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ABSTRACT

Alloy is a declarative modeling language that supports �rst-order

logic with transitive closure. Alloy has been used in a variety of

domains to model software systems and �nd design de�ciencies.

However, it is often challenging to make an Alloy model correct

or to debug a faulty Alloy model. ASketch is a sketching/synthe-

sis technique that can help users write correct Alloy models. AS-

ketch allows users to provide a partial Alloy model with holes, a

generator that speci�es candidate fragments to be considered for

each hole, and a set of tests that capture the desired model proper-

ties. Then, the tool completes the holes such that all tests for the

completed model pass. ASketch uses tests written for the recently

introduced AUnit framework, which provides a foundation of test-

ing (unit tests, test execution, and model coverage) for Alloy mod-

els in the spirit of traditional unit testing. This paper describes our

Java implementation of ASketch, which is a command-line tool,

released as an open-source project on GitHub. Our experimental

results show that ASketch can handle partial Alloy models with

multiple holes and a large search space. The demo video for AS-

ketch can be found at https://youtu.be/T5NIVsV329E.
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1 INTRODUCTION

Software modeling languages, which can be used to describe key

attributes of software systems, play an important role in helping

engineers build reliable systems. Many modeling languages have
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been proposed over the last few decades [1, 2, 8]. Alloy is a well-

known modeling languages which comes with an automatic SAT-

based analyzer [13] that performs analysis using a bounded scope

on the universe of discourse. Over the past few years, many Alloy

extensions have been developed [3, 4, 14, 17].

The Alloy analyzer helps users validate their models using au-

tomated analysis. Typically, Alloy users apply the following vali-

dation approaches, which are supported by the standard Alloy an-

alyzer: (1) solving constraints expressed in the model and check-

ing if expected Alloy instances, are present while unexpected in-

stances are absent; (2) writing related formulas and validating if the

expected properties among them hold, e.g., implication or equiva-

lence; and (3) using a SAT solver’s unsat core feature to highlight

parts of the model that make the formulas unsatis�able.

A few recent projects adapt the notion of traditional testing

from imperative programs to declarative models in Alloy. The AU-

nitframework [9, 12] introduces for Alloy the basic testing founda-

tions, i.e., unit testing, test execution, and model coverage. Follow-

up work onMuAlloy [11, 15] introduces mutation testing for Alloy

and provides a technique for mutation-based test generation for

Alloy models. A more recent complementary project, called AS-

ketch [16, 18], introduces sketching [7] for partial Alloy models.

ASketch allows users to write high-level skeletal models, while the

tool synthesizes the low-level details.

This paper describes our Java implementation ofASketch, which

is a command-line tool that we released as an open-source project

(https://github.com/kaiyuanw/ASketch). ASketch takes as input a

partial Alloy model with holes, a generator that provides poten-

tial candidate fragments to be considered for each hole, and a set

of AUnit tests that capture the desired properties of the expected

model. ASketch encodes all inputs as a single meta-model in Alloy

and invokes the SAT solver to explore the search space. The output

is a complete Alloy model with holes replaced with concrete candi-

date fragments such that all tests pass. We evaluate ASketch using

10 Alloy models that were used in previous work [4, 10]. The ex-

perimental results show that ASketch is able to �nd a solution of a

partial Alloy model with multiple holes and a large search space in

a reasonable amount of time (up to 15 holes and more than 4.4e11

possible candidate solutions in 7 seconds).

2 AUNIT BACKGROUND

ASketch takes as one of its inputs AUnit tests and then completes

partial Alloy models with holes such that all provided AUnit tests

pass. We brie�y describe AUnit via an example; more details are

available elsewhere [9, 12]. Figure 1 shows an acyclic singly-linked

list model. The model declares a singleton set of one List atom
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one sig List { header: lone Node } sig Node { link: lone Node }

pred Acyclic() {

all n: Node | n in List.header.*link => n !in n.^link }

run Acyclic

Figure 1: Acyclic Singly-linked List

List0 Node0Node1
header link

Figure 2: Example List Instance

pred test {

some disj List0: List { some disj Node0, Node1: Node {

List = List0 and Node = Node0 + Node1

header = List0->Node1 and link = Node1->Node0

Acyclic[] } } }

run test

Figure 3: Example Test for List

and a set of Node atoms. Each List atom has zero or one header

nodes. Each Node atom has zero or one subsequent nodes along

the link. Both header and link are partial functions. The predicate

Acyclic states that the List is acyclic if the following holds: for

each Node n, if n is reachable from the List's header following zero

ormore traversals along the link, then n is not reachable from itself

following one or more traversals along the link.

If we run the Acyclic predicate using Alloy analyzer, we can get

an example instance shown in Figure 2. The instance contains a sin-

gle List atom (List0) and two Node atoms (Node0 and Node1). List0's

header is Node1, and Node1's next node is Node0. List0 satis�es the

Acyclic predicate because there is no cycle in the list.

An AUnit test is a pair of a model valuation and a run com-

mand. For example, the instance in Figure 2 can be written as an

AUnit test shown in Figure 3. The test declares a single List atom

(List0) and 2 disjoint Node atoms (Node0 and Node1). It restricts the

entire List set to be {List0} and Node set to be {Node0, Node1}. The

test predicate also states that the header maps List0 to Node1, and

the link maps Node1 to Node0. Since the valuation represents an

acyclic list, we expect the Acyclic predicate to be satis�ed. Thus,

we invoke Acyclic[] in the test predicate and expect the existence

of a solution to the run test command. In this case, running the

test predicate results in an isomorphic Alloy instance similar to

the one shown in Figure 2. If a valuation is not expected, then we

can invoke the negation of the corresponding predicate in the test

predicate itself. For example, if a list is cyclic, then we can invoke

!Acyclic[] in the test. ASketch assumes that all tests should pass,

i.e., all test predicates should be satis�ed.

3 TECHNIQUE

ASketch has two main components:

• Input Interpreter : Parse the model with holes and interpret the

generator to create candidate fragments.

• Output Synthesizer : Encode the model with holes, the candidate

fragments and the AUnit tests into a meta-model and invoke

SAT solver to search for solutions.

The quality of the solutions depends on both the generator and

the test suite. If the generator provides fragments that are seman-

tically equivalent to the desired candidate fragments, and the test

suite captures the properties of the desired model, then ASketch is

more likely to generate the desired solution in a few iterations. In

practice, there could be multiple solutions that make all the tests

pass. ASketch can iteratively provide these solutions if the user

wants to inspect them.

Hole Kind Notation Candidates

Binary Operator \BO\ &, +, -

Compare Operator \CO\ =, in, !=, !in

Logical Operator \LO\ | |, &&, <=>, =>

Quanti�er \Q\ all, no, some, lone, one

Unary Operator \UO\ no, some, lone, one

Unary Operator Expression \UOE\ ~, *, ^

Unary Operator Formula \UOF\ !, ϵ

Expression \E\ any expression

Figure 4: Supported Holes

We �rst illustrate the input language, speci�cally the supported

hole kinds and the generator grammar. Then, we describe through

an example how the synthesizer translates the sketching problem

into a constraint-solving problem.

3.1 Input Language
3.1.1 Hole Kinds. Figure 4 shows the kind, notation, and candi-

date fragments for all holes supported by ASketch. For example,

users can use a quanti�er hole \Q,id\, where Q indicates that it is

the quanti�er hole kind, and id is an identi�er that refers to a gen-

erator which provides the candidate fragments for the hole via a

regular expression (regex). The default regex for a quanti�er hole

is ("all"|"no"|"some"|"lone"|"one"). Another example is the expression

hole, \E,id\, which can be completed with any expression syntacti-

cally valid in the context of the hole. Note that the regex for unary

operator formula hole is either negation (!) or an empty string (ϵ).

3.1.2 Generator Grammar. Users can provide a generator for a

hole using regexes with the following grammar:

regExDecl ::= id ":=" "{|" regex "|}"

regex ::= nonSpecial | regex "?" | "(" regex ")"

| regex regex | regex "|" regex

For regExDecl, id introduces an identi�er to be referred from a

hole (e.g., \Q,id\), and e is a regex. We follow the design choice

of the Sketch framework [7] that includes three regex operators—

option (e?), concatenation (e1 e2), and choice (e1 | e2)—as well

as parentheses for precedence. nonSpecial can be any string that

contains characters supported by the Alloy grammar except for "(",

")", and "|" which need to be escaped as "\(", "\)", and "\|", respec-

tively. We use ANTLR4 [5] to generate the parser with the gener-

ator grammar and implement a backtracking algorithm to decode

the regex into all possible candidate fragments.

3.2 Synthesizer

ASketch converts the sketching problem into a constraint-solving

problem in the Alloy language itself, which is then solved by the

Alloy analyzer. Speci�cally, ASketch generates a single Alloymeta-

model that encodes all possible solutions, i.e., candidate models ob-

tained from all possible combinations of all candidate fragments

for all holes.

For example, consider an Alloy user who wants to model the

Acyclic property (shown in Figure 1) and comes up with the fol-

lowing skeleton for the predicate:

?? n: Node | n in List.header.*link => n !in ??

The user is not sure what quanti�er (�rst "??") and what expres-

sion (second "??") to use in the skeleton but knows roughly what

to search for each hole and also which instances are desired and
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which are undesired. The user can provide the following partial

Alloy model, a generator and a set of tests to ASketch:

// Model with holes

one sig List { header: lone Node } sig Node { link: lone Node }

pred Acyclic() {

\Q,q\ n: Node | n in List.header.*link => n !in \E,e\ }

run Acyclic

// Generator

q := {| all|some|no |}

e := {| (List.header|Node|n)(.(*|^)?link)? |}

// AUnit tests that capture desired model properties

pred test {...}

The generator states that the quanti�er hole should take a value

from ["all", "some", "no"], and the expression hole should take a

value from ["List.header", "List.header.link", "List.header.^link",

"List.header.*link", "Node", "Node.link", "Node.^link", "Node.*link",

"n", "n.link", "n.^link", "n.*link"]. The user also provides AUnit

tests similar to the example in Figure 3 to represent both desired

and undesired valuations for acyclic lists.

ASketch automatically creates an Alloy meta-model shown in

Figure 5. The �eld declarations are removed from the generated

meta-model (line 1). Instead, ASketch parameterizes the Acyclic

predicate with one new parameter per signature and one new pa-

rameter per �eld (lines 2-3).

The quanti�er hole is replaced with a predicate call (line 4) q,

which is declared to encode all possible quanti�ers that can ap-

pear in the quanti�er hole (lines 7-14). The �rst parameter of the

predicate q (h in line 7) represents the value chosen for the hole.

Lines 5-6 encode the potential candidate quanti�ers as signatures

and RQ is one of Q_All, Q_Some, or Q_No. The rest of the parame-

ters in q are exactly the same as the parameters in the Acyclic

predicate. The body of the predicate q states how the parameter

h determines the value of the quali�er hole: if h is Q_All, then the

quanti�er hole is "all" (lines 9-10), and similarly for "some" (lines

11-12) and "no" (lines 13-14). Any reference to a declared signature

or �eld is replaced by the corresponding parameter in predicate q,

e.g., "List.header.*link" is replaced with "Lists.header.*link".

The expression hole is replaced with a function call (lines 10,

12, and 14) expr, which is declared to encode all possible expres-

sions that can appear in the expression hole (lines 18-28). Similar

to the predicate q, the �rst parameter of function expr (h in line

18) represents the value chosen for the hole. Lines 15-17 encode

the candidate expressions as signatures (E0 to E11) and RE is equal

to one of them. Note that the expression hole is in the scope of

variable n, so the function expr also has a parameter for it (line

19). Because all user speci�ed candidate expressions are of arity 1,

the return type of expr also has an arity of 1 (univ in line 19). The

body of the function expr states how the parameter h determines

the value of the expression hole: if h is E0, then the expression is

"Lists.header" (line 20), which maps back to "List.header" in the

original model, and the expression encoding is similar for the other

candidate expressions.

The AUnit test from Figure 3 is translated to a fact (lines 30-34),

where the signatures and �elds are represented by fresh variables

introduced by the let expressions. The Acyclic predicate is also

invoked with the corresponding fresh variables.

The entire meta-model uses Alloy facts to require that all AUnit

tests must be satis�ed. If we invoke the empty run command (line

29), then the Alloy analyzer returns a solution that assigns Q_All

1. one sig List {} sig Node {}

2. pred Acyclic(Lists: List, header: List->Node,

3. Nodes: Node, link: Node->Node) {

4. q[RQ, Lists, header, Nodes, link] }

5. one sig RQ in Q {} abstract sig Q {}

6. one sig Q_All, Q_Some, Q_No extends Q {}

7. pred q(h: Q, Lists: List, header: List->Node,

8. Nodes: Node, link: Node->Node) {

9. h = Q_All => all n: Nodes | n in Lists.header.*link

10. => n !in expr[RE, Lists, header, Nodes, link, n]

11. h = Q_Some => some n: Nodes | n in Lists.header.*link

12. => n !in expr[RE, Lists, header, Nodes, link, n]

13. h = Q_No => no n: Nodes | n in Lists.header.*link

14. => n !in expr[RE, Lists, header, Nodes, link, n] }

15. one sig RE in E {} abstract sig E {}

16. one sig E0, E1, E2, E3, E4, E5, E6,

17. E7, E8, E9, E10, E11 extends E {}

18. fun expr(h: E, Lists: List, header: List->Node,

19. Nodes: Node, link: Node->Node, n: Node): univ {

20. (h = E0 => Lists.header else

21. (h = E1 => Lists.header.link else

22. (h = E2 => Lists.header.^link else

23. (h = E3 => Lists.header.*link else (h = E4 => Nodes else

24. (h = E5 => Nodes.link else (h = E6 => Nodes.^link else

25. (h = E7 => Nodes.*link else (h = E8 => n else

26. (h = E9 => n.link else (h = E10 => n.^link else

27. (h = E11 => n.*link else none))))))))))))

28. }

29. Sketch: run {}

30. fact test {

31. some disj List0: List { some disj Node0, Node1: Node {

32. let Lists = List0 { let header = List0->Node1 {

33. let Nodes = Node0 + Node1 { let link = Node1->Node0 {

34. Acyclic[Lists, header, Nodes, link] }}}}}}}

35. // More tests...
Figure 5: Meta-Model for List

to RQ and E10 to RE, which indicates that the quanti�er hole and the

expression hole in the original partial model should be replaced by

"all" and "n.^link", respectively.

4 USAGE

In this section, we describe how users can invoke ASketch. More

details can be found on the ASketch GitHub homepage.

To sketch a partial Alloy model, run "./asketch.sh --run -m

<arg> -f <arg> -t <arg> [-s <arg>] [-n <arg>]" or "./asketch.sh

--run --model-path <arg> --fragment-path <arg> --test-path

<arg> [--scope <arg>] [--sol-num <arg>]". The options are:

• "-m,--model-path": This argument is required. Pass the �le name

of the partial Alloy model to be sketched.

• "-f,--fragment-path": This argument is required. Pass the gen-

erator which provides the candidate fragments to be considered

for each hole.

• "-t,--test-path": This argument is required. Pass the test suite

which contains AUnit tests that capture the desired properties

of the expected model.

• "-s,--scope": This argument is optional. Pass theAlloy scope for

solving the generated Alloy meta-model. The scope is typically

larger than or equal to the minimum scope necessary to make

all AUnit tests satis�ed. If the argument is not speci�ed, the

default value of 3 is used.

• "-n,--sol-num": This argument is optional. Pass the number of

unique solutions that ASketch should report. If the argument is

not speci�ed, the default value of 1 is used.

For each run, the ASketch tool reports: (1) the candidate frag-

ments for each hole after expanding the corresponding regular ex-

pression; (2) the order, the associated identi�er, the kind, and the
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model #hole space #test scp #prim #cls Tsol
arr 3 220 5 3 49 1873 96

bt 6 3.7e4 20 3 251 3.9e4 554

cd 10 1.5e7 17 3 186 2.1e4 550

contains 3 80 16 3 275 1.2e4 148

ctree 15 4.4e11 31 3 531 9.8e4 6473

deadlock 6 4800 16 3 371 4.2e4 1083

dll 13 1.2e7 27 3 297 2.7e4 324

grade 10 1.2e7 17 4 116 4076 114

remove 4 2.1e4 20 3 377 4.9e4 1197

sll 5 3072 16 3 162 2e4 609

Figure 6: ASketch Model Stats (time in milliseconds)

candidate space size for each hole; (3) the size of the entire search

space computed by multiplying the sizes of individual fragments

across all holes; and (4) a set of solutions, if any, as well as the solv-

ing time for each solution. Furthermore, ASketch stores the gen-

erated Alloy meta-model in a hidden directory ("${project_dir}/

.hidden/solve.als").

5 EVALUATION

We describe the experiments and results for evaluating ASketch.

We ran ASketch on a MacBook Pro with a 2.5GHz Intel Core i7-

4870HQ. Figure 6 lists the 10 partial Alloy models involved in the

experiment and the corresponding stats from ASketch. model is

the model names: arr models arrays; bt models binary trees; cd

models Java class hierarchy; contains checks whether a list con-

tains an element; ctreemodels two colored undirected trees; dead-

lockmodels process deadlocks;dllmodels doubly-linked lists; gra-

demodels teaching assistants grading assignments; remove mod-

els removing an element from a list; and sll models singly-linked

lists. All models are from previous work [6, 15, 18].

We make these models partial by replacing fragments with vari-

ous hole kinds. For expression holes, we use candidate expressions

of di�erent arities (e.g., arity 1 and 2) and types (e.g., signature

types and theAlloy integer type). #hole shows the number of holes

for each partial model. space shows the size of the search space,

i.e., the number of combinations of candidate fragments across all

holes. #test shows the number of AUnit tests provided to complete

each partial model. scp shows the scope used to search for solu-

tions. #prim and #cls show the number of primary variables and

clauses for running the generatedmeta-model, whichmeasures the

complexity of the sketching problem. Tsol shows the time (in mil-

liseconds) taken to �nd the �rst solution that satis�es all tests.

The number of holes of our evaluation models ranges from 3 to

15. The search space ranges from 80 to 4.4e11.We use the same test

suite that comes with each model in the previous work and delete

irrelevant tests that do not invoke the predicates we want to sketch.

The number of primary variables for the generated meta-models

ranges from 49 to 531. The number of clauses for the meta-models

ranges from 1873 to 9.8e4. The solving time to �nd the �rst solution

ranges from 96ms to 6473ms.

The size of the search space depends on the number of holes and

the generators for the holes. If a partial model has a large number

of holes, and the generator for each hole provides a large number

of candidate fragments, then the sketching problem has a large

search space. Typically, a more complex meta-model makes con-

straint solving slower. For example, ctree has the largest number

of primary variables and clauses among all generated meta-models,

and it takes more than 6 seconds to �nd the �rst solution. In con-

trast, arr has the smallest number of primary variables and clauses,

and it takes the least amount of time to �nd the �rst solution. How-

ever, the increasing size of the search space does not necessarily

imply increasing number of primary variables and clauses in the

generated meta-model. For example, grade has a search space of

size 1.2e7 and deadlock has a search space of size 4800, but the gen-

erated meta-model for deadlock is more complicated than that for

grade. Overall, these results show that ASketch is able to handle

partial models with multiple holes (up to 15) and a large search

space (more than 400 billion).

6 CONCLUSION

This paper introduced the open-source ASketch tool for sketch-

ing partial Alloy models with holes. ASketch provides command-

line options to automatically translate the sketching problem into

a constraint solving problem and then search for solutions. Given a

partial Alloy model with holes, a generator, and a set of AUnit tests

that capture the desire properties of the model, ASketch is able to

report a set of solutions such that all AUnit tests pass. Our eval-

uation shows that ASketch is able to handle partial Alloy models

with multiple holes and a large search space.
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