

Delft University of Technology

PyDriller
Python Framework for Mining Software Repositories
Spadini, Davide; Aniche, Maurício; Bacchelli, Alberto

DOI
10.1145/3236024.3264598
Publication date
2018
Document Version
Accepted author manuscript
Published in
ESEC/FSE 2018

Citation (APA)
Spadini, D., Aniche, M., & Bacchelli, A. (2018). PyDriller: Python Framework for Mining Software
Repositories. In ESEC/FSE 2018: Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering (pp. 908-911).
Association for Computing Machinery (ACM). https://doi.org/10.1145/3236024.3264598
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/3236024.3264598

PyDriller: Python Framework for Mining Software Repositories
Davide Spadini

Delft University of Technology
Software Improvement Group

Delft, The Netherlands
d.spadini@sig.eu

Maurício Aniche
Delft University of Technology

Delft, The Netherlands
m.f.aniche@tudelft.nl

Alberto Bacchelli
University of Zurich
Zurich, Switzerland
bacchelli@ifi.uzh.ch

ABSTRACT

Software repositories contain historical and valuable information
about the overall development of software systems.Mining software
repositories (MSR) is nowadays considered one of the most inter-
esting growing fields within software engineering. MSR focuses
on extracting and analyzing data available in software repositories
to uncover interesting, useful, and actionable information about
the system. Even though MSR plays an important role in software
engineering research, few tools have been created and made public
to support developers in extracting information from Git reposi-
tory. In this paper, we present Pydriller, a Python Framework that
eases the process of mining Git. We compare our tool against the
state-of-the-art Python Framework GitPython, demonstrating that
Pydriller can achieve the same results with, on average, 50% less
LOC and significantly lower complexity.

URL: https://github.com/ishepard/pydriller,
Materials: https://doi.org/10.5281/zenodo.1327363,
Pre-print: https://doi.org/10.5281/zenodo.1327411

CCS CONCEPTS

• Software and its engineering;

KEYWORDS

Mining Software Repositories, GitPython, Git, Python

ACM Reference Format:

Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. PyDriller:
Python Framework for Mining Software Repositories. In Proceedings of the
26th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’18), November 4–
9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3236024.3264598

1 INTRODUCTION

Mining software repository (MSR) techniques allow researchers to
analyze the information generated throughout the software devel-
opment process, such as source code, version control systems meta-
data, and issue reports [5, 18, 22]. With such analysis, researches
can empirically investigate, understand, and uncover useful and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3264598

actionable insights for software engineering, such as understanding
the impact of code smells [13–15], exploring how developers are
doing code reviews [2, 4, 10, 21] and which testing practices they
follow [20], predicting classes that are more prone to change/de-
fects [3, 6, 16, 17], and identifying the core developers of a software
team to transfer knowledge [12].

Among the different sources of information researchers can use,
version control systems, such as Git, are among the most used ones.
Indeed, version control systems provide researchers with precise
information about the source code, its evolution, the developers of
the software, and the commit messages (which explain the reasons
for changing).

Nevertheless, extracting information from Git repositories is
not trivial. Indeed, many frameworks can be used to interact with
Git (depending on the preferred programming language), such as
GitPython [1] for Python, or JGit for Java [8]. However, these tools
are often difficult to use. One of the main reasons for such difficulty
is that they encapsulate all the features from Git, hence, developers
are forced to write long and complex implementations to extract
even simple data from a Git repository.

In this paper, we present Pydriller, a Python framework that
helps developers to mine software repositories. Pydriller provides
developers with simple APIs to extract information from a Git
repository, such as commits, developers, modifications, diffs, and
source code. Moreover, as Pydriller is a framework, developers
can further manipulate the extracted data and quickly export the
results to their preferred formats (e.g., CSV files and databases).

To evaluate the usefulness of our tool, we compare it with the
state-of-the-art Python framework GitPython, in terms of imple-
mentation complexity, performance, and memory consumption.
Our results show that Pydriller requires significantly fewer lines
of code to perform the same task when compared to GitPython,
with only a small drop in performance. Also, we asked six develop-
ers to perform tasks with both tools and found that all developers
spend less time in learning and implementing tasks in Pydriller.

2 PYDRILLER

Pydriller is a wrapper around GitPython that eases the extraction
of information from Git repositories. The most significant differ-
ence between the two tools is that GitPython offers many features
(almost all the features of Git), while PyDriller offers only features
that are important when performing MSR tasks, thus hiding the
underlying complexity to the end user. In this section, we explain
the design of Pydriller, as well as its main APIs.

https://github.com/ishepard/pydriller
https://doi.org/10.5281/zenodo.1327363
https://doi.org/10.5281/zenodo.1327411
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/3236024.3264598

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA D. Spadini et al.

2.1 Domain Object

Commit. It contains all the information regarding the commit:
the hash, the committer (name and email), the author (name and
email), the message, the authored and committed dates, a list of
its parents’ hashes (a merge commit has two parents), and the list
of modified files (see ‘Modification’ object below). Since loading
the entire object is expensive and time consuming (e.g., Pydriller
needs to retrieve and parse the diff of the commit), objects are lazy
loaded, i.e., are only computed when needed.
Modification. This object carries information regarding a file
changed in a commit. A modification object has the following fields:
Old path: old path of the file (can be None if the file is added).
New path: new path of the file (can be None if the file is deleted).
Change type: type: ‘Added’, ‘Deleted’, ‘Modified’, or ‘Renamed’.
Diff: diff of the file as Git presents it (starting with@@ xx,xx @@).
Source code: source of the file (can be None if the file is deleted).
Added: number of lines added.
Removed: number of lines removed.
Filename: The name of the file.

2.2 Architecture

RepositoryMining. This class is in charge of running the MSR
study. The only required parameter of this class is the path to the
Git repository to analyze. Based on the Git path, the framework
will return the list of commits in the repository.

Since MSR studies are highly customizable, to allow a researcher
to customize the study, we expose a set of APIs , making it possible
to set the dates in which Pydriller should start to analyze, as well
as filtering only specific commits. The complete list of filters is the
following:
Select starting point: since (after this date), from commit (after
this commit hash), and from tag (after this commit tag)

Select ending point: to (up to this date), to commit (up to this
commit hash), and to tag (up to this commit tag)

Select by commits: single (single hash of the commit), only in
branches (only consider certain branches), only in main branch
(only commits that belong to the main branch), only no merge
(only commits that are not merge commits), and only modifica-
tions with file types (only commits in which at least one modifi-
cation was done in that file type, e.g., by specifying ‘.java’, only
commits with at least one Java file was modified are visited.)
In the following, we present some examples of how metrics can

be customized and adapted to various MSR studies:

1 # Analyze single commit
2 RepositoryMining('path/to/the/repo',
3 single='6411 e3096dd2070438a17b225f4447 ')
4
5 # Since 8/10/2016
6 dt1 = datetime (2016, 10, 8)
7 RepositoryMining('path/to/the/repo', since=dt1)
8
9 # Between 2 dates
10 dt1 = datetime (2016, 10, 8, 17, 0, 0)
11 dt2 = datetime (2016, 10, 8, 17, 59, 0)
12 RepositoryMining('path/to/the/repo', since=dt1 , to=dt2)
13
14 # Between tags
15 first_tag = 'tag1'
16 last_tag = 'tag2'

17 RepositoryMining('path/to/the/repo', from_tag=first_tag ,
to_tag=last_tag)

18
19 # Only commits in main branch
20 RepositoryMining('path/to/the/repo', only_in_main_branch=

True)
21
22 # Only commits in main branch and no merges
23 RepositoryMining('path/to/the/repo', only_in_main_branch=

True , only_no_merge=True)
24
25 # Only commits that modified a java file
26 RepositoryMining('path/to/the/repo',

only_modifications_with_file_types =['.java'])

After the user configured the RepositoryMining class, thus spec-
ifying which commits to analyze, the user has only to call the
traverse_commit() function that will return the desired list of
commits. Internally, Pydriller obtains the list of all the commits,
filters out the unnecessary ones, converts the commits in a domain
object, and returns the list of resulting commits. This approach has
the advantage that all the complexity is hidden from users.

Furthermore, if users need more than just visiting commits, we
created a wrapper for the most common utilities of Git, for example
checkout, reset, log, show a single commit. We also built APIs to
help researchers in MSR studies, including:
Parse diff : The diff presented by Git is difficult to parse. With
this API, given a diff, it returns a dictionary with the added
and deleted lines. For both groups, the function returns a tuple,
corresponding to 1) line number in the file and 2) actual line.

Get commits that last modified lines: This function applies
SZZ [17]. Given a ‘Commit’ object as parameter, it returns the
set of commits that changed last the lines modified in the files
included in the commit. The algorithm works as follow (for every
file in the commit): 1) obtain the diff, 2) obtain the list of deleted
lines, and 3) blame the file and obtain the commits were those
lines were changed last.
To facilitate the data analysis, Pydriller gracefully handles

GitPython exceptions. For example, when retrieving the source code
of non-UTF-8 files (e.g., bytecodes), GitPython raises an exception,
while PyDriller returns an empty string. Hence, Pydriller reduces
the burden of handling several exceptions that a developer would
have to do otherwise.

3 EVALUATION

To evaluate our tool, we compare Pydriller against the state-of-
the-art Git framework for Python–GitPython. We select five dif-
ferent common MSR tasks that we encountered in our experience
as researchers in the MSR field, and implement them using both
frameworks. The tasks follow:
Task 1: Calculating complexity of the added lines for every com-

mit. For the sake of simplicity, we define complexity as the
number of if statements in the diff.

Task 2: Detecting bug inducing commits. We use SZZ [17] to re-
trieve the commits where the bug was introduced, as nor-
mally done in previous literature [14, 15, 20].

Task 3: Obtaining the list of commits that only modified Java files.
Task 4: Lines of code per source file over time.
Task 5: Day of the week developers fixed more bugs between two

releases.

PyDriller: Python Framework for Git ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 1: Comparison between Pydriller and GitPython.

PyDriller GitPython Total

Ex1

Time 00:14:59 00:13:25 +00:01:34
Max Memory (MB) 169 148 +21
LOC 21 54 -61%
Complexity 7 15 -53%

Ex2

Time 00:01:14 00:01:00 +00:00:14
Max Memory (MB) – – –
LOC 19 66 -71%
Complexity 5 6 Similar

Ex3

Time 00:01:24 00:01:14 +00:00:10
Max Memory (MB) 94 39 +55
LOC 10 18 -44%
Complexity 2 6 -67%

Ex4

Time 00:15:03 00:15:47 -00:00:44
Max Memory (MB) 162 132 +30
LOC 17 42 -60%
Complexity 6 15 -60%

Ex5

Time 00:00:02 00:00:03 Similar
Max Memory (MB) – – –
LOC 12 19 -37%
Complexity 3 4 Similar

We run the five tasks (implemented in both Pydriller and Git-
Python) on 50 OSS projects, 25 belonging to the Eclipse Foundation
and 25 to Apache. We selected the projects using GHTorrent [9],
taking the 25 most starred projects of the two organizations. For
the sake of simplicity, we only report the results of one project,
Apache Hadoop. The results of the other 49 projects can be found
in our on-line appendix [19].

We compare the tools under different metrics: lines of code (LOC)
and complexity (McCabe complexity [11]) of both implementations,
as well as their memory consumption, and execution time. Table 1
shows the results. For all the exercises, both in PyDriller and Git-
Python, the number of lines that are not a core functionality (for
example the constructor) is three. We keep this number as it is
always the same for all the exercises and for both tools.

Regarding execution time, Pydriller is generally slower than
GitPython. This decrease in speed is expected, given that Pydriller
is a wrapper built on top of the python framework. However, the
difference is small: In the most expensive tasks (Ex1 and Ex4), in
which the tools have to analyze the diff or source code of every
file in 20,000 commits, Pydriller is only 1:34 minutes slower in
the first case. In the other task, Pydriller is 44 seconds faster than
GitPython. Nevertheless, both tools take less than 16 minutes to
analyze the entire history of Apache Hadoop (avg. 22 commits per
second). As for memory consumption, the tools behave similarly:
In some cases, the used memory is less than 50MB. In the most
memory consuming task (number 1), the used memory was 169MB.

The large difference between both tools is in terms of LOC and
complexity of the implementation. For the former, we see that using
Pydriller results (on average) in writing 50% less lines of code
than using GitPython. The biggest difference is in the task 2, where
the tool had to retrieve the bug inducing commits using the SZZ

Table 2: Time spent by the participants of the experiment in

solving tasks 3 and 4 together.

Participant Time (minutes)
with Pydriller

Time (minutes)
with GitPython Total

P1 45 80 -44%
P2 23 45 -49%
P3 13 20 -35%
P4 19 26 -27%
P5 44 46 –
P6 17 30 -43%

algorithm: This problem was solved in 19 LOC using Pydriller,
while 66 LOC with GitPython (70% difference).

We also observe that the complexity of the code written for
Pydriller is significantly lower than for GitPyhon. Table 1 shows
that, on average, the code for Pydriller is 60% less complex. This
is especially the case in tasks that have to deal with retrieving
the diff or source code of the modified files; indeed, obtaining this
information in Pydriller is just 1 API call, while GitPython requires
many lines of code and exceptions handling.

4 EVALUATIONWITH DEVELOPERS

To further evaluate our tool, we invited six developers to perform
the same two tasks using both Pydriller and GitPython, and to
note the time they took to solve the problems, as well as their
personal opinions on both tools. All developers had experience in
developing with Python and on performing MSR studies, but they
had never used PyDriller nor GitPython before.

We asked the participants to solve tasks 3 and 4. We chose these
tasks because they are simpler than the first two (to keep the ex-
periment short) and do not require participants to have notions
on how to identify bug fixing commits (Ex5). The setting of the
experiment is the following:
• Participants should implement both tasks, first with Pydriller,
then with GitPython. Since understanding how to solve the tasks
does require some additional time, we asked the participants to
start with Pydriller. This choice clearly penalizes our tool, as
participants will have a better intuition about the tasks when
doing the task in GitPython. However, we believe that Pydriller
is simpler to use, and that the difference between the two tools
will still be significant.

• Participants should take notes about the time it takes them to
implement the tasks. We ask participants to also include the
time spent reading the documentation of the two tools, since
understanding how to use the tool is part of the experiment.

• After having implemented both tasks, we ask to the participants
to elaborate on the different advantages and disadvantages be-
tween both tools.
The result of the experiment is shown in Table 2. Five out of

six participants spent significantly less time to solve the problems
(27% less in the worst case, 49% less in the best case). P5, instead,
solved both problems in the same amount of time: the participant
did not know how to solve the second task and, since he started
with Pydriller, this translated in more time in the first part. When
he understood how to solve it, he moved to GitPython already
knowing the solution.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA D. Spadini et al.

All participants agreed that Pydriller was easier to use than Git-
Python [P1−6]. P6 said: "I thought PyDriller was a lot more intuitive
than using GitPython. GitPython works exactly like Git, so it isn’t
very well suited when trying to gain insights about the repository."

Similarly, P1 affirmed that, using Pydriller, he was able to
achieve the same result with simpler and shorter code, and that he
will continue to use Pydriller in his next MSR studies. P2 added
that GitPython is useful when one has to simulate Git commands in
Python, but it can be overcomplicated when the goal is to perform
MSR studies, for which Pydriller is more appropriate, because it
hides this complexity from its users.

5 RELATED TOOLS

In this section we compare PyDriller against two of the most recent
and used MSR tools.
Boa [7]: Boa is a domain-specific language and infrastructure that
eases MSR. The main difference between PyDriller and Boa is that,
while the former can be run on every project, Boa can only be
used on their snapshots of GitHub or SourceForge, which currently
are 3 and 6 years old. Furthermore, PyDriller is written in Python.
Hence, it has all the flexibility of a the programming language and
can be used together with other frameworks. Boa, on the other
hand, has its own DSL, and can not be used with other (external)
libraries. Furthermore, Boa currently includes only the history and
source code of Java projects, while Pydriller can be used to analyze
repositories of any programming language.
GHTorrent [9]: GHTorrent is a scalable, queriable, offlinemirror of
data present on GitHub. The main difference between PyDriller and
GHTorrent is that, while the former retrieves all the information
regarding a commit (e.g., what files changed, diffs, and source code),
the latter focuses on GitHub’s social data, such as pull requests,
issues, and users. However, GHTorrent does not offer the possibility
of navigating through the commits or analyzing the project’s source
code over time (which is a feature of Pydriller).

6 CONCLUSION

In this paper, we presented Pydriller, a Python framework that
helps developers on mining software repositories. We showed that
with Pydriller, developers can easily extract information from any
Git repository, such as commits, developers, modifications, diffs,
and source codes, since Pydriller releases simple APIs to help
researchers and practitioners performing MSR.

We evaluated Pydriller on 5 exercises, comparing it against
GitPython. The evaluation showed that using Pydriller results
in writing (on average) half the code, and 60% less complex. Fur-
thermore, we asked 6 developers to solve two exercises using our
tool, and they all agreed that Pydriller helped them in solving the
problems in less time with less code.

The first version of PyDriller has been released on 9th April
2018, and since then it has been downloaded approximatively 1,000
times per month (as computed through “Pypinfo” 1 and Google
BigQuery). We plan to keep improving Pydriller’s performance as
well as to perform more user studies with the goal of understanding
even better what MSR researchers require in their studies.
1https://github.com/ofek/pypinfo

ACKNOWLEDGMENTS

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No 642954. A. Bacchelli grate-
fully acknowledges the support of the Swiss National Science Foun-
dation through the SNF Project No. PP00P2_170529.

REFERENCES

[1] [n. d.]. GitPython. https://github.com/gitpython-developers/GitPython.
[2] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-

lenges of modern code review. In Proc. of the 35th International Conference on
Software Engineering. 712–721.

[3] Alberto Bacchelli, Marco D’Ambros, andMichele Lanza. 2010. Are popular classes
more defect prone?. In International Conference on Fundamental Approaches to
Software Engineering. Springer, 59–73.

[4] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. 2014. Mod-
ern code reviews in open-source projects: Which problems do they fix?. In Proc.
of the 11th working conference on mining software repositories. ACM, 202–211.

[5] K. K. Chaturvedi, V. B. Sing, and P. Singh. 2013. Tools in Mining Software
Repositories. In 2013 13th International Conference on Computational Science and
Its Applications. 89–98.

[6] Marco D’Ambros, Alberto Bacchelli, and Michele Lanza. 2010. On the Impact of
Design Flaws on Software Defects. In Proc. of the 10th International Conference
on Quality Software. 23–31.

[7] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2013.
Boa: A Language and Infrastructure for Analyzing Ultra-Large-Scale Software
Repositories. In Proc. of the 35th Int’l Conference on Software Engineering. 422–431.

[8] Eclipse Foundation. [n. d.]. JGit. https://www.eclipse.org/jgit/.
[9] Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Proc. of the

10th Working Conference on Mining Software Repositories. 233–236.
[10] Vincent J Hellendoorn, Premkumar T Devanbu, and Alberto Bacchelli. 2015. Will

they like this?: Evaluating code contributions with language models. In Proc. of
the 12thWorking Conference on Mining Software Repositories. IEEE Press, 157–167.

[11] T J McCabe. 1976. A Complexity Measure.
[12] Audris Mockus, Roy T Fielding, and James Herbsleb. 2000. A case study of open

source software development: the Apache server. In Proc. of the 22nd international
conference on Software engineering. Acm, 263–272.

[13] Steffen M. Olbrich, Daniela Cruzes, and Dag I. K. Sjøberg. 2010. Are all code
smells harmful? A study of God Classes and Brain Classes in the evolution of
three open source systems. In 26th IEEE International Conference on Software
Maintenance (ICSM 2010), September 12-18, 2010, Timisoara, Romania. 1–10.

[14] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Andrea De Lucia. 2014. Do They Really Smell Bad? A Study on Developers’
Perception of Bad Code Smells. In Proc. of the 30th International Conference on
Software Maintenance and Evolution. 101–110.

[15] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto, and Andrea
De Lucia. 2017. The Scent of a Smell: An Extensive Comparison between Textual
and Structural Smells. IEEE Transactions on Software Engineering (2017).

[16] Luca Pascarella, Fabio Palomba, and Alberto Bacchelli. 2018. Re-evaluating
Method-Level Bug Prediction. In Proc. of the 25th International Conference on
Software Analysis, Evolution, and Reengineering. 592–601.

[17] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do
changes induce fixes?. In Proc. of the 2nd International Workshop on Mining
Software Repositories.

[18] Francisco Zigmund Sokol, Mauricio Finavaro Aniche, and Marco Aurélio Gerosa.
2013. MetricMiner: Supporting researchers in mining software repositories. IEEE
13th International Working Conference on Source Code Analysis and Manipulation,
SCAM 2013 (2013), 142–146.

[19] Davide Spadini. 2017. PyDriller Dataset. https://doi.org/10.5281/zenodo.1327363
[20] Davide Spadini, Maurício Aniche, Margaret-Anne Storey, Magiel Bruntink, and

Alberto Bacchelli. 2018. When Testing Meets Code Review: Why and How
Developers Review Tests. In Proc. of the 40th International Conference on Software
Engineering. 677–687.

[21] Patanamon Thongtanunam, Shane Mcintosh, Ahmed E. Hassan, and Hajimu Iida.
[n. d.]. Review participation in modern code review - An empirical study of the
android, Qt, and OpenStack projects. Empirical Software Engineering (EMSE) 22,
2 ([n. d.]).

[22] Andy Zaidman, Bart Van Rompaey, Serge Demeyer, and Arie van Deursen. 2008.
Mining Software Repositories to Study Co-Evolution of Production & Test Code.
In 2008 International Conference on Software Testing, Verification, and Validation,
Vol. 3. IEEE, 220–229.

https://github.com/ofek/pypinfo
https://github.com/gitpython-developers/GitPython
https://www.eclipse.org/jgit/
https://doi.org/10.5281/zenodo.1327363

