
Improving Performance Models for Irregular Point-to-Point
Communication

Amanda Bienz
University of Illinois at
Urbana-Champaign
bienz2@illinois.edu

William D. Gropp
University of Illinois at
Urbana-Champaign
wgropp@illinois.edu

Luke N. Olson
University of Illinois at
Urbana-Champaign
lukeo@illinois.edu

ABSTRACT
Parallel applications are often unable to take full advantage of
emerging parallel architectures due to scaling limitations, which
arise due to inter-process communication. Performance models
are used to analyze the sources of communication costs. However,
traditional models for point-to-point communication fail to capture
the full cost of many irregular operations, such as sparse matrix
methods. In this paper, a node-aware based model is presented.
Furthermore, the model is extended to include communication
queue search time as well as an additional parameter estimating
network contention. The resulting model is applied to a variety of
irregular communication patterns throughout matrix operations,
displaying improved accuracy over traditional models.

KEYWORDS
MPI, performance modeling, point-to-point communication, queue
search, network contention

ACM Reference Format:
Amanda Bienz, William D. Gropp, and Luke N. Olson. 2018. Improving
Performance Models for Irregular Point-to-Point Communication. In 25th
European MPI Users’ Group Meeting (EuroMPI ’18), September 23–26, 2018,
Barcelona, Spain.ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3236367.3236368

1 INTRODUCTION
As parallel computers advance, improvements to hardware yield
potential for solving increasingly large and difficult problems. How-
ever, applications are often unable to take full advantage of state-
of-the-art architectures due to scaling limitations, which result
from inter-process communication costs. The cost associated with
communication depends on a large number of factors, and varies
across parallel systems, specific partitions, and application scale.
Therefore, performance models are used to analyze the sources of
communication costs among different architectures and network
partitions. Accurate performance models specify whether the cost
is due mainly to the number of messages communicated, number
of bytes transported, distance of transported bytes, or some other
factor.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroMPI ’18, September 23–26, 2018, Barcelona, Spain
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6492-8/18/09. . . $15.00
https://doi.org/10.1145/3236367.3236368

Traditional models estimate point-to-point communication as
a combination message latency and the cost of transporting bytes.
Irregular operations, such as sparse matrix methods, acquire costs
that are not captured by traditional models. Figure 1 displays the
measured and modeled communication costs acquired when per-
forming a sparse matrix-matrix (SpGEMM) multiply on the levels of
an algebraic multigrid (AMG) hierarchy for an unstructured linear
elasticity matrix. These timings, as well as the associated model

0 1 2 3 4 5 6
Level in AMG Hierarchy

0.000

0.005

0.010

0.015

T
im

e
(S

ec
on

d
s)

Measured Max-Rate

Figure 1: Measured and modeled communication costs asso-
ciated with a SpGEMM on each level of a linear elasticity
AMG hierarchy, on 8 192 processes of BlueWaters supercom-
puter.

parameters, are for 8 192 processes of the Blue Waters supercom-
puter1 [4]. The traditional postal model results in nearly identical
timings to more robust models, such as the max-rate model [11],
which takes into account the limitations of multiple communicating
processes per node. For this problem both models capture only a
fraction of the measured time.

This paper extends traditional performance models to accurately
model the irregular point-to-point communication that occurs in
commonly used operations. This paper presents three novel con-
tributions, including an improvement to the max-rate model [11]
measurements:

(1) node-aware model parameters;
(2) an extension to include quadratic queue search times in

communication; and
(3) an additional parameter estimating network contention.

1https://bluewaters.ncsa.illinois.edu/

https://doi.org/10.1145/3236367.3236368
https://doi.org/10.1145/3236367.3236368
https://doi.org/10.1145/3236367.3236368
https://bluewaters.ncsa.illinois.edu/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3236367.3236368&domain=pdf&date_stamp=2018-09-23

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain Amanda Bienz, William D. Gropp, and Luke N. Olson

The remainder of this paper is outlined as follows. Section 2 de-
scribes parallel point-to-point communication as well as corre-
sponding traditional performancemodels. Node-awareness is added
to traditional models in Section 3. Section 4 describes a high-volume
ping-pong algorithm along with additional acquired penalties, with
a queue search parameter described in Section 4.1 and a network
contention penalty in Section 4.2. The improved model parameters
are applied to commonly used operations and compared against
measured timings in Section 5. Finally, conclusions, limitations, and
future directions are described in Section 6.

2 BACKGROUND
Many common parallel operations, such as those involving sparse
matrices, require MPI point-to-point communication. This category
of communication consists of sending a single message between
a set of processes. In a typical implementation, the pairs of com-
municating processes, along with the size of associated messages,
vary. The point-to-point communication procedure varies with MPI
implementation. Typically, each message consists of both an enve-
lope and data, where the envelope contains a message description
including the tag, MPI communicator, message length, and process
of origin. There are a variety of methods for sending data, such as
sending the data immediately or waiting for the receive process to
allocate buffer space. In the implementations investigated in this
paper, a message is communicated via a specific protocol of short,
eager, or rendezvous, based on message size. The short protocol
consists of sending very small messages as part of the envelope
directly between processes. Messages that are too large to fit in
the envelope, but remain relatively small, are communicated with
eager protocol. This protocol assumes buffer space is available, and
immediately communicates the data to the receiving process. Lastly,
sufficiently large messages are communicated with rendezvous pro-
tocol, during which the envelope is communicated first, and the
remainder of the data is only communicated after the receiving
process has allocated buffer space.

The cost associated with each message is dependent on the time
required to initialize communication as well as the per-byte trans-
port cost. Therefore, the short protocol is significantly less costly
than the others as only a single envelope is communicated, yielding
minimal costs associated with both latency and bandwidth. Mes-
sages communicated with eager protocol have low latency costs
as the messages are sent directly between processes. However, the
associated per-byte transport cost increases, as these messages
can require significant amounts of buffering. Finally, rendezvous
messages yield low per-byte transport costs but increased latency
requirements associated with initial envelope communication and
synchronization.

The traditional postal model estimates the cost of communicating
a message as the sum of the message startup cost and the per-byte
transport, with separate parameters for each message protocol. This
can be defined as

T = α + β · s, (1)

where α is the latency, β is the cost to transport a byte of data, and
s is the number of bytes to be transported. As the associated costs
vary with message protocol, separate values for α and β are used
when communicating with short, eager, and rendezvous protocols.

This model accurately analyzes the cost of a standard ping-pong
test, in which two processes are sending messages to one another.
However, it fails to account for a variety of penalties that occur
during communication in typical operations on state-of-the-art
supercomputers.

There are many alternatives to the postal model that account for
many penalties that arise in standard supercomputers. The LogP
model splits the α into latency, the cost required by the hardware,
and overhead, the cost associated with the software [6, 10]. This
addition of overhead allows thismodel to capture the cost of overlap-
ping communication and computation. The LogGP model extends
the LogP model to analyze the cost of long messages [2]. Network
contention parameters are investigated with the LoPC and LoGPC
models [9, 15]. Accurate models exist for network contention in col-
lective communication, such as the MPI_Alltoall operation [18].
Futhermore, learning algorithms yield accurate contention predic-
tion [13]. Topology-awareness can improve models, as hop count,
or the number of links traversed by a message, affects the cost of
communication [1]. The cost of various implementations of the
receive queue have be investigated, and improvements to queue
search cost is an active area of research [14, 19–21]. Computer sim-
ulations can accurately estimate the cost of communication, but at
a significantly increased cost [12, 16, 17]. Network contention has
been previously modeled for collective communication, specifically
the MPI_Alltoall operation.

The max-rate model [11] improves upon the postal model by
defining the cost of communication as dependent on not only the
latency and inter-process bandwidth costs, but also on the maxi-
mum bandwidth by which a node can inject data into the network.
Therefore, this model accounts for the fact that injection band-
width becomes a bottleneck when communicating from four or
more processes per node, as is typical with state-of-the-art parallel
computers [11].

Throughout the remainder of this paper, the max-rate model is
used as a baseline. All ping pong timings are collected through mul-
tiple runs of Baseenv2, a topology-aware library useful for bench-
marking performance. Each ping-pong test consists of four dupli-
cate timings, with exception to the original max-rate tests, which
test the various numbers of actively communicating processes-per-
node one time each. Each Baseenv program is tested three different
times.

The models throughout this paper are tested on Blue Waters, a
Cray XE/XK machine at the National Center for Supercomputing
Applications (NCSA) at University of Illinois. Blue Waters contains
a 3D torus Gemini interconnect, in which each Gemini consists of
two nodes. The system contains 22 636 XE compute nodes, each
comprised of two AMD 6276 Interlagos processors, as well as 4 228
XK compute nodes containing a single AMG processor along with
an NVIDIA GK110 Kepler GPU. All tests in this paper are per-
formed on partitions of XE system nodes. The tests use a CrayMPI
implementation that is similar to MPICH.

2http://wgropp.cs.illinois.edu/projects/software/index.html

http://wgropp.cs.illinois.edu/projects/software/index.html

Improving Performance Models for Irregular Point-to-Point Communication EuroMPI ’18, September 23–26, 2018, Barcelona, Spain

3 NODE-AWARE MODELING
The max-rate model is defined as

T = α +
ppn · s

min(RN , ppn · Rb)
, (2)

where ppn is the number of actively communicating processes per
node, Rb is the rate at which data can be sent between two pro-
cesses, or the inverse of β , and RN is the maximum rate at which a
node can inject data into the network. Therefore, when the value
of ppn · Rb is less than injection bandwidth, this model reduces
to the postal model. However, with a sufficiently large number
of active processes per node, the per-byte transport rate is mea-
sured as injection bandwidth. Figure 2 displays the max-rate model
versus measured times when communicating a single message of
various size between pairs of processes. These associated models

100 101 102 103 104 105 106

Number of Bytes Communicated

10−6

10−5

10−4

10−3

T
im

e
(s

ec
on

d
s)

MaxRate (PPN ≥ 4) MaxRate (PPN < 4)

Figure 2: Ping-pong measured times (dots) versus max-rate
model (lines) on Blue Waters using parameters from [?].

are computed with published Blue Waters parameters [11], and
the measured times are acquired from sending messages between
processes that lie on the same socket, different sockets of the same
node, or on neighboring nodes of Blue Waters. While the addition
of network injection limits yields large improvement over the stan-
dard postal model when communicating rendezvous messages from
a large number of processes per node, the model overestimates for
a large portion of these timings.

There is a large difference between intra-socket messages, intra-
node messages that traverse across sockets, and communication
between two nodes. Therefore, different parameters should be used
for each of these cases. Furthermore, intra-node messages are not
injected into the network, and therefore the simple postal model is
sufficient. Figure 3 displays themeasured versusmodeled times after
splitting the model into on-socket, on-node but off-socket, and off-
nodemessages for both BlueWaters. The parameters corresponding
this node-aware model are listed in Table 1.

4 ADDITIONAL PENALTIES
Realistic applications that involve point-to-point communication
typically require more than one message to be communicated from

100 101 102 103 104 105 106

Number of Bytes Communicated

10−6

10−5

10−4

10−3

T
im

e
(s

ec
on

d
s)

Network (PPN ≥ 4)

Network (PPN < 4)

On-Node

On-Socket

Figure 3: The max-rate model versus measured times when
split into on-socket, on-node but off-socket, and off-node
communication.

any process. However, standard communication models were cre-
ated to analyze the cost of sending a single message, and do not
extend accurately to large message counts. A ping-pong test with
large message counts, described in Algorithm 1, acquires additional
costs not captured by the postal or max-rate models.

Algorithm 1: HighVolumePingPong

Input: rank: MPI rank of current process
p: process with which to communicate
n: number of messages to communicate
s: size of each message (in bytes)
send_tags: list of n MPI send tags
recv_tags: list of n MPI receive tags

if rank < p
for i < n do

MPI_Isend(. . . , s , . . . , p, send_tagsi , . . .)
MPI_Waitall(n, . . .)

for i < n do
MPI_Irecv(. . . , s , . . . , p, recv_tagsi , . . .)

MPI_Waitall(n, . . .)
else

for i < n do
MPI_Irecv(. . . , s , . . . , p, recv_tagsi , . . .)

MPI_Waitall(n, . . .)

for i < n do
MPI_Isend(. . . , s , . . . , p, send_tagsi , . . .)

MPI_Waitall(n, . . .)

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain Amanda Bienz, William D. Gropp, and Luke N. Olson

Table 1: Parameters for node-aware max-rate model on Blue Waters.

intra-socket intra-node inter-node
α Rb α Rb α Rb RN

short 4.4e-07 2.2e09 8.3e-07 4.8e08 2.3e-06 1.3e09 ∞

eager 5.3e-07 3.2e09 1.2e-06 9.6e08 7.0e-06 7.5e08 ∞

rend 1.7e-06 6.2e09 2.5e-06 6.2e09 3.0e-06 2.9e09 6.6e09

4.1 Queue Search
Point-to-point communication conceptually requiresmultiple queues
to be formed and traversed, including a send queue, comprised of
sends that have been posted; a receive queue of similarly posted re-
ceives; and an unexpected message queue, containing messages that
have been communicated for which no matching receive has been
posted [5]. The function and availability of these queues, which are
dependent on MPI implementation, greatly affects the performance
of communicating a large number of messages.

The standard implementation of MPICH creates two separate
receive queues, one for the posted messages and the other for
unexpected messages [7]. When an envelope is received, the queue
of posted messages is searched for a message in which all variables
such as tag, datatype, communicator, and sending process match the
envelope. If no associated message has been posted, the envelope
and any corresponding data is added to the unexpected message
queue. Similarly, when a message is posted by the application,
the unexpected message queue is traversed for any corresponding
envelope. If no match is found, the message is added to the posted
message queue.

The CrayMPI implementation requires a receive queue to be
searched linearly, yielding an additional cost when communicating
multiple messages. In the worst case, the messages are received in
the order opposite of which they are posted, requiring a traversal of
an entire queue for each receive. Therefore, the queue search is an
O(n2) operation. Methods have been created to reduce this queue
search cost, such as the use of multiple queues in combination with
hash maps [8]. However, as a standard queue search is currently
implemented in the version of MPI on Blue Waters, the large queue
search cost is investigated.

Figure 4 displays both the measured and modeled costs for per-
forming the HighVolumePingPong described in Algorithm 1 among
all 16 processes local to a single node on Blue Waters. The number
of messages communicated ranges from 1 to 10 000 with the total
number of bytes injected into the network remaining constant. In
the ideal scenario, the variables send_tagsi is equal to recv_tagsi
for all i < n, resulting in messages being received in the same order
as they are posted. Therefore, the first message in the searched
queue yields a match, resulting in an O(n) queue search cost. As
a result, the max-rate model accurately analyzes these measured
times. In the worst-cast scenario, the variables send_tagsi is equal
to recv_tagsn−i−1 for all i < n, posting receives in the opposite or-
der from which messages are received. Therefore, the entire queue
is traversed for each receive, resulting in an O(n2) queue search
cost, yielding measured times that vary greatly from the model.

The large inaccuracies of traditional models for large message
counts motivates adding an additional parameter for the time re-
quired to search the receive queues. This addition to the models is
defined as

Tq = γ · n2, (3)

where γ is the cost of stepping through either the posted or unex-
pected message queue. This cost is independent of message sending
protocol as well as relative locations of the send and receive pro-
cesses. Therefore, there is a single parameter for all combinations
of on-socket, on-node, off-node, and short, eager, and rendezvous.
The upper bound queue search cost is described as

γ = 8.4e − 09. (4)

Figure 5 shows the measured versus modeled times for the
HighVolumePingPong test in which the messages are received in
the opposite order from which they are posted. This figure adds the
queue search parameter to the original max-rate model, yielding a
more accurate analysis of the cost of large message counts.

4.2 Network Contention
When a large amount of data is communicated throughout the net-
work, multiple messages are often required to traverse the same
link, yielding contention within the network. This network con-
tention can occur on as few as eight nodes of Blue Waters when
a one-dimensional partition of the network is attained. Figure 6
shows a line of four Geminis, each containing two nodes, with a
one-dimension network partition. Communicating messages from
all 32 processes on Gemini 0 to corresponding processes on Gem-
ini 2, and similarly sending from Geminis 1 to 3, requires all data
to traverse the network link between Geminis 1 and 2. Therefore,
contention of this link occurs.

Figure 7 shows the measured and modeled costs of sending mes-
sages of various counts and sizes among all processes on the row
of Geminis, where the model contains both the max-rate and queue
search measures. The model underestimates the cost of communi-
cating a large amount of data at smaller message counts, before
queue search time dominates. The additional measured cost can
be modeled through an extra network contention parameter. This
addition measure is defined as

Tc = δ · ℓ, (5)

where δ is the per-byte penalty acquired waiting for a network
link and ℓ is the number of bytes to traverse each link. Network
contention only occurs during inter-node communication. However,
the cost of contention is constant regardless of the message sending
protocol. The measure for all inter-node messages on Blue Waters

Improving Performance Models for Irregular Point-to-Point Communication EuroMPI ’18, September 23–26, 2018, Barcelona, Spain

100 101 102 103 104

Number of Messages Communicated

10−6

10−5

10−4

10−3

10−2

T
im

e
(s

ec
on

d
s)

16 Bytes

64 Bytes

256 Bytes

1024 Bytes

4096 Bytes

16384 Bytes

65536 Bytes

262144 Bytes

100 101 102 103 104

Number of Messages Communicated

10−6

10−5

10−4

10−3

10−2

10−1

100

T
im

e
(s

ec
on

d
s)

16 Bytes

64 Bytes

256 Bytes

1024 Bytes

4096 Bytes

16384 Bytes

65536 Bytes

262144 Bytes

Figure 4: The measured versus modeled (max-rate) costs of sending a number of messages between two processes that lie on
the same node of Blue Waters. On the left, all receives are posted in the same order that messages are received, resulting in
no queue search cost. The right plot displays the cost when receives are posted in the opposite order from which they are
received, resulted in a quadratic queue search cost that is not captured in the max-rate model.

100 101 102 103 104

Number of Messages Communicated

10−6

10−5

10−4

10−3

10−2

10−1

100

T
im

e
(s

ec
on

d
s)

16 Bytes

64 Bytes

256 Bytes

1024 Bytes

4096 Bytes

16384 Bytes

65536 Bytes

262144 Bytes

Figure 5: The measured versus modeled times for Blue Wa-
ters, where the model is a combination of the max-rate
model and the contention, for HighVolumePingPong tests
with a variety of message counts and sizes. The receives are
posted in the opposite order of whichmessages are received.

is
δ = 1.0e − 10. (6)

The number of bytes to traverse any link, or ℓ, is dependent on
the number of links each message traverses. Therefore, knowledge
of the specific partition of the network is required to model the
associated cost. This requirement is removed by assuming the nodes
are connected through a perfect three-dimension cube portion of
Blue Waters’ three dimensional torus, as displayed in Figure 8.
Therefore, ℓ is defined as the following

ℓ = 2h3 · b · ppn, (7)

N0N1

G0

N2N3

G1

N4N5

G2

N6N7

G3

Figure 6: FourGemini spanning a one-dimensional partition
of the Blue Waters network. A HighVolumePingPong test be-
tween all processes on Geminis G0 and G3, and equivalent
messages betweenG1 andG3will result in a large amount of
contention for the middle link in the partition.

where h is the average number of hops, or network links, traversed
by each byte of data, and b is the average number of bytes to be sent
from any process. Therefore, as h3 yields the number of Geminis
within h hops of a given link, this measure estimates network
contention assuming all bytes that can traverse one single link
do. Furthermore, 2b · ppn calculates the average number of bytes
communicated from each Gemini.

Figure 9 displays the measured and modeled costs of communi-
cating a variety of message counts and sizes among four Geminis
of Blue Waters, with a one-dimensional network contention. This
figure includes the max-rate, queue search, and network contention
models, yielding improved accuracy in the model.

5 APPLICATIONS
Sparse matrix-vector (SpMV) and sparse matrix-matrix (SpGEMM)
multiplication are commonly used in a variety of applications such
as numerical methods and graph algorithms. When matrices are
sufficiently sparse, point-to-point communication is used to send
only necessary values to the processes that need them.

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain Amanda Bienz, William D. Gropp, and Luke N. Olson

100 101 102 103 104

Number of Messages Communicated

10−5

10−4

10−3

10−2

10−1

100

T
im

e
(s

ec
on

d
s)

16 Bytes

64 Bytes

256 Bytes

1024 Bytes

4096 Bytes

16384 Bytes

65536 Bytes

262144 Bytes

Figure 7: Measured versus modeled times for
HighVolumePingPong communication among the sets of
the Blue Waters Geminis described in Figure 6. The mod-
eled times, which are a combination ofmax-ratemodels and
the queue search parameters, do not capture the additional
costs associated with contention.

18 19 20

23

26

9 10 11

14

17

0 1 2

3 4 5

6 7 8

Figure 8: A perfect cube partition of Blue Waters Geminis is
used to calculate the average number of hops traversed by
each byte of data. In this example, a message from a process
on Gemini 3 to Gemini 11 traverses 4 network links.

Algebraic multigrid (AMG) is a sparse linear solver comprised
of matrix operations. An AMG hierarchy consists of successively
coarser, but denser, matrices. Therefore, each level in the hierar-
chy decreases in dimension, but often increases in the number of
non-zeros per row. The various levels require a variety of commu-
nication patterns, as the finer levels require communication of few
large messages while coarse levels require communicating a larger
number of small messages.

This section focuses on modeling the cost of matrix operations
throughout an AMG hierarchy as communication costs vary drasti-
cally among the levels. The hierarchy is formed with classical AMG

to solve a three-dimensional unstructured linear elasticity prob-
lems formed with MFEM3. All tests are performed with RAPtor [3]
on 512 nodes of Blue Waters. The original linear elasticity system
consists of 840 000 unknowns and 65 million non-zeros.

Figure 10 displays the measured and modeled costs for perform-
ing a SpMV on each level of the AMG hierarchy. The modeled costs
are partitioned into the max-rate model, queue search costs, and
network contention penalties. The cost of each SpMV is accurately
captured when all model parameters are included, with a large
improvement over modeling with only the max-rate model. Fur-
thermore, the model indicates that the majority of communication
costs on coarse levels near the middle of the hierarchy are due
mainly to queue search costs, motivating efforts for minimizing the
number of messages received or posted at any time.

The measured and modeled costs for performing an SpGEMM on
each level of the AMG hierarchy are shown in Figure 11. Themodels
are again partitioned into max-rate, queue search, and network con-
tention costs, displaying a large improvement in the model accuracy
from the combination of queue search and contention parameters.
These models show that more significant costs of the SpGEMMs are
from network contention, and while queue search times could be
reduced, larger savings would be acquired by reducing the number
of bytes to traverse any link.

Combining the max-rate model with queue search and network
contention parameters improves the accuracy of the model, but also
over-predicts the timings. This over-prediction is a result of using
an upper bound on the queue search parameter, corresponding
to the cost of posting receives in the opposite order from which
messages arrive. The upper bound assumes the n ·(n+1)

2 elements
are searched, while only n elements are searched if the receives are
posted in the correct order. The queue search cost was measured for
each of these applications by probing for the first available message
and computing its position in the queue. The maximum cost on any
process was consistently around n ·n

3 , which is approximated much
more accurately by the upper bound than the lower. Furthermore,
reversing the ordering of the receives results in a different process
incurring the maximum queue search penalty, but this cost stays
constant.

6 CONCLUSION
Common applications of point-to-point communication typically
require a large number of messages to be communicated, with large
variability in corresponding messages sizes. Furthermore, there
are often combinations of intra-socket, intra-node, and inter-node
messages, with the latter commonly traversing multiple links of the
network. Therefore, the traditional postal and max-rate models can
be improved by splitting standard parameters into on-socket, on-
node, and off-node. Additional parameters for bounding the queue
search cost and estimating network contention further improve the
accuracy of these models. When all parameters are used, the models
accurately capture the cost of irregular sparse matrix operations
on Blue Waters.

The model parameters are all computed with ping-pong and
HighVolumePingPong tests on few nodes, with the majority of tests
requiring only a single node while network contention parameters

3http://mfem.org

http://mfem.org

Improving Performance Models for Irregular Point-to-Point Communication EuroMPI ’18, September 23–26, 2018, Barcelona, Spain

100 101 102 103 104

Number of Messages Communicated

10−5

10−4

10−3

10−2

10−1

100

T
im

e
(s

ec
on

d
s)

16 Bytes

64 Bytes

256 Bytes

1024 Bytes

4096 Bytes

16384 Bytes

65536 Bytes

262144 Bytes

Figure 9: Modeled versus measured times for HighVolumePingPong communication about four Blue Waters Geminis spanning
a one-dimensional partition of the networks. The processes on the Geminis and nodes communicate as described in Figure 6.
The modeled times are a combination of max-rate models, queue search costs, and the contention parameter.

0 1 2 3 4 5 6
Level in AMG Hierarchy

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

T
im

e
(s

ec
on

d
s)

Measured

Max-Rate

Queue Search

Contention

Figure 10: Measured versus modeled times for performing a
SpMV on each level of linear elasticity AMG hierarchy.

are calculated on up to eight nodes. However, these parameters
remain accurate when modeling sparse matrix operations on 512
nodes, indicating this model can be extended to large core counts
with no additional work.

This model may need alterations to accurately capture the costs
on different systems. For example, architectures with only a single
socket per node, such as Blue Gene/Q machines, will only need
to partition the max-rate model into on-node and off-node mes-
sages. Furthermore, MPI implementations with an optimized queue
search will require alternative queue search penalties, while imple-
mentations with dynamic message routing will require a block of
communicating nodes to capture network contention in the test in
Figure 6.

Limitations for this model include using the upper bound for
queue search time and assuming the process domain is mapped to

0 1 2 3 4 5 6
Level in AMG Hierarchy

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018
T

im
e

(s
ec

on
d

s)
Measured

Max-Rate

Queue Search

Contention

Figure 11: Measured versus modeled times for performing a
SpGEMM on each level of linear elasticity AMG hierarchy.

a cube for network contention. The queue search time will overesti-
mate the actual cost, while the accuracy of the network contention
penalty can vary with actual partition acquired.

These models can be further extended to include topology-aware
parameters, such as additional latency required formessages travers-
ing a large number of links. Furthermore, the models motivate fu-
ture directions for tested applications, such as methods for reducing
queue search time in SpMVs and network contention in SpGEMMs.

ACKNOWLEDGMENTS
This research is part of the Blue Waters sustained-petascale com-
puting project, which is supported by the National Science Foun-
dation (awards OCI-0725070 and ACI-1238993) and the state of
Illinois. Blue Waters is a joint effort of the University of Illinois at
Urbana-Champaign and its National Center for Supercomputing

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain Amanda Bienz, William D. Gropp, and Luke N. Olson

Applications. This material is based in part upon work supported
by the National Science Foundation Graduate Research Fellowship
Program under Grant Number DGE-1144245. This material is based
in part uponwork supported by the Department of Energy, National
Nuclear, under Award Number DE-NA0002374.

REFERENCES
[1] Tarun Agarwal, Amit Sharma, and Laxmikant V. Kalé. 2006. Topology-aware Task

Mapping for Reducing Communication Contention on Large Parallel Machines.
In Proceedings of the 20th International Conference on Parallel and Distributed
Processing (IPDPS’06). IEEE Computer Society, Washington, DC, USA, 145–145.
http://dl.acm.org/citation.cfm?id=1898953.1899075

[2] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman.
1995. LogGP: Incorporating Long Messages into the LogP Model – One Step
Closer Towards a Realistic Model for Parallel Computation. In Proceedings of the
Seventh Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA
’95). ACM, New York, NY, USA, 95–105. https://doi.org/10.1145/215399.215427

[3] Amanda Bienz and Luke N. Olson. 2017. RAPtor: parallel algebraic multigrid
v0.1. https://github.com/lukeolson/raptor Release 0.1.

[4] Brett Bode, Michelle Butler, Thom Dunning, Torsten Hoefler, William Kramer,
William Gropp, and Wen-mei Hwu. 2013. The Blue Waters Super-System for
Super-Science. In Contemporary High Performance Computing. Chapman and
Hall/CRC, 339–366. https://doi.org/10.1201/b14677-16

[5] James Cownie and William Gropp. 1999. A Standard Interface for Debugger
Access to Message Queue Information in MPI. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface, Jack Dongarra, Emilio Luque, and
Tomàs Margalef (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 51–58.

[6] David E. Culler, RichardM. Karp, David Patterson, Abhijit Sahay, Eunice E. Santos,
Klaus Erik Schauser, Ramesh Subramonian, and Thorsten von Eicken. 1996. LogP:
A Practical Model of Parallel Computation. Commun. ACM 39, 11 (Nov. 1996),
78–85. https://doi.org/10.1145/240455.240477

[7] Gábor Dózsa, Sameer Kumar, Pavan Balaji, Darius Buntinas, David Goodell,
William Gropp, Joe Ratterman, and Rajeev Thakur. 2010. Enabling Concurrent
Multithreaded MPI Communication on Multicore Petascale Systems. In Proceed-
ings of the 17th European MPI Users’ Group Meeting Conference on Recent Advances
in the Message Passing Interface (EuroMPI’10). Springer-Verlag, Berlin, Heidelberg,
11–20. http://dl.acm.org/citation.cfm?id=1894122.1894125

[8] Mario Flajslik, James Dinan, and Keith D. Underwood. 2016. Mitigating MPI
Message Matching Misery. In High Performance Computing, Julian M. Kunkel,
Pavan Balaji, and Jack Dongarra (Eds.). Springer International Publishing, Cham,
281–299.

[9] Matthew I. Frank, Anant Agarwal, and Mary K. Vernon. 1997. LoPC: Modeling
Contention in Parallel Algorithms. In Proceedings of the Sixth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPOPP ’97). ACM,
New York, NY, USA, 276–287. https://doi.org/10.1145/263764.263803

[10] P. B. Gibbons. 1989. A More Practical PRAM Model. In Proceedings of the First
Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA ’89).
ACM, New York, NY, USA, 158–168. https://doi.org/10.1145/72935.72953

[11] William Gropp, Luke N. Olson, and Philipp Samfass. 2016. Modeling MPI Com-
munication Performance on SMP Nodes: Is It Time to Retire the Ping Pong Test.
In Proceedings of the 23rd European MPI Users’ Group Meeting (EuroMPI 2016).
ACM, New York, NY, USA, 41–50. https://doi.org/10.1145/2966884.2966919

[12] T. Hoefler, T. Schneider, and A. Lumsdaine. 2010. LogGOPSim - Simulating Large-
Scale Applications in the LogGOPS Model. In Proceedings of the 19th ACM Inter-
national Symposium on High Performance Distributed Computing. ACM, Chicago,
Illinois, 597–604.

[13] Nikhil Jain, Abhinav Bhatele, Michael P. Robson, Todd Gamblin, and Laxmikant V.
Kale. 2013. Predicting Application Performance Using Supervised Learning on
Communication Features. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (SC ’13). ACM, New
York, NY, USA, Article 95, 12 pages. https://doi.org/10.1145/2503210.2503263

[14] Rainer Keller and Richard L. Graham. 2010. Characteristics of the Unexpected
MessageQueue ofMPI Applications. In Proceedings of the 17th EuropeanMPI Users’
Group Meeting Conference on Recent Advances in the Message Passing Interface
(EuroMPI’10). Springer-Verlag, Berlin, Heidelberg, 179–188. http://dl.acm.org/
citation.cfm?id=1894122.1894146

[15] Csaba Andras Moritz and Matthew I. Frank. 1998. LoGPC: Modeling Network
Contention in Message-passing Programs. In Proceedings of the 1998 ACM SIG-
METRICS Joint International Conference on Measurement and Modeling of Com-
puter Systems (SIGMETRICS ’98/PERFORMANCE ’98). ACM, New York, NY, USA,
254–263. https://doi.org/10.1145/277851.277933

[16] N. Saboo, A. K. Singla, J. M. Unger, and L. V. Kale. 2001. Emulating petaflops
machines and blue gene. In Proceedings 15th International Parallel and Distributed
Processing Symposium. IPDPS 2001. IEEE, San Francisco, CA, USA, 2084–2091.
https://doi.org/10.1109/IPDPS.2001.925206

[17] T. Schneider, T. Hoefler, and A. Lumsdaine. 2009. ORCS: An Oblivious Routing
Congestion Simulator. Technical Report 675. Indiana University.

[18] L. A. Steffenel. 2006. Modeling Network Contention Effects on All-to-All Opera-
tions. In 2006 IEEE International Conference on Cluster Computing. IEEE, Barcelona,
Spain, 1–10. https://doi.org/10.1109/CLUSTR.2006.311889

[19] K. D. Underwood and R. Brightwell. 2004. The impact of MPI queue usage on
message latency. In International Conference on Parallel Processing, 2004. ICPP
2004. 152–160 vol.1.

[20] Keith D. Underwood, K. Scott Hemmert, Arun Rodrigues, Richard Murphy, and
Ron Brightwell. 2005. A Hardware Acceleration Unit for MPI Queue Processing.
In Proceedings of the 19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’05) - Papers - Volume 01 (IPDPS ’05). IEEE Computer Society,
Washington, DC, USA, 96.2–. https://doi.org/10.1109/IPDPS.2005.30

[21] J. A. Zounmevo and A. Afsahi. 2012. An Efficient MPI Message Queue Mechanism
for Large-scale Jobs. In 2012 IEEE 18th International Conference on Parallel and
Distributed Systems. 464–471.

http://dl.acm.org/citation.cfm?id=1898953.1899075
https://doi.org/10.1145/215399.215427
https://github.com/lukeolson/raptor
https://doi.org/10.1201/b14677-16
https://doi.org/10.1145/240455.240477
http://dl.acm.org/citation.cfm?id=1894122.1894125
https://doi.org/10.1145/263764.263803
https://doi.org/10.1145/72935.72953
https://doi.org/10.1145/2966884.2966919
https://doi.org/10.1145/2503210.2503263
http://dl.acm.org/citation.cfm?id=1894122.1894146
http://dl.acm.org/citation.cfm?id=1894122.1894146
https://doi.org/10.1145/277851.277933
https://doi.org/10.1109/IPDPS.2001.925206
https://doi.org/10.1109/CLUSTR.2006.311889
https://doi.org/10.1109/IPDPS.2005.30

	Abstract
	1 Introduction
	2 Background
	3 Node-Aware Modeling
	4 Additional Penalties
	4.1 Queue Search
	4.2 Network Contention

	5 Applications
	6 Conclusion
	Acknowledgments
	References

