
The University of Manchester Research

Towards Counterexample-guided k-Induction for Fast Bug
Detection
DOI:
10.1145/3236024.3264840

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Gadelha, M. Y. R., Monteiro, F. R., Cordeiro, L., & Nicole, D. A. (2018). Towards Counterexample-guided k-
Induction for Fast Bug Detection. In 25th ACM SIGSOFT International Symposium on the Foundations of Software
Engineering https://doi.org/10.1145/3236024.3264840

Published in:
25th ACM SIGSOFT International Symposium on the Foundations of Software Engineering

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:25. Apr. 2024

https://doi.org/10.1145/3236024.3264840
https://research.manchester.ac.uk/en/publications/b99b5793-0021-47e5-b588-598515b5f8d7
https://doi.org/10.1145/3236024.3264840

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Towards Counterexample-guided k-Induction
for Fast Bug Detection

Mikhail Y. R. Gadelha

University of Southampton

United Kingdom

myrg1g14@soton.ac.uk

Felipe R. Monteiro

Motorola Mobility, A Lenovo Company

Brazil

frsousa@motorola.com

Lucas C. Cordeiro

University of Manchester

United Kingdom

lucas.cordeiro@manchester.ac.uk

Denis A. Nicole

University of Southampton

United Kingdom

dan@ecs.soton.ac.uk

ABSTRACT
Recently, the k-induction algorithm has proven to be a successful

approach for both finding bugs and proving correctness. How-

ever, since the algorithm is an incremental approach, it might

waste resources trying to prove incorrect programs. In this pa-

per, we propose to extend the k-induction algorithm in order to

shorten the number of steps required to find a property violation.

We convert the algorithm into a meet-in-the-middle bidirectional

search algorithm, using the counterexample produced from over-

approximating the program. The preliminary results show that the

number of steps required to find a property violation is reduced

to ⌊ k
2
+ 1⌋ and the verification time for programs with large state

space is also reduced considerably.

CCS CONCEPTS
• Hardware → Bug detection, localization and diagnosis; • Soft-
ware and its engineering → Formal software verification; •
Theory of computation → Verification by model checking;

KEYWORDS
Bounded Model Checking; k-induction; Formal Software Verifica-

tion; Bug detection.

ACM Reference Format:
Mikhail Y. R. Gadelha, Felipe R. Monteiro, Lucas C. Cordeiro, and De-

nis A. Nicole. 2018. Towards Counterexample-guided k-Induction for Fast

Bug Detection. In Proceedings of The 26th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2018). ACM, New York, NY, USA, 5 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Embedded systems are used in a variety of applications, ranging

from nuclear plants and automotive systems to entertainment and

games [9]. This ubiquity drives a need to test and validate a system

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ESEC/FSE 2018, 4 − 9 Nov, 2018, Lake Buena Vista, Florida, USA
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

before releasing it to the market, in order to protect against system

failures. Even subtle system bugs can have drastic consequences,

such as the recent Heartbleed bug on OpenSSH, which might have

leaked private information from several servers [7].

One promising technique to verify embedded software is called

bounded model checking (BMC) [3]. The basic idea of BMC is to

check the negation of a property at a given depth: given a transition

system M , a property ϕ, and a bound k , BMC unrolls the system

k times and generates verification conditions (VC)ψ , such thatψ
is satisfiable iff ϕ has a counterexample of depth k or less. BMC

tools based on Boolean Satisfiability (SAT) or Satisfiability Module

Theories (SMT) have been applied on the verification of both se-

quential and parallel programs [5, 6, 14, 15]. However, BMC tools

are aimed to find bugs; they cannot prove correctness, unless the

bound k safely reaches all program states [8].

Despite the fact that BMC cannot prove correctness by itself

(unless it fully unwinds the program), there are algorithms that

use BMC as a “component” to prove correctness. In particular, the

k-induction algorithm is an incremental approach that aims to find

bugs and prove correctness using an ever increasing number of

unwindings. In this paper, we propose to extend the algorithm origi-

nally developed for k-induction to shorten the number of iterations

required to find a property violation. Our main original contribu-

tion is an extension to the k-induction algorithm, which converts

the algorithm into a meet-in-the-middle bidirectional search by

using the counterexample generated by the inductive step (c.f., Sec-
tion 3). In fact, the preliminary results show that the number of

steps required to find a property violation is reduced to ⌊ k
2
+ 1⌋ and

the verification time for programs with large state space is reduced

considerably (c.f., Section 4).

1 int main() {
2 uint32_t n;
3 uint64_t sn = 0;
4 for (uint64_t i = 1; i <= n; i++) {
5 sn = sn + 2;
6 assert(sn == i * 2);
7 }
8 assert(sn == n*2 || sn == 0);
9 }

Figure 1: ANSI-C program example with an upper-bound
limit up to 2

32 − 1.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ESEC/FSE 2018, 4 − 9 Nov, 2018, Lake Buena Vista, Florida, USA Gadelha et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 THE K-INDUCTION ALGORITHM
The first version of the k-induction algorithm was proposed by

Sheeran et al. [16]; they apply BMC to find bugs and prove cor-

rectness. BMC tools cannot prove correctness unless the bound

1 uint64_t i = 1;
2 if(i <= n) {
3 sn = sn + 2;




k copies4 assert(sn == i * 2);
5 i++;
6 }
7 // unwinding assertion
8 assert (!(i<=n));

Figure 2: Finite k unwindings done
by BMC.

k is appropriate to

reach the complete-

ness threshold (i.e., a

value that will fully

unroll all loops oc-

curring in the pro-

gram, often impracti-

cally large) [11]. For

instance, consider the

simple program shown

in Figure 1, the asser-

tion in line 8 always

holds, regardless of the initial value of n in line 2. BMC tools as

CBMC [5], ESBMC [6] or LLBMC [13] typically reproduce the loop

(lines 4 – 7 in Figure 1) as the code snippet in Figure 2 and are un-

able to verify that program unless the loop is fully unrolled, i.e., the
unwinding assertion if k < 2

32 − 1 in 32-bit and 64-bit architectures.

Consider thatT (si , si+1) is the transition relations form over the

state variables si and si+1, Φ is the set of safety properties, ϕ (s) ∈ Φ
is the formula encoding for states satisfying a safety property, and

ψ (s) is the formula encoding for states satisfying a completeness

threshold [12], which can be smaller than or equal to the maximum

number of loop-iterations occurring in the program. Based on such

formalization, the k-induction algorithm performs three checks

for each step k : the base case Bk (k), forward condition Fk (k) and
inductive step Ik (k), for k = [1,d], where d is the depth of the

transition systemm [8]. In the first check, the base case Bk (k) is the
standard BMC and it is satisfiable iff Bk (k) has a counterexample

of length k or less [2]:

Bk (k) = ∃s1 . . . sk .I (s1) ∧
k−1∧
i=1

T (si , si+1) ∧
k∨
i=1
¬ϕ (si). (1)

In the second check, the forward condition Fk (k) checks if the
completeness thresholdψ (s) holds for the current k . This is estab-
lished by checking if the following is unsatisfiable:

Fk (k) = ∃s1 . . . sk .I (s1) ∧
k−1∧
i=1

T (si , si+1) ∧
k∨
i=1
¬ψ (sk). (2)

No safety property ϕ (s) is checked in Fk (k) as they were already
checked for the current k in the base case. Finally, the inductive

step Ik (k), checks if whenever ϕ (s) holds in k states s1, . . . , sk , ϕ (s)
also holds for the next state sk+1. This is established by checking if

the following is unsatisfiable:

Ik (k) = ∃s1 . . . sk+1.
k∧
i=1

(ϕ (si) ∧T (si , si+1)) ∧ ¬ϕ (sk+1). (3)

Therefore, the k-induction algorithm at a given k is:

kind (P ,k) =




P has a bug, if ¬Bk (k),

P is correct, if Bk (k) ∧ [Fk (k) ∨ Ik (k)] ,

kind (P ,k + 1), otherwise.

(4)

It worth noticed in Eq. (4) that a bug is only reported in the

base case (i.e., Bk (k)) and if a violation is reported in the inductive

step (i.e., Ik (k)) the algorithm assumes the results is spurious, thus,

it calls itself recursively for the next iteration. The k-induction
algorithm is a complete and optimal search algorithm (i.e., always
find the shortest counterexample), with complexityO (bd) and state
space O (b+d+) [8]. Indeed, Jovanović et al. [10] prove that the k-
induction proof rule can be more powerful and concise than regular

induction.

3 COUNTEREXAMPLE-GUIDED
K-INDUCTION ALGORITHM

The k-induction algorithm is being applied to solve a number of

different verification problems, but it has its own limitations. The

biggest one is the fact that if a state ξ violates a property, the algo-

rithm requires k steps to find the counterexample. This is expensive

because of the three checks performed for each k . The inductive
step Ik (k) is the most computationally expensive one; it is an over-

approximation, forcing the SMT solver to find a set of assignments

in a larger state space than the original program [8]. Moreover,

the computation is wasted if a counterexample is found by the

inductive step, as it is assumed to be spurious (c.f. Section 2).

Consider a program P that contains a set of variables V =
{v1, . . . , vn }, where n is the number of variables in the program,

and its control-flow graph (CFG) that represents an state transition

system. In the CFG, an state si is a tuple ⟨pc , Vi ⟩, where pc is the
program counter and Vi = {v

i
1
, . . . , vin } are the values of all pro-

gram variables. A transition t is a guarded assignment ⟨[γ], x :=
e⟩, where γ is a predicate over the program variables and e is an

expression assigned to x.

Definition 1. Counterexample is a sequence of states π =
⟨si , . . . , ξ ⟩ of length k that represents a path from an initial state si
to an error state ξ .

In order to tackle the aforementioned problems in the k-induction
algorithm, we propose to use the counterexample generated by the

inductive step, to speed up the bug finding check (i.e., the base

case). Our extension aims to convert the k-induction algorithm

into a bidirectional search approach, by search simultaneously both

forward (i.e., from the initial state s1) and backward (i.e., from the

error state ξ detected in the inductive step Ik (k)) and stop if the

both searches meet in the middle as shown in Figure 3.

The base case Bk (k) is the forward part of the algorithm, since

it tries to find a counterexample πB = ⟨s1, . . . , ξ ⟩ that represents a
path from the initial state of the program P (i.e., s1) to an error state

ξ . The inductive step Ik (k) is the backward part of the algorithm;

it tries to find a counterexample πI = ⟨sd , . . . , ξ ⟩, from any depth

d in the CFG.

Lemma 1. The counterexample πI = ⟨sd , . . . , ξ ⟩ produced by the
inductive step Ik (k) is a path that leads to a property violation (i.e.,
an error state ξ); reaching any value in that path (i.e., sd , sd+1, . . . ,
ξ) will lead to this property violation.

Based on Lemma 1, if at least one state of πI (e.g., si) is reachable
from the initial state s1, then the error state ξ is reachable from the

initial state s1. Thus, given a counterexample πI = ⟨si , . . . , ξ ⟩ from

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Towards Counterexample-guided k-Induction for Fast Bug Detection ESEC/FSE 2018, 4 − 9 Nov, 2018, Lake Buena Vista, Florida, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

s1

s2 s3

s4 s5 s6

...

sn−9 sn−8 sn−7

sn−6 sn−5

sn−4 sn−3 sn−2 ξ

sn−1 sn

k = 1

k = 2

k = 3

k = d − 3

k = d − 2

k = d − 1

k = d

Bk (k)

Ik (k)

Figure 3: Visual representation of our proposed extension.
Each dashed section represents the states reachable after k
iterations. The arrows show the “direction” of the verifica-
tion by the base case Bk (k) and the inductive step Ik (k). The
forward condition Fk (k) is not shown in this representation
but it is a forward check, similar to Bk (k).

the inductive step, our extension selects the first state sd = ⟨pc , Vd ⟩
and translates it into a new safety property φ (si , sd):

φ (si , sd) =
n∧
i=1

vi
1
, vd

1
(5)

which checks if a given state si is the first state in the counterex-

ample. Given the optimal nature of the algorithm, this is sufficient

to find the property violation. Our algorithm then defines a new

base case step B′(k, sd):

∃s1 . . . sk .I (s1) ∧
k−1∧
i=1

T (si , si+1) ∧
k∨
i=1
¬ (ϕ (si) ∧ φ (si , sd)) . (6)

Thus, our proposed extension checks, in the base case Bk (k),
whether we can reach any value in path πI . Note that this will

only be applied to assertions inside a loop, as the inductive step

only overapproximates loop variables. The algorithm will still be

complete and optimal and, assuming that the error state is reachable

in k steps from the initial state, the solution will be found in ⌊ k
2
+1⌋,

because the forward and backward searches have to go only half

way. Note that this repurposes the goal of the inductive step, from

proving correctness to find paths that lead to error states ξ .

3.1 Running ExampleConsider our extended k-induction algorithm applied to the code

snippet shown in Figure 4a. It requires 6 iterations to reach the

assertion failure. This means that the base case Bk (k) will be called
6 times (i.e., k = [1 .. 6]), thus, the forward condition Fk (k) and the

inductive step Ik (k) will be called 5 times each (i.e., k = [1 ..5]). The

1 unsigned int a = 1;
2 while (1)
3 {
4 if(a == 6)
5 assert (0);
6 a++;
7 }

(a) Original program

1 unsigned int a = 1;
2 while (1)
3 {
4 if(a == 6)
5 assert (0);
6 a++;
7 // added assertion
8 assert(a != 5);
9 }

(b) Modified program

Figure 4: Code snippet example.

base case will produce for k = 6 the counterexample πB = ⟨s1 →
⟨1, a = 1⟩, s2 → ⟨2, a = 2⟩, s3 → ⟨3, a = 3⟩, s4 → ⟨4, a = 4⟩, s5 →
⟨5, a = 5⟩, s6 → ⟨6, a = 6⟩, ξ → ⟨7, assert(0)⟩⟩, which is a set of

assignments that leads to an assertion failure. Now, consider the

counterexample π 1I = ⟨s6 → ⟨6, a = 6⟩, ξ → ⟨7, assert(0)⟩⟩ gener-

ated by the inductive step for k = 1, or π 2I = ⟨s5 → ⟨5, a = 5⟩, s6 →
⟨6, a = 6⟩, ξ → ⟨7, assert(0)⟩⟩ for k = 2. For k = 1, the property

violation is reachable when a == 6, in that case, the inductive

step can be interpreted as the question “is there any path of size 1

that reaches an error state?”. Furthermore, each k incrementation

s1start

s2

s3

s4

s5

s6

ξ

a := 1

a := 2

a := 3

a := 4

a := 5

a := 6

Bk (k)

Ik (k)

Figure 5: Unrolled CFG
from code snippet in Fig-
ure 4a and the “direction”
of the verification for the
base case Bk (k) and the
inductive step Ik (k).

extends the set of assign-

ments back in the path to the

initial state, e.g., k = 2 can be

interpreted as the question “is

there any path of size 2 that

reaches an error state?”, and

so forth.

Figure 4b shows the mod-

ified program from Figure 4a,

based on the counterexam-

ple π 2I ; the program contains

one variable so our extension

only asserts one inequality.

Fork = 2, the first state reach-

able in the path to the error

state is a := 5, as previously

shown by the counterexam-

ple. For k = 3, the first reach-

able state is a := 4 and the

program will be changed ac-

cordingly during the verifica-

tion. Figure 5 shows the un-

rolled CFG and the “direction”

of the verification for the base

case and the inductive step,

the latter based on the coun-

terexample. Through that ap-

proach, every time that the in-

ductive step produces a coun-

terexample, our k-induction extension will collect the first state of

this counterexample and will add a new safety property in the CFG,

which will reduce the state space to be explored.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ESEC/FSE 2018, 4 − 9 Nov, 2018, Lake Buena Vista, Florida, USA Gadelha et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

4 EXPERIMENTAL EVALUATION
In order to evaluate our k-induction algorithm extension, we se-

lected a number of benchmarks from the International Competition

on Software Verification (SV-COMP) 2017 [1]. We compare the

results from the original k-induction and our extended version.

Currently, our extension is able to automatically identify the initial

state from the counterexample generated by the inductive step,

but it is unable to correctly generate and add the new verification

property φ (si , sd) required by B′(k, sd). As a result, the programs

evaluated by our extension were manually changed to add the ini-

tial state sd of the counterexample generated by the inductive step.

In order to establish a fair comparison, we also add that time to

obtain the initial state to our extended k-induction. Here, we do not
compare our extended k-induction to plain BMC since we are inter-

ested in checking the efficiency and efficacy of our new approach

over the existing ESBMC k-induction.
Benchmark description. The benchmarks called sum0* are

similar to the program in Figure 1, but contain a bug in different

depths. The benchmarks rangesum* check if a function is “determin-

istic” w.r.t. all possible permutations of an input array; the number

in the benchmark name represents the size of the array. The bench-

mark const_false checks if a constant holds after 1024 iterations

(but checks the wrong value after the iterations); diamond checks

if a counter that is being nondeterministically incremented is even

after 99 iterations; and Problem01_label15 is the representation of a

reactive system.

Experimental setup. All experiments were conducted on a

computer with an Intel Core i7-2600 running at 3.40GHz and 24GB

of RAM under Fedora 25 64-bit. We used ESBMC v4.6 [6] and no

time or memory limit were set for the verification tasks.

Availability of data & tools. Our experiments are based on a

set of publicly available benchmarks. All tools, benchmarks, and

results of our evaluation are available on a web page.
1

Benchmark k-induction Extended k-induction
LOC T (s) M (MB) k T (s) M (MB) k

sum04.c 19 1 38.7 9 1 38.7 5

sum01.c 18 1 38.9 11 1 38.8 6

sum03.c 25 3 39.1 11 1 38.8 6

diamond1.c 24 13 43.6 51 6 39.1 26

rangesum.c 64 7 66.2 4 1 39.0 2

rangesum05.c 59 11 72.3 6 1 65.4 3

rangesum10.c 59 28 78.2 11 16 47.5 6

Problem01_label15.c 594 7 87.3 5 5 70.3 4

rangesum20.c 59 101 99.9 21 26 78.2 12

rangesum40.c 59 847 269.5 41 90 113.9 22

const.c 20 2606 796.6 1025 890 253.2 513

rangesum60.c 59 80272 1106.9 61 159 134.6 32

Average 88 6991 228.1 104 99 79.8 53

Total 1059 83897 2737.2 1255 1197 957.5 638

Table 1: Preliminary evaluation over the SV-COMP 2017
benchmarks.

4.1 Preliminary Results
Table 1 shows the preliminary results obtained from the original k-
induction and our proposed extension. Here, LOC is the number of

lines in the program, T is the time needed to verify the program in

seconds,M is the memory used by the tools to verify the programs

1
http://esbmc.org/benchmarks/fse2018.zip

in megabytes
2
and k is the number of steps needed to find the bug.

The last lines show the average and cumulative numbers for each of

the columns. We order the benchmarks in relation to the memory

required by the original k-induction.
The first noticeable aspect of the results is that the time of the

verification is not related to the number of steps or the program

size. The closest relation between the verification time is the state

space explored by each step (more specifically the inductive step),

the bigger the state space, longer it will take to find a solution; this

can somehow be summarized by memory used by the tool during

the verification.

The evaluation for this set of benchmarks show that our exten-

sion to the k-induction algorithm potentially cuts the verification

time considerably in cases where the state space explored is large.

For small cases (e.g., the sum0*.c benchmarks), our extension does

not slow down or uses more memory than the original k-induction
and for large cases, the gains were substantial (e.g., the verification
time of rangesum60.c was 504x faster). In terms of the steps needed

to find the bug, the extended version of the k-induction required

⌊ k
2
+ 1⌋, as expected.

We also compare the results of the extended k-induction with

an incremental BMC approach and we observed that our extended

k-induction is as good as an incremental BMC, in most cases. The

extended k-induction is as fast as the incremental BMC for small

bounds (and it is even faster than the incremental BMC approach in

rangesum60.c), and it is not as slow as the original k-induction for

large bounds. Our proposed approach is somewhat in the middle

between the original k-induction and the incremental BMC, it is

able to prove correctness and find bugs consuming less resources

(i.e., time and memory) than the original k-induction but, when the

program is unsafe, it is slower than the incremental BMC.

5 RELATEDWORK
Bischoff et al. [4] propose a methodology to use BDDs and SAT

solvers for the verification of programs. The BDDs are responsi-

ble for the target enlargement, collecting the under-approximate

reachable state sets, followed by the SAT-based verification with

the newly computed sets. The authors implemented the technique

in the Intel BOolean VErifier (BOVE) and showed that the time

was up to five times smaller. Compared to this work, we only use

k-induction and SMT solvers; the inductive step in the k-induction
algorithm is responsible for enlarging the target and the SMT solver

checks for satisfiability.

Jovanović et al. [10] present a reformulation of IC3, separating

the reachability checking from the inductive reasoning. They fur-

ther replace the regular induction algorithm by the k-induction
algorithm and show that it provides more concise invariants. The

authors implemented the algorithm in the SALLY model checker

using Yices2 to do the forward search and MathSAT5 to do the

backward search. They showed that the new algorithm is able

to solve a number of real-world benchmarks, at least as fast as

other approaches. Compared to this work, our proposed extended

k-induction uses consequent BMC calls to find a solution. We also

implement our approach independent of solvers and it can be used

2
We used the command /usr/bin/time -v from linux to measure both the time and

the memory usage

4

http://esbmc.org/benchmarks/fse2018.zip

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Towards Counterexample-guided k-Induction for Fast Bug Detection ESEC/FSE 2018, 4 − 9 Nov, 2018, Lake Buena Vista, Florida, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

with any SMT solver supported by ESBMC; however, both searches

will be done with the same solver.

6 CONCLUSION
In this paper, our main contribution is a novel extension to the

k-induction algorithm, to perform a bidirectional search instead

of the conventional iterative deepening search. The extension is

currently under development using ESBMC. We plan to evaluate

the improvement over the SV-COMP benchmarks, where the origi-

nal k-induction algorithm already proved to be the state-of-art, if

compared to other k-induction tools [1]. The preliminary results

show that the extension has the potential to substantially improve

the verification time for problems with large state space, while

maintaining a small verification time for small programs. In one

particularly large program (in terms of state space), our extension

allowed the k-induction algorithm to find the property violation

on average using half of the steps and a fraction of the resources.

REFERENCES
[1] Dirk Beyer. 2017. Software Verification with Validation of Results (Report on

SV-COMP 2017). In TACAS (LNCS), Vol. 10206. 331–349.
[2] Armin Biere. 2009. Handbook of Satisfiability. Frontiers in Artificial Intelligence

and Applications, Vol. 185. IOS Press, Chapter 14, 455–481.

[3] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. 1999. Sym-

bolic Model Checking Without BDDs. In TACAS (LNCS), Vol. 1633. 193–207.
[4] Gabriel P. Bischoff, Karl S. Brace, G. Cabodi, and S. Nocco, S.and Quer. 2005.

Exploiting Target Enlargement and Dynamic Abstraction within Mixed BDD

and SAT Invariant Checking. Electronic Notes in Theoretical Computer Science
119, 2 (2005), 33–49.

[5] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking

ANSI-C Programs. In TACAS (LNCS), Vol. 2988. 168–176.
[6] Lucas C. Cordeiro, Bernd Fischer, and João Marques-Silva. 2012. SMT-Based

Bounded Model Checking for Embedded ANSI-C Software. IEEE Transactions on
Software Engineering 38, 4 (2012), 957–974.

[7] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman, Michael Bailey,

Frank Li, Nicolas Weaver, Johanna Amann, Jethro Beekman, Mathias Payer, and

Vern Paxson. 2014. The Matter of Heartbleed. In IMC. 475–488.
[8] Mikhail Y. R. Gadelha, Hussama I. Ismail, and Lucas C. Cordeiro. 2017. Handling

loops in bounded model checking of C programs via k-induction. STTT 19, 1

(2017), 97–114.

[9] Steve Heath. 2003. Embedded Systems Design. Newnes, Oxford, United Kingdom.

430 pages.

[10] Dejan Jovanović and Bruno Dutertre. 2016. Property-directed K-induction. In

FMCAD. 85–92.
[11] Daniel Kroening, Joël Ouaknine, Ofer Strichman, Thomas Wahl, and James Wor-

rell. 2011. Linear Completeness Thresholds for Bounded Model Checking. In

CAV (LNCS), Vol. 6806. 557–572.
[12] Daniel Kroening, Joël Ouaknine, Ofer Strichman, Thomas Wahl, and James Wor-

rell. 2011. Linear Completeness Thresholds for Bounded Model Checking. In

CAV (LNCS), Vol. 6806. 557–572. https://doi.org/10.1007/978-3-642-22110-1_44

[13] Florian Merz, Stephan Falke, and Carsten Sinz. 2012. LLBMC: Bounded Model

Checking of C and C++ Programs Using a Compiler IR. InVSTTE (LNCS), Vol. 7152.
146–161.

[14] Felipe R. Monteiro, Erickson H. da S. Alves, Isabela S. Silva, Hussama I. Ismail,

Lucas C. Cordeiro, and Eddie B. de Lima Filho. 2018. ESBMC-GPU A Context-

Bounded Model Checking Tool to Verify CUDA Programs. Science of Computer
Programming 152 (2018), 63 – 69.

[15] Shaz Qadeer and Jakob Rehof. 2005. Context-Bounded Model Checking of Con-

current Software. In TACAS (LNCS), Vol. 3440. 93–107.
[16] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. 2000. Checking Safety

Properties Using Induction and a SAT-Solver. In FMCAD. 108–125.

5

https://doi.org/10.1007/978-3-642-22110-1_44

	Abstract
	1 Introduction
	2 The k-induction Algorithm
	3 Counterexample-guided k-induction Algorithm
	3.1 Running Example

	4 Experimental Evaluation
	4.1 Preliminary Results

	5 Related Work
	6 Conclusion
	References

