taints sensitive data at its
source, and propagates the taint information through the applica-
tion (or even a combination of apps), issuing a warning if tainted
data reaches a sink. Taint tracking can be performed statically on
program code, or dynamically by executing the app and monitoring
tainted data.

Android provides an open communication structure between
apps. Moreover, when Android apps include third-party libraries,
those execute with the same access rights as the app itself. Those
features make Android apps particularly vulnerable to attacks tar-
geting private data. Taint-analysis tools can cope with these special
features to various extents. The following programming-language
features and analysis functionalities are supported by some but not
all tools:

Aliasing The same memory location / object may be refer-
enced by different variables. In this situation, one variable is
an alias of another, and a taint related to one alias must be
carried over to all others.

Static Fields Static fields are declared on a type, not their in-
stance. In particular, their values can be accessed without
requiring access to any object reference. Static taint analyses
must thus treat static fields differently from instance fields.

Lifecycle and Callbacks Each Android component has its
own lifecycle, defining a sequence of invocations to callback
functions that the Android framework issues at appropriate
lifecycle events. User-interface interactions map to callbacks
as well. To model all possible execution sequences of an app,
the analysis must take all appropriate callbacks into account,
and it can do so with various levels of precision.

Inter-Component Communication A leakmay originate in
one class and end in another. Additionally, Android allows

https://play.google.com/store/apps
https://FoelliX.github.io/ReproDroid/#droidbench

Do Android Taint Analysis Tools Keep Their Promises? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Found a flow to sink virtualinvoke $r4.<android.telephony.
→ SmsManager: void sendTextMessage(java.lang.String,
→ java.lang.String,java.lang.String,android.app.
→ PendingIntent,android.app.PendingIntent)>("+49 1234",
→ null, $r5, null, null), from the following sources:

- $r5 = virtualinvoke $r3.<android.telephony.
→ TelephonyManager: java.lang.String
→ getDeviceId()>() (in <de.ecspride.
→ MainActivity: void onCreate(android.os.Bundle
→)>)

Listing 1: Excerpt of FlowDroid’s result (DirectLeak1.apk)

for inter-component or inter-app communication (ICC/IAC)
via the instantiation of so-called intents and intent-filters. For
example, to access the device’s pre-installed camera app, it is
sufficient to dispatch a certain intent. Intents may propagate
tainted data from one app or component to another.

Analysis Abstraction and Algorithmics Depending on the
exact analysis abstraction and algorithmics, the taint analy-
sis may or may not support different “sensitivities”, such as
flow, context, path, field, object and/or thread-sensitivity [2].
While generally, the support for more such “sensitivities”
may increase precision, reducing the amount of false posi-
tives, the positive effects differ. For instance, while some level
of object-sensitivity is known to be important for the pre-
cise analysis of Java and Android applications [26], thread-
sensitivity may well be less important in the case of Android.

Reflection Java’s reflection mechanism allows one to invoke
methods (or access fields) through dynamically generated
strings. An analysis must resolve these strings to reliably
detect taint flows through such invocations.

The fact that each Android taint analysis tool supports those
features to a different extent makes it important to evaluate them
comparatively, as without such comparison it is impossible to tell
which features actually matter. Conducting a fair and automatic
comparison of tools, however, is complicated by differences in pur-
sued target flows and output formats. A necessary part of every
taint analysis is the identification of sources, i.e., statements that
extract sensitive information from a certain resource, and sinks,
i.e., statements that exfiltrate information out of the app. There
exist different definitions of sources and sinks as well as various ap-
proaches to determine which statements belong to which set [3, 22].
For instance, some analysis tools consider logging statements as
sinks, others do not. Whereas one analysis approach defines that
each source and sink has to be protected by at least one permission,
another might not consider such constraints.

The second difference concerns the representation of flows be-
tween sources and sinks, for which every tool uses its own (usually
textual, individually-structured) format. This renders it impossi-
ble to automatically compare results produced by different tools
without additional effort. For example, the result generated by Flow-
Droid (see Listing 1), from a structural point of view, has little in
common with DidFail’s result (see Listing 2). Yet, both listings
show the same finding: a flow from getDeviceId() (source) to
sendTextMessage(...) (sink).

'Sink: <android.telephony.SmsManager: void
→ sendTextMessage(java.lang.String,java.lang.String,
→ java.lang.String,android.app.PendingIntent,android.
→ app.PendingIntent)>': ###

['Src: <android.telephony.TelephonyManager: java.lang.String
→ getDeviceId()>']

Listing 2: Excerpt of DidFail’s result (DirectLeak1.apk)

import android.telephony.TelephonyManager;
/**
* @testcase_name DirectLeak1
* @version 0.1
...
* @description Easy testcase: The value of a source is

→ directly sent to a sink
* @dataflow source -> sink
* @number_of_leaks 1
* @challenges -
*/
public class MainActivity extends Activity {

Listing 3: Excerpt of DroidBench’s app source code

(DirectLeak1.apk)

2.2 Benchmarks

Most Android app analysis tools are evaluated by means of bench-
marks. In this context, a benchmarks is a collection of apps that
have certain features. For example, the most frequently used micro-
benchmark DroidBench [2] comprises 190 apps. While most An-
droid taint analysis tools are evaluated by applying them to Droid-
Bench, such evaluations are of limited value because DroidBench
currently only imprecisely specifies the ground truth in each bench-
mark case, i.e., the correct result of flow analyses. Listing 3 gives an
excerpt of the source code of one of DroidBench’s apps, namely
DirectLeak1 (the one the prior analysis results referred to). Between
the imports and the source code of the main activity of this app
a comment is placed. This comment – including the number of
leaks – is the only description of the expected analysis results:
there is a source directly connected to a sink. Neither do we learn
which source and sink this might be, nor how the flow propagates
through the app(s). Moreover, the information is not given in a
machine-readable format. Looking it up in the source code reveals
that the source is a getDeviceId() function call, which is used as
a parameter of a sendTextMessage(...) statement. In this case,
a manual inspection is easy and can be done quickly. However,
for more challenging benchmark cases or hundreds of cases this
task becomes exhausting and error prone. For example, the ma-
chine readable information, number of leaks, is sometimes simply
wrong (e.g. for DroidBench’s StrongUpdate1 it says 1 but the de-
scription and app execution prove that there is no leak). Still, the
authors of ICC-Bench [28] adopted the same method to specify
their expected results. Hence, automatically comparing actual re-
sults against expected ones is neither possible for DroidBench nor
for ICC-Bench.

DroidBench and ICC-Bench are micro-benchmarks. Evalua-
tions on real-world apps usually lack a ground truth altogether. Such
evaluations usually focus on the 500 to 1000 most downloaded or
most popular apps that can be downloaded from Google’s PlayStore.
DIALDroid-Bench [7] is a benchmark suite comprising real-world

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Felix Pauck, Eric Bodden, and Heike Wehrheim

apps. Its apps, however, are given without source code, only in the
form of .apk-files, and comprise no description of the data leaks
they contain.

In summary, while there seems to be a general agreement of eval-
uating tools on the grounds of public benchmarks, the evaluation
itself is imprecise: The ground truth needed to determine the tools’
precision and recall is often simply not known. To evaluate tools
automatically, one further misses a standardized, machine-readable
format for expected as well as detected data flows. In the end, this
impedes a reproducible and unbiased comparison of analysis tools.
We next explain how ReproDroid overcomes these limitations.

3 APPROACH

The ReproDroid framework supports tool evaluation and compar-
ison by the following three concepts:

• the design ofAQL, a query language for precisely formulating
questions about app properties such as flows,

• the design and implementation of a query execution system
being able to interface to diverse tools, and

• the design and implementation of a query wizard for de-
termining the ground truth in apps and for executing thus
specified benchmarks and rating their outcome.

Together, they provide an automatic benchmarking system for app-
analysis tools. In the following, we describe all three parts in turn.

3.1 App Analysis Language

The Android App Analysis Query Language (AQL) [20] consists
of two main parts, namely AQL-Queries and AQL-Answers. AQL-
Queries enable us to ask for Android specific analysis subjects in a
general, tool independent way. The grammar definingAQL-Queries
currently allows to ask for analysis subjects such as flows, intents,
intent-filters and permissions. Considering our running example,
we can enumerate all taint flows within the DirectLeak1.apk app
by composing the following query:

Flows IN App(’/path/to/DirectLeak1.apk’) ?

or instead explicitly check the taint flows we expect:
Flows FROM

Statement(’getDeviceId()’)
->Method(’onCreate(...)’)->Class(’MainActivity’)

->App(’/path/to/DirectLeak1.apk’)
TO

Statement(’sendTextMessage(...)’)
->Method(’onCreate(...)’)->Class(’MainActivity’)

->App(’/path/to/DirectLeak1.apk’)
?

Furthermore, the AQL offers several options to merge and fil-
ter queries as well as methods to match intents and intent-filters.
Similarly, AQL-Answers are used to represent analysis results in a
standardized form. The syntax of AQL-Answers is defined via an
XML schema definition. Considering the running example again, we
might get an answer that represents the flow from getDeviceId()
to the sendTextMessage(...) statement (cf. Listing 4). In this,
each statement comes with a precise description of where it can
be found, by naming the method, class and app containing the
statement. AQL supports additional syntax to uniquely identify

<answer>
<flows>

<flow>
<reference type="from">

<statement>... getDeviceId() ...</statement>
<method>... onCreate(...) ...</method>
<classname>... MainActivity</classname>
<app>

<file>.../DirectLeak1.apk</file>
<hashes>...</hashes>

</app>
</reference>
<reference type="to">

...
sendTextMessage(...)
...

</reference>
</flow>

</flows>
</answer>

Listing 4: Shortened AQL-Answer (DirectLeak1.apk)

statements and apps, for example using function-call parameters,
full Jimple syntax3 statements or .apk file hashes.

3.2 Query Execution System

The AQL-System [32] is our approach to process AQL-Queries and
to determine AQL-Answers. In the scope of this paper it is sufficient
to observe the AQL-System as a blackbox, which accepts analysis
questions encoded in AQL-Queries as input, executes appropriate
analysis tools and converts their output into AQL-Answers. To do
so, it requires a configuration in form of an .xml file that describes
(a) which tools are avaliable in a certain instance of theAQL-System
and how to execute these, (b) which queries can be answered by
which tool and (c) how to convert a tool’s result into an AQL-
Answer. For instance, an AQL-System can be configured to execute
FlowDroid in case of intra-app flow questions and IccTA in case
of inter-app questions, since FlowDroid does not support ICC/IAC.
Considering the running example such an AQL-System recognizes
that FlowDroid is available and able to answer the query regarding
flows inside one app only. Consequently, FlowDroid is launched
by executing the command or script specified in the configuration.
Once its computation is finished a tool-specific converter translates
the tool’s result into an AQL-Answer. We currently have converters
covering in particular the six tools of our experiments in Section 4.
With this, we can orchestrate the execution of tools and convert
their results into the standardized AQL format.

3.3 Benchmark Refinement and Execution

ReproDroid’s final component is the Benchmark Refinement and
Execution Wizard (Brew) [33]. It is an assistant that can be used to
do what the name suggests, first refine and then execute a bench-
mark. For this, it offers a graphical user interface (GUI) simplifying
the handling of different sets of apps and benchmarks and the
identification of sources and sinks.

3Jimple stands for "Java but simple". It is the primary intermediate language supported
by Soot [16, 27].

Do Android Taint Analysis Tools Keep Their Promises? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

The process of refining an existing benchmarks suite, i.e., com-
pleting it and bringing it into standardized format, consists of three
steps:

Case Identification We load the apps of the test suite into the
wizard. After loading, each app resembles one benchmark
case. We can then restructure the cases by deactivating cer-
tain cases or combining cases (e.g., if we are interested in a
flow from a source in one app to a sink in another app).

Source and Sink Identification For source and sink identi-
fication, the wizard displays all statements that possibly
represent a source or a sink inside all apps that have been
loaded during the first step. Since the wizard is just an assis-
tant it cannot decide on its own which of these statements
are real sources and sinks. However, Brew can preselect all
sources and sinks according to a predefined list of sources
and sinks as produced by SuSi [22] or PScout [3]. It is up
to the user to perform the remaining task of deselecting all
unwanted sources and sinks from the preselected ones. It
is also possible to combine certain sources and sinks. This
might be necessary to unify differently defined sources and
sinks. For example, whereas one analysis considers the func-
tion call getLastKnownLocation(...), which returns an
Location object, as source, another analysis only considers
the call of getLongitude() or getLatitude(), called upon
such a Location object, as source. However, any of these
calls refers to the same resources and hence all calls can be
interpreted as a single source.

Ground Truth Identification Finally, we have to decidewhich
cases are positive and which cases are negative benchmark
cases. More precisely, there may exist cases where we define
a flow that should not be found by an analysis. Determining
positive and negative cases remains a manual task which
requires inspection of the case.

Considering the running example only the DirectLeak1.apk
may be loaded as first step. Then, if we choose to automatically
mark all sources and sinks according to SuSi, the getDeviceId(),
sendTextMessage(...) but no further statement get marked as
source and sink. In the last step this results in one benchmark case,
which is correctly and initially always marked as positive case by
Brew.

Once the refinement steps have been completed, the benchmark
can be executed and evaluated. To do so, Brew determines oneAQL-
Query and one (expected)AQL-Answer per benchmark case. Hence,
to automatically execute and evaluate a benchmark, Brew sends
a query to an AQL-System for each benchmark case and checks
whether the actual result determined that way matches the ex-
pected one. For this purpose, it is checked whether one flow of the
expected result matches one flow of the actual result. For example,
one analysis may detect a flow from getLastKnownLocation(...)
to sendTextMessage(...) whereas another analysis finds a flow
from getLongitude() to the same sink. In both cases the expected
flow, regarding the accessed resources, has been found. Conse-
quently, one matching flow per benchmark case is sufficient.

To evaluate the outcome of a benchmark execution, Brew counts
the number of successful and failed benchmark cases. A case is
successful if a certain flow that was expected to be found has been

Benchmarks

1.

3.

BREW

2.

AQL-System

Config

Tools

Results

Query
(AQL-Query)

Result
(AQL-Answer)

Figure 1: Sketch of the ReproDroid toolchain

found (true positive) or if a flow that was explicitly not expected
to be found has not been found (true negative). In contrast, a case
fails if an expected flow was not found (false negative) or if a
not expected flow has falsely been detected (false positive). Based
on this information, Brew computes the commonly used metrics
precision, recall and F-measure.

Overall, Brew helps and guides its users while refining a bench-
mark. Refining in this context refers to the process of addingmissing
information to a benchmark case. Thereby insufficiently described
benchmark cases (cf. Listing 3) become usable, i.e., become avail-
able in machine-readable format, which allows one to execute and
evaluate the benchmark cases automatically.

3.4 The ReproDroid Toolchain

The composition of the three previously described components form
our complete framework ReproDroid (see Figure 1): Brew uses
the AQL-System which again uses the AQL. In Figure 1, two parts
are visualized inside clouds. These symbolize the resources that
exist in the community, namely analysis tools and benchmarks.
Each gray rectangle represents one of ReproDroid’s components.
To execute and evaluate a benchmark we first have to choose one
and provide it to Brew as input. Two methods are available to do
so. Either an already refined benchmark can be loaded, or a new,
unrefined set of apps can be refined interactively. After setting up or
loading the desired benchmark, Brewwill issue oneAQL-Query per
benchmark case. Then, one query after another arrives at an AQL-
System, configured to use a certain set of tools. The AQL-System
executes the tools required to answer each query (2.) and produces
one AQL-Answer per query as output. This answer, in turn, is
returned to Brew, which then decides if this actual answer matches
the expected one (3.). Brew’s GUI provides possibilities to compare
single results on a textual or graphical level. The latter one depicts
all sources and sinks as nodes and connections between them as
edges in a graph. All known intermediate statements between each
source and sink are also depicted. Brew further allows one to export
complete results to an SQL database, e.g. to make them viewable
online. In summary, we input a benchmark and one or more analysis
tools and receive as output one benchmark result, which includes
the expected and actual AQL-Answers of each benchmark case, as
well as the calculated values for precision, recall and F-measure.

Considering the running example we could, for instance, input
the DirectLeak1.apk as a benchmark consisting of only one app
and setup an AQL-System to use FlowDroid. The refinement step
performed bymeans of Brew allows us to identify the expected leak
which is consequently available as ground truth or expected AQL-
Answer (see Listing 4). Along with that, anAQL-Query is composed
to ask whether the expected leak actually exists. The considered

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Felix Pauck, Eric Bodden, and Heike Wehrheim

AQL-System takes this query and thereupon executes FlowDroid.
Once FlowDroid finishes its computation, the AQL-System con-
verts FlowDroid’s result (see Listing 1) into an AQL-Answer (see
Listing 4) which is returned to Brew. Since the expected and actual
result coincide (also see Listing 4), the benchmark case is evaluated
as successful. Considering this tiny benchmark, precision, recall
and F-measure would be at its optimal value (1.0).

This toolchain is applicable to different scenarios. For instance,
a specialist could refine a benchmark based on his expertise. This
refined benchmark can then be executed and used in an evalua-
tion by any type of user such as an analysis tool developer. The
toolchain also allows us to refine and execute a benchmark in a
distributed and iterative way. Multiple people can iteratively refine
a single benchmark. A benchmark can be executed, extended by
some additional cases and executed again without rerunning the
already executed cases. This can split the burden of refining and
executing a benchmark among multiple persons.4

4 EXPERIMENTAL SETUP

The design and implementation of ReproDroid for the first time
facilitates an accurate comparison of tools. In the following, we re-
evaluate six taint analysis tools for Android apps and their promises
on a number of micro-benchmarks and real world apps.

4.1 Tool Selection

We start with a description of our tool selection. The tools selected
for our evaluation all implement taint analyses. This is the most
frequently used technique for finding data leaks, and thus provides
us with a number of tools to be studied. Furthermore, for the pur-
pose of this study we only consider static taint analysis tools. We
further consider only approaches that are at least flow-sensitive or
context-sensitive, such as to assure that all tools are competitors
within the same league.

Table 1: List of Tools

Tool Version

Amandroid [30] November 2017 (3.1.2)
DIALDroid [34] September 2017
DidFail [35] March 2015

DroidSafe [36] June 2016 (Final)
FlowDroid [37] April 2017* (Nightly)

IccTA [38] February 2016
* Has been updated since then.

Table 1 lists the tools
employed in our evalua-
tion along with their re-
lease dates and versions (if
available). For all tools we
generally used the most re-
cent version. Just for Flow-
Droid it holds that it is so
frequently updated that we
had to fix a version for our

experiments. All six tools we consider have at least ICC and at best
IAC capabilities, except for FlowDroid, which computes flows
within single components only. Yet, it is an important tool to con-
sider because it is the most widely used static-analysis tool for
Android. Considering IAC is interesting because prior evaluations
typically showed a deteriorating precision when IAC benchmark
cases were involved. We thus seek to specifically measure how well
tools perform on more accurate IAC benchmarks.

We briefly describe some characteristics of the tools:
Analysis Engine All tools except Amandroid are based on

Soot [16, 27] and operate on Jimple as intermediate language.

4Instructions are available on github: https://github.com/FoelliX/BREW/wiki

Source and Sink Identification The sources and sinks con-
sidered by DIALDroid, DidFail, FlowDroid and IccTA
are specified by SuSi [22], a machine-learning approach
for source and sink detection. DroidSafe employs its own
source and sink identification (which is claimed to be even
more precise than SuSi’s). The list of considered sources and
sinks used by Amandroid seems similar although shorter;
its origin remains unclear. For our micro-benchmarks, we
made sure that the sources and sinks needed for finding
flows are identified by all tools.

ICC and IAC Capabilities DidFail, DIALDroid and Droid-
Safe are the only tools that are shipped with built-in IAC
capabilities. The other tools have ICC capabilities only and
require a tool called ApkCombiner [17] to lift their analysis
to IAC level. ApkCombiner has been developed (along with
IccTA) for precisely this purpose. It takes multiple .apk files
as input and merges them into a single .apk file. Droid-
Safe’s built-in IAC capabilities did not show any effect in
our experiments, no IAC involving flows were found. Hence,
we decided to use DroidSafe in combination with ApkCom-
biner as well. Note furthermore that DIALDroid is only
able to detect inter-component or inter-app taint flows, any
intra-component flows are ignored.

A number of other tools (e.g. [4, 9, 11, 14, 19]) would fit into our
scope.We shortly comment on and provide reasons whywe omitted
them in related work (see Section 6).

4.2 Benchmarks

Our experiments are based on three benchmark suites: Droid-
Bench [2], ICC-Bench [28] and DIALDroid-Bench [7]. The first
two are well-known micro-benchmark suites which have been used
in various evaluations before (usually version 2.0 or 3.0 of Droid-
Bench and version 2.0 of ICC-Bench which we use as well). The
third suite, DIALDroid-Bench, is a collection of partially malicious
real-world apps downloaded from Google’s Playstore and gathered
by Bosu et al. [7].

In addition, we have developed 18 apps comprising 21 posi-
tive and 6 negative feature-checking benchmark cases. A feature-
checking benchmark case exploits only one specific feature at a
time and can thus be used to explicitly check the handling of a
dedicated feature in a tool. This is in contrast to similar cases of
DroidBench which often combines two or more features in one
case. The feature-checking benchmark cases cover all features listed
in Section 2.1.

Since we are particularly interested in ICC and IAC, we have
developed three apps to specifically evaluate the precision of intent-
matching algorithms. Such algorithms play an essential role when
inter-component or inter-app flows are analyzed. The analysis has
to detect whether a certain intent can be received by a component.
If so, the action, category and data attributes of an intent have to
match those of a component’s intent-filter. To this end, the three
apps comprise 2/6/71 positive and 4/3/139 negative cases consider-
ing matching action, category and data attributes, respectively.

Together these 21 newly developed apps represent our Droid-
Bench extension. DroidBench together with this extension is
refined by means of Brew. As a result, our benchmark suite now

https://github.com/FoelliX/BREW/wiki

Do Android Taint Analysis Tools Keep Their Promises? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

contains a collection of 211 apps with (a) their source code and
(b) the ground truth for data leaks in the form of AQL-Answers.
We made this extended and refined benchmark suite as well as
refined versions of the other suites publicly available [40] for other
researchers to perform similar experiments.

4.3 Research Questions and Experiments

Our evaluation addresses the following research questions:
RQ1 Do Android app analysis tools keep their promises?
RQ2 How do the tools compare to each other with respect to

accuracy?
RQ3 Which tools support large-scale analyses of real-world apps?
We designed specific experiments for every research question.

RQ1. In order to address RQ1, we first need to determine what
we consider to be a “promise” of a tool. Looking at the articles
introducing tools, two properties of tools play a common role: (1)
the supported features and (2) the tool’s accuracy, i.e., its precision,
recall and F-measure as shown in experiments. Runtime appears to
play a minor role: most articles only give vague runtime informa-
tion. To evaluate the tools with respect to these sorts of promises,
we ran the following experiments. First we prepared a benchmark
set consisting of (1) the micro-benchmarks from DroidBench and
ICC-Bench plus (2) our feature-checking benchmark cases, all re-
fined and executed with Brew. To evaluate the six different tools,
Brew is launched six times, each time with the respectively con-
figured underlying AQL-System. Each configuration makes the
AQL-System use only one tool. The setup of a tool is untouched:
only required launch parameters are given and the usable memory
is specified. All other options are set to default.

RQ2. As a number of researchers have already carried out a
comparison of their own tool with some existing tools, we wanted
to see what the outcome of a more refined comparison is. For
the comparison, we chose F-measure as our means for evaluating
accuracy. For each catergory and tool the average value is computed.
Basically, for comparison the rule “the larger, the better” can be
applied on the achieved value. For evaluation, we again used our
refined version of DroidBench. ICC-Bench is not used since we
do not want to intermix benchmark cases.

RQ3. Regarding scalability, we seek to evaluate whether the
tools are able to deal with (1) large apps (in terms of code size), (2)
a large numbers of apps, (3) ICC and IAC and (4) newer Android
versions. For (1) we used DIALDroid-Bench, a benchmark suite
containing 30 large real-world apps. Again, we employed Brew to
help us determine the ground truth for these apps. Due to the size
of apps, this is anything but straightforward, as a simple manual
inspection of all potential flows is not feasible. We used the follow-
ing procedure to nonetheless achieve a systematic derivation of a
ground truth. First, we created one positive benchmark case for
every pair of sources and sinks. This resulted in 841,514 potential
positive benchmark cases. Second, we ran all six tools on these
cases, ending with a report of 1,007 candidates for privacy leaks.
20 of these potential leaks had been found by two tools. No leak
was found by more than three tools, and there were six benchmark
cases for which this occurred. For all leaks that had been detected
multiple times, we manually investigated the source code of the
associated apps. We used the jadx [39] decompiler to extract the

Table 2: Feature Promises

A
l
i
a
s
i
n
g

S
t
a
t
i
c

C
a
l
l
b
a
c
k
s

L
i
f
e
c
y
c
l
e

I
n
t
e
r
-
P
r
o
c
e
d
u
r
a
l

I
n
t
e
r
-
C
l
a
s
s

I
A
C

I
C
C

(
e
x
p
l
i
c
i
t
)

I
C
C

(
i
m
p
l
i
c
i
t
)

F
l
o
w
-

C
o
n
t
e
x
t
-

F
i
e
l
d
-

O
b
j
e
c
t
-

P
a
t
h
-

T
h
r
e
a
d
A
w
a
r
e
n
e
s
s

R
e
fl
e
c
t
i
o
n

Tool Sensitivity

Amandroid +○ ⋆○ ⋆○ ⋆○ ⋆○ ⋆○ ⋆○ +○ +○ −○ ⋆○ +○ +○ − ⋆ +

DIALDroid −○ ⋆○ −○†

DidFail ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
DroidSafe +○ ⋆○ −○ ⋆○ ⋆○ ⋆○ +○ +○ +○ − −○ +○ +○ − ⋆ +

FlowDroid +○ ⋆○ ⋆○ ⋆○ ⋆○ ⋆○ − − − ⋆○ ⋆○ +○ ⋆○ − ⋆ −
IccTA +○ ⋆○ ⋆○ ⋆○ ⋆○ ⋆○ ⋆○ ⋆○ +○ ⋆○ ⋆○ +○ ⋆○ − ⋆ −

○ supported, ⋆ confirmed, + partially confirmed, − not confirmed, † aborted

apps’ source code. To inspect the decompiled code, we then used
Android Studio. The manual inspection led to the confirmation of 22
positive cases. Four other positive cases had to be rejected, because
there exists no data flow between the source (accessing device’s
location) and the sink (logging e.g. a username). By means of Brew
these confirmed and rejected benchmark cases have been stored re-
spectively as positive and negative cases in another refined version
of DIALDroid-Bench. We are aware that the determined “ground
truth” is most likely incomplete and does not involve all apps of
DIALDroid-Bench. However, to our knowledge it represents the
first available precise (in terms of flows) ground-truth description
for a set of real-world apps. In cooperation with others [21] we plan
to extend it in future.

For inspecting the tools’ abilities to handle a high number of apps
(2), ICC and IAC (3), we used our own intent-matching benchmarks.
For checking their applicability to newer Android APIs (4), we ran
the tools on different versions of our feature-checking test apps
compiled and developed with Android Studio as well as on the
DroidBench apps developed with Eclipse.

4.4 Execution Environment

All experiments were executed on a Debian (Jessie) virtual machine,
which has Java 8 (1.8.0_161) installed. It was set up to use two
cores of an Intel® Xeon® CPU (E5-2695 v3 @ 2.30GHz) and 32 GB
memory whereof 30 GB were assigned to the analysis tool as heap
space of the respective Java virtual machine.

5 EXPERIMENTAL RESULTS

5.1 RQ1: Do Android app analysis tools keep

their promises?

Feature promises. Each tool promises to support a certain set
of features (see original paper and summary in surveys [18, 25]).
On the basis of our feature-checking benchmark cases, we verified
which features are supported. Table 2 summarizes the results. Each
row stands for one tool; each column represents one feature. The
entries describe the promises and their degree of fulfillment: the
symbol ⋆ stands for full support, + for partial support and − for all
feature-checking benchmark cases having been failed. Furthermore,
if the symbol is circled (○), the corresponding feature was promised
to be supported. Consequently, a promise violation is denoted as
a circled minus symbol (−○). In the table, five promise violations
appear. We shortly describe the reasons for these.

(1) Amandroid failed to detect the correct order of statements
causing it to falsely determine a taint flow.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Felix Pauck, Eric Bodden, and Heike Wehrheim

(2) DIALDroid struggled in dealing with implicit intents for
ICC and IAC. In case of the test app for implicit ICC, its
execution was aborted at the end due to a database error.

(3) DroidSafe failed to handle callbacks correctly. This is sur-
prising, as the paper claims that due to its flow-insensitivity
it can handle callbacks more easily. In addition DroidSafe
seems to over-approximate in case of the context-sensitivity
check, violating a second promise. However, its development
has stopped in 2016, and the last supported Android version
is 4.4.1. Hence, it is plausible that some features are no longer
supported.

For DidFail, we could not check whether it keeps its promises
since it cannot handle newer apps (see Table 5), nor apps that do
not name its targeted Android API version in its manifest. To do
so has become optional along with the establishment of Android
Studio as dedicated development platform in 2014.

In summary, according to our feature-checking benchmarks, all
promises except five are kept and most of the promised features
are fully supported.

Accuracy promises. Accuracy is typically evaluated by the met-
rics precision, recall and F-measure – the harmonic mean of the first
two. For the sake of clarity, and because it best represents the overall
accuracy, we only report the F-measure here. Figure 2 depicts the F-
measures for all six tools on different sets of micro-benchmark apps.
We used different sets because the promises themselves typically
refer to different benchmark suites. The dark bar always represents
the promised value, the brighter one the actual value determined in
our experiments.

DroidBench version 3.0: Figure 2a shows the F-measure val-
ues for the current version (3.0) of DroidBench. Since no paper
promised anything for the complete 3.0 set, there are no dark
(promised) bars shown. All tools have an accuracy of about 60%
apart from DIALDroid and DidFail which have less. 60% does not
sound to be an inspiring confidence, but a lot of distinct features are
exploited in DroidBench 3.0, specifically such features designed
to challenge existing tools. Thus it was to be expected that each
tool makes mistakes at some point. Furthermore, we find that DI-
ALDroid has a very low value in Figure 2a as well as in most of
the others. This is because DIALDroid is designed for ICC and IAC
cases only (tracking no intra-component flows), and consequently
fails in all other cases. DidFail only reached an F-measure of 0.439
for DroidBench 3.0. This is because DidFail is the oldest and
fewest updated tool considered.

DroidBench version < 3.0: Most tools were proposed when
DroidBench 3.0 did not exist, hence an older version of Droid-
Benchwas used. The bar chart in Figure 2b shows the promised and
actual values for DroidBench before version 3.0. On this, no tool
achieved its promised value. With a relative deviation of 9% Flow-
Droid is closest to its promise. The other tools are at about 19%
to 25% below the promised value. All tools nevertheless achieved
better values for this set than for the 3.0 set.

DroidBench version 2.0 (subset): The results improve if we
only take a certain subset of DroidBench 2.0 into account (see
Figure 2c). This subset has been used in the papers proposing Flow-
Droid and Amandroid. However, only FlowDroid is able to keep
its promise for this subset.

0

0.5

1

Amandroid DIALDroid DidFail DroidSafe FlowDroid IccTA

promised 0 0 0 0 0 0

actual 0.611 0.137 0.439 0.596 0.674 0.667

F-
M
e
as
u
re

a) DroidBench (3.0)

0

0.5

1

Amandroid DIALDroid DidFail DroidSafe FlowDroid IccTA

promised 0.81 0 0 0.91 0.89 0.98

actual 0.651 0.161 0.547 0.686 0.719 0.735

F-
M
e
as
u
re

b) DroidBench (version < 3.0)

0

0.5

1

Amandroid DIALDroid DidFail DroidSafe FlowDroid IccTA

promised 0.81 0 0 0.91 0.89 0.98

actual 0.651 0 0.667 0.694 0.909 0.889

F-
M
e
as
u
re

c) DroidBench 2.0 (FlowDroid- & Amandroid-Subset)

0

0.5

1

Amandroid DIALDroid DidFail DroidSafe FlowDroid IccTA

promised 0 0.91 0 0 0 0

actual 0.429 0.625 0.308 0.167 0 0

F-
M
e
as
u
re

d) DroidBench (3.0 IAC only)

0

0.5

1

Amandroid DIALDroid DidFail DroidSafe FlowDroid IccTA

promised 0 0 0 0 0 0

actual 0.652 0.571 0.409 0.378 0.235 0.533

F-
M
e
as
u
re

e) DroidBench (3.0 IAC & ICC only)

0

0.5

1

Amandroid DIALDroid DidFail DroidSafe FlowDroid IccTA

promised 1 1 0 0 0 0.94

actual 0.944 0.69 0 0 0 0.19

F-
M
e
as
u
re

f) ICC-Bench (2.0)

Figure 2: Accuracy Promises

DroidBench 3.0 IAC only: Bosu et al. [7] evaluatedDIALDroid
for all IAC cases of DroidBench 3.0 and claimed to achieve an F-
measure of 0.91 (see Figure 2d). In our experiments we could only
reproduce an F-measure of 0.625 for the same subset. Nonetheless,
this is the best value for this subset. All other tools could not even
reach 50%, which makes them inappropriate. As expected Flow-
Droid was not able to detect any inter-app flows. Unfortunately,
IccTA was also unable to handle those although it should be as
claimed in the associated paper and determined by the feature-
checking benchmark. A closer look at the individual results re-
veals that IccTA could not resolve flows between setResult(..)
and onActivityResult(..) statements. The intra-app parts of the

Do Android Taint Analysis Tools Keep Their Promises? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 3: F-Measure Scores

ID Category D
IA
LD

ro
id

D
id
Fa

il

D
ro

id
Sa

fe

Ic
cT

A

Fl
ow

D
ro

id

A
m
an

dr
oi
d

Ø
1 FieldAndObjectSensitivity 0.000 0.800 0.667 1.000 1.000 1.000 0.745
2 Callbacks 0.000 0.769 0.667 0.897 0.897 0.500 0.622
3 UnreachableCode 0.000 1.000 0.000 0.857 1.000 0.857 0.619
4 AndroidSpecific 0.000 0.429 0.900 0.842 0.900 0.625 0.616
5 GeneralJava 0.000 0.611 0.780 0.762 0.810 0.703 0.611
6 EmulatorDetection 0.000 0.000 0.500 0.966 0.966 0.966 0.566
7 Lifecycle 0.000 0.400 0.933 0.737 0.769 0.545 0.564
8 InterComponentCommunication 0.538 0.452 0.480 0.706 0.348 0.750 0.546
9 Threading 0.000 0.667 0.000 0.667 1.000 0.667 0.500
10 ArraysAndLists 0.000 0.444 0.667 0.500 0.615 0.545 0.462
11 Aliasing 0.000 0.000 0.000 0.667 0.667 0.500 0.306
12 InterAppCommunication 0.625 0.308 0.167 0.000 0.000 0.429 0.255
13 Reflection 0.000 0.095 0.333 0.095 0.095 0.182 0.133
14 DynamicLoading 0.000 0.000 0.000 0.000 0.000 0.500 0.083
15 Native 0.000 0.000 0.000 0.000 0.000 0.333 0.056
16 ImplicitFlows 0.000 0.000 0.000 0.000 0.000 0.000 0.000
17 Reflection_ICC 0.000 0.000 0.000 0.000 0.000 0.000 0.000
18 SelfModification 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ø 0.065 0.332 0.339 0.483 0.504 0.506

leak, however, could be found as well as the connection between
the two apps involved. It seems to be a tiny but decisive bug in
IccTA’s implementation.

DroidBench 3.0 IAC and ICC only: Once we add all ICC cases
of DroidBench, all tools except DIALDroid become more accurate
on average (see Figure 2e). IccTA improves the most and achieves
an F-measure of 0.533. The best value is achieved by Amandroid
which overtook DIALDroid for this extended subset. FlowDroid’s
value is not 0 because some of DroidBench’s ICC cases communicate
values through static fields or use statements receiving or sending
intents as only sources or sinks. FlowDroid can handle both.

ICC-Bench: Finally, we inspected ICC-Bench (see Figure 2f). For
this micro-benchmark set we have only three promises. Whereas
Amandroid almost keeps its promise,DIALDroid lacks 31%. IccTA
underperforms the most, because of the reason discussed above.

To conclude, we could not reproduce the accuracy that was
claimed in the proposing papers apart from one promise made by
Arzt et al. [2] for FlowDroid considering a small set of benchmark
cases (see Figure 2c). In consequence, the answer to RQ1 is thus
that the tools in general keep only parts of their promises.

5.2 RQ2: How do the tools compare to each

other with respect to accuracy?

For the comparison of tools wrt. accuracy, we used DroidBench
3.0 (and its specific categories). Table 3 shows all categories of
DroidBench 3.0 in its second column. The following six columns
show the F-measure of each tool for all benchmark cases in the
associated category. The categories supported best are placed at
the top of the table. Additionally, a color scheme has been added to
emphasize each tool’s performance: the darker the background of
a cell is, the higher the F-measure.

We find that the first 11 of 18 categories are handled properly
by most tools. The F-measure values achieved in Category 12,
namely InterAppCommunication, are inadequate. According to
the promises made, the tools should be able to analyze inter-app
cases. In particular, DIALDroid should achieve a top value here
but it does not excel at an F-measure of 0.625. The remaining six
categories are insufficiently handled by all tools apart from some

Table 4: DIALDroid-Bench results

Tool Number of successfully Analysis-time Number of true
analyzed apps per app (minutes) / false positives

Amandroid 21 8 1 / 0
DIALDroid 20 10 0 / 4
DidFail 27 9 21 / 4

DroidSafe 2 5 0 / 0
FlowDroid 18 2 22 / 0

IccTA 18 4 6 / 0

special cases. However, this matches our expectations since no tool
claimed to be able to handle such cases.

Before we conclude this section, a few remarks regarding the
runtime: while most tools needed on average 25 seconds to analyze
one app, DroidSafe required more than 200 and FlowDroid less
than 10 seconds on average. In addition, DroidSafe timed out in 25
cases by exceeding a maximal execution time of 10 minutes. This
also happened in case of DidFail and IccTA but only once.

In summary, we see that there is no single “best” tool. Every
tool has at least one other tool performing better in at least one
category. Overall (see sums in the final row), Amandroid (0.506)
and FlowDroid (0.504) score best wrt. accuracy.

5.3 RQ3: Which tools support large-scale

analyses of real-world apps?

Table 4 (second column) shows howmany real-world apps each tool
was able to analyze without exceeding the maximal execution time
of 30 minutes. The third column shows the average execution time
of each tool, the last column how many of expected results could be
matched by each tool. There is no tool that was able to analyze all
apps, and apart from FlowDroid every tool on average required
more than two minutes to analyze an app. The results for the newly
defined ground truth (last column) reveal that FlowDroid currently
seems to be the best choice to reliably deal with large apps, since all
other tools missed some confirmed leaks or falsely detected rejected
ones. In addition, in case of Amandroid, DIALDroid, DroidSafe
and IccTA most of the 22 confirmed leaks remain undetected.

0.000

0.500

1.000

Amandroid DIALDroid DidFail DroidSafe FlowDroid IccTA

Precision 0.888 0.000 0.000 0.500 0.000 0.367

Recall 1.000 0.000 0.000 0.013 0.000 0.139

F-Measure 0.941 0.000 0.000 0.025 0.000 0.202

Figure 3: Intent-Matching: Precision, Recall, F-Measure

Table 5: Up-to-date Status

Tool

Eclipse AndroidStudio

API ≤ 19 API 19 API 26

Amandroid ✓ ✓ −
DIALDroid ✓ ✓ ✓

DidFail ✓ −† −†

DroidSafe ✓ ✓ −†

FlowDroid ✓ ✓ ✓

IccTA ✓ ✓ −†

ApkCombiner ✓ ✓ −†

✓ supported, − fails, † crashes

The intent-matching
benchmark results fur-
ther support this con-
clusion (see Figure 3).
Apart from Amandroid,
no tool is able to accu-
rately match the action,
category or data field.
Finally, we investigated
whether the tools are

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Felix Pauck, Eric Bodden, and Heike Wehrheim

able to handle newer Android versions. Table 5 shows the out-
comes. Amandroid fails to perform a proper analysis, however
without crashing. DroidSafe, IccTA and ApkCombiner all crash
while analyzing apps built for an API above 19, which is supported
by the majority (82.3%) of Android devices.5 A common cause is
a tool-dependency on the Apktool [31]. Old versions of it fail to
decompile newer Android apps. The same happens to the ApkCom-
biner. Thereby Amandroid, DroidSafe, FlowDroid and IccTA
lose their ability to analyze inter-app scenarios. As discussed before,
DidFail fails to analyze newer apps developed with Android Studio.
In summary, the answer to RQ3 is: each tool in our scope still has
shortcomings when it comes to analyzing real-world apps.

5.4 Threats to Validity

The main threat to the validity of our experiments arises from the
manual, though tool-assisted, definition of the expected results.
However, currently we see no way around it because the tools
that could potentially be used to derive the ground truth are at the
same time the tools we want to evaluate. Thus we cannot rely on a
single tool to generate the ground truth. Moreover, ReproDroid
allows us to refine the expected result definitions multiple times
and thereby to achieve precise results. Similarly, also other experts
can use ReproDroid to define and refine their own benchmarks.

In all our experiments the tools have been executed in their de-
fault configuration. Only the available memory has been changed
according to our system’s setup. Some tools may produce different
results when executed with specific launch parameters. These re-
sults may be more accurate or less, computed faster or slower, and
might thus change the outcome of our experiments. For example,
FlowDroid has an option to activate the tracking of implicit flows.
Consequently, its F-measure value would have been greater than 0
in category 15 (see Table 3). We restricted our experiments to the
default configuration nonetheless because this is the one which a
non-expert software developer is likely going to use.

Another threat to validity are the metrics precision, recall and F-
measure that we and others frequently used tomeasure for accuracy.
For some feature-restricted parts of e.g. DroidBench, these metrics
are misleading. The Aliasing subset, for example, comprises four
benchmark cases, three of which are negative cases. A tool capable
of correctly answering these three negative cases will still have a
precision, recall and F-measure value of 0 if it just fails the single
positive case.

Finally, our implementation of the AQL-System may contain
bugs. In particular, the converter used to translate tool-specific
answers into AQL-Answers must work as intended in order to
produce correct and meaningful results. We extensively tested the
converter and fixed all errors. Due to the imprecise format of some
tools’ results, sources or sinks are sometimes (more specifically,
for DidFail) not uniquely identifiable while converting it into the
AQL format. Therefore, the converter over-approximates, i.e. all
candidates are taken into account as source or sink respectively.
Considering our experiments on real-world apps, Brew similarly
over-approximated during the identification of sources and sinks
in case of Amandroid, DidFail and DroidSafe. Thus, method

5https://developer.android.com/about/dashboards (01/03/2018)

calls are matched by method names without considering the pa-
rameters given as input. Such aspects have already been taken into
consideration.

6 RELATEDWORK

Providing an overview of analysis tools for Android apps is the
topic of three recent surveys [18, 23, 25]. These works collect and
summarize tools and their functionality as outlined in research
papers. They provide no systematic experimentation to assess and
compare tools, in particular not with respect to their promises.

A thorough comparison of Android analysis tools has so far been
difficult due to the lack of precisely defined benchmarks. This situ-
ation is different in other (analysis) contexts. Competitions like the
annual Competition on Software Verification (SV-COMP [5]), the
SAT-solving competition6 or the Hardware Model Checking Com-
petition (HMCC [6]) provide well-defined benchmarks in different
categories with precisely fixed outcomes. Often, they do not just
require participating tools to give yes/no answers, but in addition
to provide witnesses or proofs of their results. With the AQL, we
already have a format for witnesses of taint flows available.

Finally, there are more tools which potentially fit in our scope.
Apposcopy [11], WeChecker [9] and Separ [4] should fit per-
fectly, however are not publicly available. SCanDroid [19] is pub-
licly available and fits into our scope as well, nonetheless it is largely
outdated and cannot produce results for any considered (micro)
benchmark. DroidInfer [14] employs an interesting type-based
approach. However, in this particular case it requires a lot of effort
to build a converter to extract the determined taint flows, because
of its uncommon result structure. Additionally, the tool seemed
not ready for competitive comparison since its execution fails for
most micro-benchmark cases. Thus, we decided to omit the tool.
Other available tools do not fit into our scope due to their result
representation even though they inspect privacy leaks. For example,
HornDroid [8] determines sinks and provably shows that these
can be reached by taint flows. It fails, however, to name sources,
which is why we cannot determine which specific flow is found.

7 CONCLUSION

In this paper, we reported on the results of a reproducibility study
on static taint analysis tools for Android apps. To support our own
as well as similar studies, we developed a framework for inferring
data leaks in test apps and for automatically running tools on bench-
mark sets. With the help of this framework, we assembled precise
benchmark suites and re-evaluated six existing tools on them. In
the evaluation, we in particular studied the handling of specific
features, the accuracy of tools and their relation to the promised
values. The results indicate that studies and benchmarks like ours
are indeed needed to provide a solid ground for a fair and unbiased
comparison of tools.

ACKNOWLEDGMENTS

This work was partially supported by the German Research Founda-
tion (DFG) within the Collaborative Research Centre “On-The-Fly
Computing” (SFB 901).

6http://satcompetition.org

https://developer.android.com/about/dashboards
http://satcompetition.org

Do Android Taint Analysis Tools Keep Their Promises? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES

[1] Maqsood Ahmad, Valerio Costamagna, Bruno Crispo, and Francesco Bergadano.
2017. TeICC: targeted execution of inter-component communications in Android.
In SAC, Marrakech, Morocco, 2017, Ahmed Seffah, Birgit Penzenstadler, Carina
Alves, and Xin Peng (Eds.). ACM, 1747–1752.

[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. 2014.
FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. In PLDI, Edinburgh, United Kingdom, 2014, Michael
F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 259–269.

[3] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout:
analyzing the Android permission specification. In CCS, Raleigh, USA, 2012, Ting
Yu, George Danezis, and Virgil D. Gligor (Eds.). ACM, 217–228.

[4] Hamid Bagheri, Alireza Sadeghi, Reyhaneh Jabbarvand Behrouz, and Sam Malek.
2016. Practical, Formal Synthesis and Automatic Enforcement of Security Policies
for Android. In DSN, Toulouse, France, 2016. IEEE Computer Society, 514–525.

[5] Dirk Beyer. 2017. Software Verification with Validation of Results - (Report on
SV-COMP 2017). In TACAS (ETAPS), Uppsala, Sweden, 2017 (LNCS), Axel Legay
and Tiziana Margaria (Eds.), Vol. 10206. 331–349.

[6] Armin Biere, Tom van Dijk, and Keijo Heljanko. 2017. Hardware model checking
competition 2017. In FMCAD, Vienna, Austria, 2017, Daryl Stewart and Georg
Weissenbacher (Eds.). IEEE, 9.

[7] Amiangshu Bosu, Fang Liu, Danfeng (Daphne) Yao, and Gang Wang. 2017. Collu-
sive Data Leak and More: Large-scale Threat Analysis of Inter-app Communica-
tions. In AsiaCCS, Abu Dhabi, United Arab Emirates, 2017, Ramesh Karri, Ozgur
Sinanoglu, Ahmad-Reza Sadeghi, and Xun Yi (Eds.). ACM, 71–85.

[8] Stefano Calzavara, Ilya Grishchenko, and Matteo Maffei. 2016. HornDroid: Prac-
tical and Sound Static Analysis of Android Applications by SMT Solving. In
EuroS&P, Saarbrücken, Germany, 2016. IEEE, 47–62.

[9] Xingmin Cui, Jingxuan Wang, Lucas Chi Kwong Hui, Zhongwei Xie, Tian Zeng,
and Siu-Ming Yiu. 2015. WeChecker: efficient and precise detection of privilege
escalation vulnerabilities in Android apps. In WiSec, New York, USA, 2015. ACM,
25:1–25:12.

[10] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick D. McDaniel, and Anmol Sheth. 2010. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smartphones. In OSDI,
Vancouver, Canada, 2010, Remzi H. Arpaci-Dusseau and Brad Chen (Eds.). USENIX
Association, 393–407.

[11] Yu Feng, Isil Dillig, Saswat Anand, and Alex Aiken. 2014. Apposcopy: automated
detection of Android malware (invited talk). In DeMobile, Hong Kong, China, 2014,
Aharon Abadi, Rafael Prikladnicki, and Yael Dubinsky (Eds.). ACM, 13–14.

[12] Gartner. 2017. Gartner Says Worldwide Sales of Smartphones Grew 9 Percent in
First Quarter of 2017. https://www.gartner.com/newsroom/id/3725117.

[13] Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen
Nguyen, and Martin C. Rinard. 2015. Information Flow Analysis of Android
Applications in DroidSafe. In NDSS, San Diego, USA, 2015. The Internet Society.

[14] Wei Huang, Yao Dong, Ana Milanova, and Julian Dolby. 2015. Scalable and
precise taint analysis for Android. In ISSTA, Baltimore, USA, 2015, Michal Young
and Tao Xie (Eds.). ACM, 106–117.

[15] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. 2014.
Android taint flow analysis for app sets. In SOAP, Edinburgh, UK, 2014, Steven
Arzt and Raúl A. Santelices (Eds.). ACM, 5:1–5:6.

[16] Patrick Lam, Eric Bodden, Ondřej Lhoták, and Laurie Hendren. 2011. The Soot
framework for Java program analysis: a retrospective. In Cetus Users and Compiler
Infrastructure Workshop (CETUS). http://www.bodden.de/pubs/lblh11soot.pdf

[17] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick D.
McDaniel. 2015. IccTA: Detecting Inter-Component Privacy Leaks in Android
Apps. In ICSE, Florence, Italy, 2015, Antonia Bertolino, Gerardo Canfora, and

Sebastian G. Elbaum (Eds.). IEEE Computer Society, 280–291.
[18] Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre

Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon. 2017. Static analysis of
android apps: A systematic literature review. Information & Software Technology
88 (2017), 67–95.

[19] Adam P Fuchs, Avik Chaudhuri, and Jeffrey S Foster. 2009. SCanDroid: Automated
security certification of Android applications. Technical report, University of
Maryland (2009).

[20] Felix Pauck. 2017. Cooperative static analysis of Android applications. Master’s
thesis. Paderborn University, Germany.

[21] Lina Qiu, Yingying Wang, and Julia Rubin. 2018. Analyzing the Analyzers:
FlowDroid/IccTA, AmanDroid, and DroidSafe. In ISSTA, Amsterdam, Netherlands,
2018.

[22] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. 2014. A Machine-learning
Approach for Classifying and Categorizing Android Sources and Sinks. In NDSS,
San Diego, USA, 2014. The Internet Society.

[23] Bradley Reaves, Jasmine Bowers, Sigmund Albert Gorski III, Olabode Anise, Rahul
Bobhate, Raymond Cho, Hiranava Das, Sharique Hussain, Hamza Karachiwala,
Nolen Scaife, ByronWright, Kevin R. B. Butler, William Enck, and Patrick Traynor.
2016. *droid: Assessment and Evaluation of Android Application Analysis Tools.
ACM Comput. Surv. 49, 3 (2016), 55:1–55:30.

[24] Henry Gordon Rice. 1953. Classes of recursively enumerable sets and their
decision problems. Trans. Amer. Math. Soc. 74, 2 (1953), 358–366.

[25] Alireza Sadeghi, Hamid Bagheri, Joshua Garcia, and Sam Malek. 2017. A Taxon-
omy and Qualitative Comparison of Program Analysis Techniques for Security
Assessment of Android Software. IEEE Trans. Software Eng. 43, 6 (2017), 492–530.

[26] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick your con-
texts well: understanding object-sensitivity. In POPL, Austin, USA, 2011, Thomas
Ball and Mooly Sagiv (Eds.). ACM, 17–30.

[27] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam,
and Vijay Sundaresan. 1999. Soot - a Java bytecode optimization framework. In
CASCON, 1999, Mississauga, Canada, Stephen A. MacKay and J. Howard Johnson
(Eds.). IBM, 13.

[28] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2014. Amandroid: A
Precise and General Inter-component Data FlowAnalysis Framework for Security
Vetting of Android Apps. In SIGSAC, Scottsdale, USA, 2014, Gail-Joon Ahn, Moti
Yung, and Ninghui Li (Eds.). ACM, 1329–1341.

[29] Daojuan Zhang, Rui Wang, Zimin Lin, Dianjie Guo, and Xiaochun Cao. 2016.
IacDroid: Preventing Inter-App Communication capability leaks in Android. In
ISCC, Messina, Italy, 2016. IEEE Computer Society, 443–449.

[30] 2017. Amandroid. Retrieved 03/08/2018 from https://bintray.com/arguslab/
maven/argus-saf/3.1.2

[31] 2017. ApkTool. Retrieved 03/08/2018 from https://ibotpeaches.github.io/Apktool/
[32] 2018. AQL-System. Retrieved 08/12/2018 from https://FoelliX.github.io/

AQL-System
[33] 2018. BREW. Retrieved 08/12/2018 from https://FoelliX.github.io/BREW
[34] 2017. DIALDroid. Retrieved 03/08/2018 from https://github.com/

dialdroid-android/DIALDroid
[35] 2015. DidFail. Retrieved 03/08/2018 from https://www.cert.org/secure-coding/

tools/didfail.cfm
[36] 2016. DroidSafe. Retrieved 03/08/2018 from https://mit-pac.github.io/

droidsafe-src/
[37] 2017. FlowDroid. Retrieved 03/08/2018 from https://github.com/

secure-software-engineering/soot-infoflow-android/wiki
[38] 2016. IccTA. Retrieved 03/08/2018 from https://sites.google.com/site/

icctawebpage/source-and-usage
[39] 2017. jadx. Retrieved 03/08/2018 from https://github.com/skylot/jadx
[40] 2018. ReproDroid. Retrieved 08/12/2018 from https://FoelliX.github.io/

ReproDroid

https://www.gartner.com/newsroom/id/3725117
http://www.bodden.de/pubs/lblh11soot.pdf
https://bintray.com/arguslab/maven/argus-saf/3.1.2
https://bintray.com/arguslab/maven/argus-saf/3.1.2
https://ibotpeaches.github.io/Apktool/
https://FoelliX.github.io/AQL-System
https://FoelliX.github.io/AQL-System
https://FoelliX.github.io/BREW
https://github.com/dialdroid-android/DIALDroid
https://github.com/dialdroid-android/DIALDroid
https://www.cert.org/secure-coding/tools/didfail.cfm
https://www.cert.org/secure-coding/tools/didfail.cfm
https://mit-pac.github.io/droidsafe-src/
https://mit-pac.github.io/droidsafe-src/
https://github.com/secure-software-engineering/soot-infoflow-android/wiki
https://github.com/secure-software-engineering/soot-infoflow-android/wiki
https://sites.google.com/site/icctawebpage/source-and-usage
https://sites.google.com/site/icctawebpage/source-and-usage
https://github.com/skylot/jadx
https://FoelliX.github.io/ReproDroid
https://FoelliX.github.io/ReproDroid

	Abstract
	1 Introduction
	2 Background
	2.1 Taint Analysis
	2.2 Benchmarks

	3 Approach
	3.1 App Analysis Language
	3.2 Query Execution System
	3.3 Benchmark Refinement and Execution
	3.4 The ReproDroid Toolchain

	4 Experimental setup
	4.1 Tool Selection
	4.2 Benchmarks
	4.3 Research Questions and Experiments
	4.4 Execution Environment

	5 Experimental results
	5.1 RQ1: Do Android app analysis tools keep their promises?
	5.2 RQ2: How do the tools compare to each other with respect to accuracy?
	5.3 RQ3: Which tools support large-scale analyses of real-world apps?
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

